
Bachelor’s Thesis

Development And Programming Of A Data
Aquisition Component For The New ATLAS

Pixel Detector Front-End Electronics

prepared by

Johannes Agricola
from Fulda

at the II. Physikalischen Institut

Thesis number: II.Physik-UniGö-BSc-2011/10

Thesis period: 1st April 2011 until 30th September 2011

First referee: Prof. Dr. Arnulf Quadt

Second referee: Prof. Dr. Dieter Hogrefe

Abstract
The ATLAS Pixel Detector is planned to be upgraded with the “Insertable B-Layer”
(IBL) in 2013. The read-out chain adapted to the new requirements of the new Pixel
Detector layer is currently in development. The electrical Back-Of-Crate card designed,
configured, successfully simulated and tested in this thesis is going to be used to set
up a test system and a Pixel Detector read-out system for the laboratory that comes
without optical transmission lines and their problems. It is a redesign of the existing
electrical Back-Of-Crate card, adapted to the requirements introduced by the new sensor
chips. Especially the 8B/10B coded data transmission and the increased data rate of
160 Mbit/s for a single link from the sensor chip are relevant to this thesis, as any data
from the sensor chip had to be decoded, buffered and demultiplexed onto 40 Mbit/s links.

Keywords: Large Hadron Collider, ATLAS, IBL, Detector Read-Out, FE-I4, FPGA

iii

Contents

1. Introduction 1

2. Background and Related Topics 3
2.1. The ATLAS Pixel Detector . 3

2.1.1. The ATLAS Experiment . 3
2.1.2. The ATLAS Pixel Detector . 4
2.1.3. Insertable B-Layer . 6
2.1.4. Detector Read-Out . 7
2.1.5. Laboratory Detector Read-Out - The eBOC 8
2.1.6. MCC Emulator . 9

2.2. Programmable Logic: FPGAs . 9
2.2.1. Logic and Interconnect . 10
2.2.2. Additional Resources . 11
2.2.3. The Register Transfer Level . 12
2.2.4. Very High Speed Integrated Circuit Hardware Description Language 13
2.2.5. Design Analysis . 14
2.2.6. Cores . 15
2.2.7. Configuration and Debugging . 16

2.3. 8B/10B Code . 17
2.3.1. Theory . 17
2.3.2. 8B/10B . 18

3. Implementation 21
3.1. Configuration . 21

3.1.1. Data Path . 21
3.1.2. Clocks . 27
3.1.3. Command Path . 30
3.1.4. Setup Bus . 30
3.1.5. Reset Circuitry . 30

v

Contents

3.2. Hardware . 31
3.2.1. FPGA Selection . 31
3.2.2. The Printed Circuit Board . 33

3.3. Changes to the MCC Emulator . 36
3.3.1. The Pattern Generator . 37

4. Test and Validation 39
4.1. Simulation . 39

4.1.1. Simulation Results for 40 Mbit/s, 10 Bytes, ϕ = 0 ns, z = 1 39
4.2. Timing Analysis . 41
4.3. Measurements On A Prototype . 41

4.3.1. Clocks . 43
4.3.2. LVDS Signal Integrity . 43
4.3.3. Power Measurement . 43

4.4. Testing With The MCC Emulator . 46
4.4.1. Error Rates . 48
4.4.2. Problems with the modified MCC Emulator at 40 Mbit/s 49

5. Summary 51

6. Future Work 53

A. 8B/10B Coding Map 55

vi

Nomenclature

Acronyms

Acronym Meaning

ASIC Application-Specific Integrated Circuit
ATLAS A Toroidal LHC Apparatus
BOC Back-Of-Crate card
CERN European Organization for Nuclear Research
CLB Configurable Logic Block
DCM Digital Clock Manager
DDR Double Data Rate
DFS Digital Frequency Synthesizer
DH Data Header
DLL Delay-Locked Loop
DR Data Record
eBOC electrical Back-Of-Crate card
EOF End-Of-Frame
FE-I3 Front-End Interface 3
FE-I4 Front-End Interface 4
FIFO First In First Out
FPGA Field Programmable Gate Array
IBL Insertable B-Layer
I/O Input/Output
JTAG Joint Test Action Group
LHC Large Hadron Collider
LUT Look-Up Table
LVDS Low-Voltage Differential Signalling
MCC Module Control Chip
MUX Multiplexer

vii

Nomenclature

Acronym Meaning

PCB Printed Circuit Board
PECL Positive Emitter-Coupled Logic
PLL Phase-Locked Loop
PP0 Patch-Panel 0
PROM Programmable Read-Only Memory
QFP Quad Flat Pack
RAM Random-Access Memory
RD Running Disparity
ROD Read-Out Driver
ROM Read-Only Memory
RTL Register Transfer Level
SBC Single Board Computer
SOF Start-Of-Frame
SR Service Record
TIM Timing, Trigger and Control Interface Module
ToT Time over Threshold
VCO Voltage Controlled Oscillator
VHDL Very High Speed Integrated Circuit Hardware Description Lan-

guage

viii

Nomenclature

ix

1. Introduction

In March of 2011 the Large Hadron Collider began operation with proton-proton collisions
at 3.5 TeV per beam. Only around five months later, in August, ATLAS and CMS, two
of the experiments at the Large Hadron Collider, have collected about 2 fb−1 of data1.
This equates to the amount of data produced in about 140 · 1012 collisions. To filter this
data and save and process only relevant fractions is a complex task which is accomplished
by a sophisticated triggering and read-out system.
The innermost part of the ATLAS experiment is the Pixel Detector, a detector that

records the energy of charged particles at discrete points on three layers around the
collision point. In 2013 a new Pixel Detector layer is planned to be inserted into ATLAS.
Due to its closer position to the interaction point and the collider’s run parameters in the
ensuing operation, it will have a higher resolution. This severely increases the amount
of data produced per area and calls for new data transmission techniques and thus an
updated detector read-out system.
Together with other improvements this leads to a new front-end electronics with notably

increased bandwidth per link and a new data protocol encoded with a transmission code.
In addition to this the off-detector electronics are currently updated.
In this thesis an interim solution for the migration to the new read-out electronics is

created which is also stripped of the optical transmission features. This electrical Back-
Of-Crate card, which is a replacement for the default Back-Of-Crate card, should allow
to connect the new front-end electronics to the old read-out electronics.
In Chapter 2, the Large Hadron Collider, the ATLAS experiment, especially its Pixel

Detector including the read-out electronics and upgrade plans are introduced. A general
understanding of FPGA technology and configuration is established and an overview of
the 8B/10B transmission code is put across. The actual contribution of this thesis is
described in Chapter 3 where the hardware and its configuration are presented. Chapter
4 contains the results of simulation and testing of the configuration and hardware.

1http://cdsweb.cern.ch/record/1372204

1

2. Background and Related Topics

2.1. The ATLAS Pixel Detector

The Large Hadron Collider (LHC) [1] is a circular accelerator set in a tunnel with
27 km circumference located at CERN (European Organization for Nuclear Research)
near Geneva, Switzerland.
Preaccelerated proton or lead packages are injected into the beam pipe at 450 GeV.

After further acceleration, proton-proton collisions take place at four points located along
the beam pipe, at a center of mass energy of up to 14 TeV. A maximum of 2808 proton
packages will cycle the LHC ring at the same time and collide at a rate of up to 40 MHz.
The four aforementioned sections of the LHC ring house the main experiments: ATLAS

(A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid), focusing on physics
in the scale of TeV, ALICE (A Large Ion Collider Experiment), focusing on lead-lead
collisions, and the LHCb.

2.1.1. The ATLAS Experiment

The ATLAS [2] experiment consists of several sub-detectors that are layered as barrels
around the collision point and extended by caps on both ends (see Figure 2.1). Altogether,
the experiment has a radius of 11 m and a length of 46 m.
The muon spectrometer is the outermost and largest part. It is set in a magnetic field

of 0.5 T to accurately measure the momentum of single muons through their path. The
magnetic field is generated by a set of eight toroidal magnets which radially cut the muon
spectrometer.
Next to this are the calorimeters: First when looking from the interaction point is the

electromagnetic calorimeter (also called Liquid Argon Calorimter due to its sampling ma-
terial) which measures the energy of electromagnetically interacting particles like charged
particles and photons by absorbing them. Particles that pass through it but interact via
strong force are then absorbed by the hadronic calorimeter.
Inside the calorimeters, a solenoid coil provides a magnetic field of 2 T for the inner

detector which consists of three more detectors: The Transition Radiation Tracker (TRT),

3

2. Background and Related Topics

Figure 2.1.: Overview and size comparison of the ATLAS detector experiment.

Radius r Number of Modules
B-Layer 50.5 mm 286
Layer 1 88.5 mm 494
Layer 2 122.5 mm 676

Table 2.1.: Distance and module population of the Pixel Detector barrels.

the Semi-Conductor Tracker (SCT) and the Pixel Detector.
The outer detector is the TRT which detects ultrarelativistic particles by their transition

radiation at different media. The SCT is basically the same as the Pixel Detector, but
with lower resolution and longer pixels.

2.1.2. The ATLAS Pixel Detector

The innermost subdetector, the Pixel Detector is depicted in Figure 2.2. Its outer radius
is only 122.5 mm with a length of 1.3 m. It detects charged particles by their interac-
tion with the detector’s semiconductor material that is subdivided into units which are
appropriately named “pixels”.
The detector consists of three barrels (see Table 2.1) with three end caps on each

side. As it is covered by the magnetic field generated by the solenoid described above,

4

2.1. The ATLAS Pixel Detector

Figure 2.2.: The ATLAS Pixel Detector.

momentum and charge of the detected particles can be reconstructed from their path. It
is also possible to calculate their point of origin and thus find out if they are an immediate
result of collision at the interaction point or of a subsequent decay.
The described structure is padded with Pixel Modules. Each pixel module hosts a

silicon pixel sensor in which the interaction with the charged particle takes place. It is
subdivided into 47232 pixels which measure 50× 400 µm2 or 50× 600 µm2 1.
The front end interface (FE-I3 for version 3) electronics is mounted in a grid of 8 × 2

chips beneath the sensor. Each of the pixel cells is connected to one analog front end cell
on one of the FE-I3s. This electronics amplifies the current pulse from the sensor and
compares it to a configurable threshold. The time stamps of the rising and falling edge
are then saved for further evaluation: The rising edge is used to match the read data to
an event of interest, the difference between rising and falling edge, called the Time over
Threshold (ToT), is a measure of the energy the particle lost while traversing the sensor.
All FE chips of a module are connected to one Module Control Chip (MCC) which is

responsible for reading out the hits saved on the FE chips, providing clocks, reset signals
and communicating with the off-detector electronics. Once a trigger has been received by
the MCC, it reads the relevant hits from the FE Chips, aggregates and transmits them
to the off-detector electronics.

1The larger pixel size is required as the read-out electronics which is described in the following paragraph
is divided into several discrete chips and there has to be a safety margin at the border of each die
that cannot contain electronics.

5

2. Background and Related Topics

One of the characteristics of the MCC that are relevant to this thesis are the supported
data rates: At all times, the MCC receives a 40 MHz clock from the off-detector electron-
ics. Synchronized to this clock, each MCC has a command channel over which it receives
commands at 40 Mbit/s.
In the other direction, the MCC is able to return data at different rates. First of all,

there is the 40 Mbit/s mode where the data is synchronized to every second edge of
the clock. Alternatively, a double data rate (DDR) mode is supported where the data
is synchronized to every rising and falling edge resulting in a data rate of 80 Mbit/s.
Additionally to this, each MCC can be connected with two data lines which implies
a maximum data rate of 160 Mbit/s per pixel module with a maximum data rate of
80 Mbit/s per channel.

2.1.3. Insertable B-Layer

As an extension to the three available Pixel Detector layers, a new B-Layer called In-
sertable B-Layer (IBL) [3] will be inserted into the current B-Layer during the second
major LHC shutdown in 2013 [4]. Among other things, this upgrade is motivated by the
increasing requirements and stress on the current B-Layer:
First of all, the B-Layer is crucial for vertex reconstruction. Whilst a failure in Layers 1

or 2 is not critical, vertex reconstrcution performance is heavily reduced when a B-Layer
module is damaged. Also, precision for other analytical processes is increased by a new
detector layer that is close to the interaction point.
Second, the Pixel Detector has been designed for a maximum luminosity of 1034 cm−2s−1.

However, due to other upgrades to the LHC the Pixel Detector will be in operation while
the peak luminosity reaches twice the maximum value. The current on-detector elec-
tronics is unable to handle the number of recorded events which will result in additional
inefficiencies.
Other reasons include the preventive replacement of the beam-pipe to avoid damage

during detector operation. Also, at the time of planning the IBL project, radiation-
induced problems like reduced sensor efficiency were expected. However, the data taken
in the first years of LHC operation showed that it is improbable that those are going to
be a problem for the doses that are deposited during normal operation.
Of course, as it has to be inserted into the existing structure, the IBL must be mounted

at a lower radius, namely at a mean radius of r = 32 mm. This has a notable impact on
the sensor and electronics design: To achieve the same radial resolution as the existing
B-Layer, the resolution has to be enhanced by the same factor as the decrease in distance
to the collision point. Also, as a result of the inverse-square law, the increased radiation

6

2.1. The ATLAS Pixel Detector

exposure calls for a more radiation-hard technology. Due to its position in the detector
and the volume restrictions, mass and volume of the B-Layer setup have to be as small
as possible. Additionally, the active area of the sensor has been increased.

FE-I4

These parameters turn into a central requirement for the new read-out electronics: A
notably increased data rate per area. The different solutions to this requirement culminate
in the FE-I4 (Front-End Interface 4) [5], which in contrast to the FE-I3 also takes over
the tasks of the MCC.
The main improvement of the digital electronics is a new read-out scheme: Instead

of moving hits out of the pixel array every time they are registered, they are saved in
memory located directly adjacent to the analog electronics. Then hits are only read out
of these cells in case of a trigger.
More relevant to the work performed in this thesis are the modifications to the off-

detector read-out interface. Instead of the 2 · 80 Mbit/s in data rate and one command
channel per MCC, each FE-I4 is connected with only one data channel with a data rate of
up to 160 Mbit/s and a command channel that can be shared between up to eight FE-I4s
due to a sensor addressing scheme that has been introduced.
The data channel is also encoded with the transmission code 8B/10B, which has many

desired properties for asynchronous optical or differential data transmission and will be
explained in detail in Section 2.3.

2.1.4. Detector Read-Out

The on-detector part of the detector read-out has already been described coarsely in
the previous sections. This thesis focuses on the off-detector tasks. In the setup as it is
currently used at ATLAS and as shown in Figure 2.3, the Pixel Module is connected to an
electrical-optical converter on the detector, called Optoboard. This in turn is connected
via optical fibres leading out of the detector to the Back-Of-Crate card (BOC) in the
read-out crate. On the BOC optical signals are again converted into electrical signals and
vice versa. Depending on the bandwidth, each data channel which is constituted by one
or two lines is demultiplexed into up to four lines with a data rate of 40 Mbit/s per line.
These lines lead to the Read-Out Driver (ROD) which is responsible for histogramming

and analysis when in calibration mode and for event building when capturing actual data.
These events are then transmitted to the Read-Out Buffer for further processing.
Amongst other things, the TIM (Timing, Trigger and Control Interface Module) is also

7

2. Background and Related Topics

Module

fe data

fe cmd

fe clk
O
pt
ob

oa
rd

BOC

clock

tx

rx

S-Link

to Read-Out
Buffer

ROD TIM

on-detector off-detector

Figure 2.3.: On-site detector read-out scheme. Red lines denote optical, black lines
electrical connections.

Module

fe data

fe cmd

fe clk

eBOC

clock

tx

rx

ROD SBC

PP0

Figure 2.4.: Laboratory detector read-out scheme.

responsible for forwarding a received trigger to the ROD for further distribution to the
Pixel Modules. The TIM also supplies the ROD with a clock which is then distributed
to the modules through the BOC.

2.1.5. Laboratory Detector Read-Out - The eBOC

As described in the previous section, the on-detector-off-detector transmission is optical.
Tuning the optical transceivers is time-consuming and may have to be repeated several
times during operation and the transmission is prone to errors.
In contrast to the setup at the LHC, the distance between the detector and the off-

detector electronics is short: About 2 meters as compared to 80 meters. Thus in the lab,

8

2.2. Programmable Logic: FPGAs

the conversion to optical signals is omitted. As this is an integral part of the BOC, this
requires a redesign of the BOC: The electrical BOC or eBOC.
Figure 2.4 shows a setup in the lab with an electrical read-out chain. The Optoboard has

been removed and the BOC has been replaced by an electrical alternative. Additionally,
the triggering has been taken over by the Single Board Computer (SBC) and no TIM is
required.
An eBOC already exists for the FE-I3 with corresponding MCC and is described in

[6]. However, it suffers from a major problem: The ROD has 96 input channels, but
in configuration for the Pixel Detector, it only accepts data on few of them and those
cannot be chosen arbitrarily. On the currently existing eBOC, those channels are not
chosen correctly. Also, this eBOC requires an additional board, the PP0 (Patch-Panel 0)
which is simply an electrical replacement for the Optoboard and as such not required for
an implementation relying on electrical communication only.
To migrate the electrical read-out chain to FE-I4, the first component that has to be

replaced is the eBOC as in the old revisions it does not support the high data rates of
160 Mbit/s and the ROD does not accept 8B/10B coded data.

2.1.6. MCC Emulator

An emulator for the MCC has been created by Benjamin von Ardenne [7]. This emulator
consists of an FPGA configuration which mimics the behaviour of a real Pixel Module
that is equipped with a set of FE-I3s and an MCC, but the output channel of it is encoded
in 8B/10B, which is not possible with the real Pixel Module. A major limitation is that
it only supports a data rate of 40 Mbit/s.
This allows for an independent redesign of the eBOC as testing is possible without

depending on the ROD. Afterwards, the old eBOC is simply replaced with the new one.
In the further development, a fully tested eBOC is available to migrate the ROD config-
uration to the new FE-I4 protocol.

2.2. Programmable Logic: FPGAs

A Field Programmable Gate Array (FPGA) is as already stated by the name a device
that incorporates configurable logic circuits. The available resources can be divided into
several parts.
The most notable ones are on one hand the logic blocks that contain the actual con-

figurable logic. On the other hand these have to be connected which is done by the

9

2. Background and Related Topics

LUT

i1

i2

...
in

q

d

clk

q

clock

Figure 2.5.: A very simple representation of a CLB.

interconnect matrix. Additional parts may contain resources for clock management, ded-
icated memory, I/O and digital signal processing.

2.2.1. Logic and Interconnect

The core of an FPGA are its Configurable Logic Blocks (CLBs) or simply logic blocks.
A simplified logic block is shown in Figure 2.5: It consists of an n-input Look-Up Table
(LUT) and a D-type flip-flop. The LUT can be configured to encode any n-input Boolean
function. The flip-flop is used to save the result of this function. Alternatively, the result
of the LUT can be directly routed out of the logic block to either implement asynchronous
logic or form logic terms with more than n inputs.
Figure 2.5 is simple in comparison to the logic blocks of modern FPGAs [8]. More

advanced ones include multiple LUTs, LUTs that are splittable or reconfigurable to RAM
or shift registers, logic that enables high-efficiency summation, multiple flip-flops or latches
and other features that increase versatility of the programmable circuits.
The other major part of an FPGA are the interconnect resources. Often, they are

divided into general-purpose interconnect and the clock network. How these are laid out
is vendor and especially device specific. In case of the Spartan 6 architecture [9, 10] used
in this thesis, each CLB is connected to a switch matrix (see Figure 2.6). This in turn
is connected to many other switch matrices forming the general-purpose interconnect.
Additionally, there may be an interconnect responsible for carry logic.
While the general-purpose interconnect is optimized for interconnecting CLBs, often

only over a short distance, the clock network [11] is optimized on supplying the whole
FPGA with potentially high-speed clocks. Such a clock network is required to be designed
for a low clock skew. This is supported by the resources mentioned in the next section.

10

2.2. Programmable Logic: FPGAs

switch
matrix

CLB
switch
matrix

CLB
switch
matrix

CLB

switch
matrix

CLB
switch
matrix

CLB
switch
matrix

CLB

switch
matrix

CLB
switch
matrix

CLB
switch
matrix

CLB

Figure 2.6.: A possible implementation of the general purpose interconnect of an FPGA.
Each CLB is connected to its own switch matrix which is able to connect
it to horizontal and vertical bus lines.

Often encountered at the edges of the die, the general-purpose interconnect and clock
network are connected to special blocks designed to interface to peripheral electronics.
These I/O blocks contain specialized electronics for this purpose: Often a multitude of
I/O standards is supported, including differential standards. The I/O sections of the
FPGA used in this thesis also incorporate serial-parallel-converters which allow for serial
communication at a much higher bit rate than possible within the FPGA.

2.2.2. Additional Resources

FPGAs often include additional resources, like phase-locked loops (PLLs) or other clock
synthesis and conditioning tools:
The FPGA chosen for this thesis includes several PLLs and digital frequency synthe-

sizers (DFSs). Each PLL has several outputs with different frequency divider and phase
shift settings. These are supplemented by delay-locked loops (DLLs) and general-purpose

11

2. Background and Related Topics

LUT

i0

i1

q1 d

clk

q

LUT

i0

i1

q
=1

d

clk

q
D0

D1 Q1

Q0

clock

Figure 2.7.: A schematic of a synchronous counter in an RTL view.

phase shifters, which are able to shift the phase of a clock. Specifically, this is used to
compensate for the clock distribution delay.
FPGAs are usually ideally suited for high data rates2. This defines a requirement for a

certain amount of memory, especially with low-latency access within the FPGA.
In FPGA technology, especially on Xilinx FPGAs, one often distinguishes between

distributed [11] and block RAM [12]. Distributed RAM refers to the already mentioned
reconfiguration of a part of a logic block to RAM. Block RAM on the other hand provides
relatively large amounts of RAM in a separate section of the FPGA. It often is dual-
ported, reconfigurable to different data widths that may even differ between the two ports
and may have specific logic to emulate more advanced memory devices. The contents of
the memory may be configurable in band with the rest of the FPGA which enables the
memory blocks to emulate fast LUTs with high fan-in and fan-out or ROM.
Additionally it is common to have external memory for an FPGA if necessary. This

may be supported through configurable transceivers for those memory chips directly on
the FPGA [13] and the support for adapted I/O standards.

2.2.3. The Register Transfer Level

Describing electronic systems can be done on several abstraction layers [14]. The lowest
layer is the transistor level: Every circuit is defined directly through the use of transistors
(and additional passive components as necessary). Above resides the gate level where
logic circuits can be described using logic gates. This is commonly known but does not
support abstraction for stateful circuitry: A state would still be required to be represented
by a feedback.

2in comparison to microcontrollers, for example

12

2.2. Programmable Logic: FPGAs

1D0 <= not Q0;
2D1 <= Q0 xor Q1;

4process (c l o ck)
5begin
6i f r i s ing_edge (c l o ck) then
7Q0 <= D0 ;
8Q1 <= D1 ;
9end i f ;
10end process ;

Listing 2.1: Example for a circuit description in VHDL on the RTL.

The abstraction layer used to implement the FPGA configuration in this thesis is the
register transfer level (RTL). This is common when working with higher-level hardware
description languages. Also, the FPGAs are often designed to make working on this level
easy: In the RTL, a synchronous digital circuit is described by the logical operations and
the registers in which their outcome is saved. This can be easily mapped to the CLB
model showed in Section 2.2.1.
Figure 2.7 show an example of a synchronous circuit. There are two D-type flip-flops

which represent the registers and two LUTs which implement the combinatorial logic. On
each rising edge of the clock, the value of the output of the LUTs is written into the
registers. The output value of the registers are then used to calculate the values which
have to be written into the registers on the next clock edge. This example could be used to
implement any two-bit synchronous counter, depending solely on the LUT configuration.
The figure also shows an example configuration for the LUTs resulting in the following

behaviour: On every rising clock edge, the left-hand flip-flop is toggling. The right-hand
flip-flop only toggles every second time (think of the XOR as a controllable inverter in
this case), resulting in a 2-bit up-counter.

2.2.4. Very High Speed Integrated Circuit Hardware
Description Language

The main language used to implement the eBOC configuration is the Very High Speed
Integrated Circuit Hardware Description Language (VHDL). Its original purpose was
design and simulation of application-specific integrated circuits (ASICs) but is now widely
used in FPGA implementation.
Describing the RTL in VHDL is a common task [15]. The same counter as shown in

13

2. Background and Related Topics

1uut : counter port map (
2c l o ck => clock ,
3q0 => q0 ,
4q1 => q1
5) ;

7c lock_proces s : process
8begin
9c l o ck <= ’ 0 ’ ;
10wait for c lock_per iod /2 ;
11c l o ck <= ’ 1 ’ ;
12wait for c lock_per iod /2 ;
13end process ;

Listing 2.2: A behavioural simulation description for a counter.

the previous section is implemented in Listing 2.1. Lines 1 and 2 show the combinatorial
logic which is encoded in the LUTs: Line 1 corresponds to the left LUT, line 2 to the
right LUT.
The other lines define a logic circuit that is first of all sensitive on changes on the clock

line (line 4), specifically only on the rising edges of this clock (line 6). Lines 7 and 8
describe what should happen once a rising edge on the clock has been detected, which is
to copy the result of a logic function, D0 and D1, into the registered values Q0 and Q1.
Though it is possible to model much more than only the RTL in VHDL and there are

further concepts specialized on FPGA configuration, this is the core of many configura-
tions. Another concept that is supported by VHDL and used extensively in this thesis
is the ability to implement a hierarchy: It is possible to divide the configuration for an
FPGA into sub-circuits which then can be put together at several hierarchical levels.

2.2.5. Design Analysis

Describing the behaviour of an electronic component on the RTL is not intuitive and
conflicts with the perception of more common programming paradigms like imperative
programming. To support a designer in his tasks, a set of tools exist to check the func-
tionality of a logic description without having to actually implement it on a physical
device.
For one there are simulators [16] which are able to show the design’s behaviour in detail.

To use this feature, a designer creates a simulation description which, in contrast to the
circuit description itself, does not necessarily have to be on the RTL but may contain

14

2.2. Programmable Logic: FPGAs

Figure 2.8.: The result of the simulation described in Listing 2.2 (Screenshot).

behavioural elements.
Listing 2.2 shows an example of a simulation description for the counter created in the

previous sections. The first block (lines 1 to 5) makes use of the hierarchical features of
VHDL and instantiates the counter. Lines 2 to 4 assign the input and output ports of
the counter (which were not explicitly shown in Listing 2.1 for simplicity) to local signals
(whose declaration is hidden, too). The rest of the code defines a process which is repeated
until the simulation halts. It is a behavioural description of the clock which is the only
input to the counter. In contrast to an RTL description this contains actual delay times
in the wait for statements. This is easier to conceive, but generally impossible to map to
a common FPGA.
The result of this simulation can be examined in Figure 2.8. It shows the clock, q0 and

q1 which behave as expected.
However, a successful behavioural simulation is not sufficient to guarantee a functional

design. Though often neglected when first implementing a logic circuit, logic gates and
paths introduce measurable delays into a circuit. Also, synchronous logic requires setup
and hold delays for signals due to the internal structure of flip-flops.
To check if a design that has been completely mapped to a certain FPGA still behaves

as the result of the behavioural simulation, a timing analysis tool [17] can be used. During
the design of the FPGA, the vendor characterizes the different components and delays
between them. This data is then combined with information on clock speeds to infer that
the design can be correctly implemented.

2.2.6. Cores

The toolchains used to configure FPGAs often include soft cores or core generators3.
These cores can be compared to a library in software design and provide preconfigured
logic with certain functionalities.
In this thesis, a FIFO core (see Figure 2.9) generated by a core generator provided

3Cores are also referred to as IP (Intellectual Property) cores due to the rights that a vendor might
hold.

15

2. Background and Related Topics

FIFO

d

wr

clk

q

rd

prog full

data count

Figure 2.9.: The ports of a FIFO core. This one has a common clock a interface for the
amount of data currently saved and a programmable full threshold output.

by Xilinx [18] has been used extensively. The generator supports distributed and block
RAM to store FIFO data, different read and write clocks and many other features. The
generated FIFO in this example only uses a data count output that signals the amount
of words that are currently available for reading and a threshold comparator output on
exactly this amount.

2.2.7. Configuration and Debugging

FPGAs usually are configurable and provide a debugging interface via JTAG (Joint Test
Action Group) which is a serial bus which was originally designed for debugging the
circuits around ICs rather than the ICs themselves.
The FPGA chosen in this thesis also supports configuration through a multitude of

other interfaces. One example are the flash PROMs [19] from the same vendor which are
able to configure the FPGA using a serial interface. The PROM itself is also configured
using JTAG.

16

2.3. 8B/10B Code

digital sum

encoded stream -1
1

t

m
ax

im
um

di
gi
ta
ls

um
va
ria

tio
n

Figure 2.10.: Example data stream with digital sum and maximum digital sum varia-
tion for 0 7→ −1, 1 7→ 1.

2.3. 8B/10B Code

2.3.1. Theory

To properly explain 8B/10B, some basic terms from coding theory and general electronics
have to be defined first.

The maximum run length of a binary code is the number of consecutive zeroes or ones
in any encoded data stream. Thus it is the maximum amount of transmitted data bits
between two state transitions in the stream.

The digital sum variation refers to the near-DC energy of the resulting waveform. For
binary codes this is usually done by assigning a scalar value to each of the two states, for
example 0 7→ −1, 1 7→ 1. Then the digital sum variation is defined as the difference in
the sum of these values over a range of an encoded data stream (see Figure 2.10). The
maximum digital sum variation of a code is the maximum value the digital sum variation
takes over any range of any encoded data stream.

The DC-offset of a waveform is its mean value. A waveform is DC-balanced if its DC-
offset is zero. A code which is able to produce a DC-balanced waveform given appropriate
transceiver electronics is also called DC-balanced.

17

2. Background and Related Topics

RD

t

-3
-2
-1
0
1
2
3

3B/4B 5B/6B

Figure 2.11.: The possible ways the disparity of a single code word in the digital sum
space.

2.3.2. 8B/10B

8B/10B is a transmission code that encodes 8 bits of data into a 10-bit wide symbol
whilst maintaining DC balance, a maximum run length of 5 and a maximum digital sum
variation of 6 [20]. DC balance and a small run length and maximum digital sum variation
are properties required for AC coupling of the signal which in turn is helpful for optical
transmission.
To achieve these properties, an 8B/10B encoder always keeps record of the digital sum

variation in reference to the beginning of the transmission with an offset of 1 or −1. This
value is called running disparity (RD).
The code is then restricted so that the RD has to be 1 or −1 at the end of each code

word. This implies that only code words that have a digital sum of −2, 0 or 2 are allowed.
Additionally, the RD has to stay within [−3, 3] when measuring after every bit. These
restrictions are tightened as the encoder is divided into a 3B/4B and 5B/6B encoder and
both sub-words have to comply with them, too. Also, the 3B/4B block keeps the RD
within [−2, 2] 4.
The resulting possible paths an encoded word can follow in the space of the RD over

time are shown in Figure 2.11. The previously stated properties can be easily inferred
from here. A complete coding map is included in the appendix of this document.
The mentioned restrictions severely limit the number of code words that are valid out

of the codomain B10. Also, it is clear that if one allows the RD to alternate between −1
4These restrictions are alleviated in one case as it would be impossible to implement the 3B/4B code
else. In this case three consecutive ones or zeroes are allowed which results in an RD at the end of
the 3B/4B code that is neither −1 nor 1. However, two alternate encoding forms are offered for this
symbol to avoid running into more than 5 consecutive zeroes or ones.

18

2.3. 8B/10B Code

Function Name Decoded Representation Encoded Representation
k = 1 RD = −1 RD = +1

Sync K.28.1 00111100 001111 1001 110000 0110
EOF K.28.5 10111100 001111 1010 110000 0101
SOF K.28.7 11111100 001111 1000 110000 0111

Table 2.2.: Comma symbols of special interest.

and 1 and the RD of a code word is not zero, it is required to supply two code words for
the same source symbol, one with positive and one with negative RD to allow the encoder
to choose one of them depending on the RD before that symbol.
Though there are still some code words unused: These are used as special characters in

the data stream and for in-band signalling for special functions. A special subset of these
symbols are the comma symbols.
The characteristic that discriminates a comma symbol is that its bit sequence is unique

in the whole data stream. Thus it is possible for a receiver that receives a comma symbol
to exactly determine the symbol boundaries of the comma and all subsequent symbols.
There are three comma symbols available and in general they are assigned the function
Start-Of-Frame (SOF), End-Of-Frame (EOF) and a synchronization symbol that can be
transferred if no data is available to enable the receiver to recover the sender’s clock. As
these sequences are especially interesting, they are listed in Table 2.2.

19

3. Implementation

The aim of this thesis is to build a new electrical Back-Of-Crate card adapted to the new
requirements coming with the FE-I4 as described in Section 2.1.3. It has to connect to
the correct input links of the ROD and decode the 8B/10B in the data channel from the
FE-I4. Ideally the implementation should no longer require the PP0 board.
It was given that at least six FE-I4s should be handled by the eBOC at the same time

at full speed. Due to the chosen hardware, it was easily possible to go with eight FE-I4s
at 160 Mbit/s, which also is the maximum the current ROD can handle at that data rate.
This section is organized in the same order as the actual implementation has been

performed. First, the whole eBOC configuration was defined and simulated, with the
latter being described in the next chapter. The configuration has then been analysed and
the results were used to design the hardware, to which the configuration has then been
mapped.
This document will often refer to the available data rates, which always are one, two

or four times the base clock with a frequency of 40 MHz. Thus, in the remaining of this
thesis, r will always denote the common rate multipliers 1, 2 or 4.

3.1. Configuration

An overview of the eBOC configuration is given in Figure 3.1. It can be divided into
four separate parts: The transmitter section handles the forwarding of commands from
the ROD and the receiver section is responsible for processing of the data channel from
the FE chips. One receiver-transmitter pair handles one FE chip. Additionally, there are
blocks responsible for clock synthesis as well as configuration and status management.

3.1.1. Data Path

The most complex of the four sections is the receiver. It takes an asynchronous data
stream at up to 160 Mbit/s that has been encoded with 8B/10B from the FE chips. The
following section describes one of the eight equal receivers.

21

3. Implementation

transmitter · 8

cmd in

rodclk

fe cmd out

fe clk out

receiver · 8

data out

rodclk

fe data in

clocks

config

status

clock synthesizer

rodclk

ref

clocks

config

configuration & status

address

data

control

config

status

FE commands

ROD input links

ROD clock

40 MHz oscillator

Setup Bus

FE chip 8

FE chip 7

FE chip 6

FE chip 5

FE chip 4

FE chip 3

FE chip 2

FE chip 1

to ROD to FE chips

Figure 3.1.: eBOC configuration overview: The eight transmitters are responsible for
forwarding the commands from the ROD to the FE chips synchronously to
a supplied clock. The receivers in turn read an asynchronous transmission
from the FE chips and forward them to the ROD. The clock synthesizer
takes a 40 MHz reference clock and generates several clocks required for
the receivers, transmitters and the ROD. Configuration & status provides
the configuration to the receivers and clock synthesis modules and is able
to forward the state of the receiver to the ROD.

22

3.1. Configuration

data recovery

d

clkϕ=90◦

clkϕ=0◦

q

q valid

deserializer

d

d valid

clk

q

d

clk

q

sync detector

d

d valid

clk

disp

force disp

q

sync

sync age

FE data
clockϕ=90◦

clockϕ=0◦

clockϕ=0◦ disp

force disp
aligned

sync0

sync age
2

2

2

11 10

Figure 3.2.: Receiver, input stage: The data is synchronized, deserialized and aligned
to 8B/10B symbols.

clkϕ=0◦

clkϕ=90◦

data

t

Figure 3.3.: Four-times oversampling with two clocks at the same frequency. Sampling
points are marked with a dashed line.

In a first step (see Figure 3.2) this stream is resynchronized using the approach described
in [21]. The general idea behind this data recovery process can be divided into two
techniques: First, four-times oversampling through operating with a low system frequency
is achieved by sampling the data on the rising and falling clock edge and doing the same
using a clock that is shifted by 90◦ (see Figure 3.3). Second, edges on the data stream
are tracked and the resulting information is used to select the best sampling point. By
moving this sampling point, differences in the frequency between sender and receiver are
compensated.
However, moving the sampling point on data that is received and processed at the same

frequency results in situations where it is possible that on a clock edge of clockϕ=0◦ , which
will be used for clocking the following logic, zero or two bits are available instead of one.

23

3. Implementation

This has to be taken care of in the next steps.
The subsequent deserializer follows the data recovery and is connected to it via two

2-bit wide buses, two data bits (q) and two bits signalling which of the data bits is valid
(q valid). The deserializer is a serial-in parallel-out shift register, which, in contrast to
a common shift register, is able to shift by two bits in one clock cycle to accommodate
the data recovery behaviour. Though each 8B/10B symbol has a width of 10 bits, the
output of the deserializer q has a width of 11 bits. This is due to the fact that if two bits
are shifted in at the same time, the upper or lower 10 bits of the output may contain the
symbol and have to be analyzed separately.
The next link in the chain is the sync detector: Its main responsibility is to correctly

align the subsequent operations to the 8B/10B symbols on the bitstream. This is done
by looking for the synchronization symbol in the last 11 bits that were received. Once
such a symbol has been detected, the sync output is asserted for one clock cycle and the
respective 10 bit wide range of the aforementioned shift register is latched through to the
wire aligned.
The sync detector also keeps a counter of the clock cycles since the last sync and

repeats asserting sync every ten valid bits. This means that the data recovery output
q valid, specifically a delayed version of it, to resynchronize it with the data from the
deserializer, is taken into account to either expedite or defer this sync pulse and again
to choose between the upper or lower 10 bits of the deserializer. Additionally, a counter
which holds the number of 8B/10B symbols since the last sync is provided to the reset
circuitry.
At this point, the input stage of the data path is nearly complete. The following logic

will only see a correctly aligned 8B/10B symbol once the sync signal is high. One piece
however is still missing. For the decoder to be able to correctly decode the aligned symbol,
it has to start at the same RD as the encoder. Also, in case of an error, a correct RD
has to be recovered. Thus the sync detector uses the disparity of the synchronization
symbol to force the 8B/10B decoder RD to the correct value every time such a symbol is
received. This is possible as the synchronization symbol has a nonzero RD and thus the
RD afterwards is always defined without the necessity of knowledge about prior symbols.
Next the previously aligned symbol is decoded by an 8B/10B decoder (see Figure 3.4)

provided by Xilinx [22]. Every time the sync0 wire is high, the output of this decoder is
either the decoded byte if k = 0 or a representation of a control symbol if k = 1. Also, the
decoder outputs the RD after the last decoded symbol (disp out). While decoding data,
this is fed back into the RD input disp in to allow normal operation of the decoder.
When receiving synchronization symbols, the force disp output of the sync detector

24

3.1. Configuration

decoder

d

clk

ce

disp in

q

k

disp out

write controller

sync

d

k

clk

d

clk

q

clockϕ=0◦

sync1

10

8

disp

force disp

sync0

clockϕ=0◦

aligned
clockϕ=0◦

sync0

Figure 3.4.: Receiver, decoder stage: The aligned symbols are decoded, frame detection
is performed in the write controller.

switches the multiplexer to its own RD output. This implements the already mentioned
RD override.

As this decoder delays the output by one clock cycle, the sync signal is delayed, too.
These signals, the delayed sync sync0, the decoder data output and the decoder command
flag k are then connected to the write controller. Its purpose is to lock onto data frames:
It looks for Start-Of-Frame (SOF) and End-Of-Frame (EOF) control symbols. Once an
SOF has been read, all following data bytes are written into the subsequent buffer FIFO
(see Figure 3.5). Once an EOF has been found, the write controller stops to write data
and in turn asserts the flush output for one clock cycle.

On the other side of the buffer, the output controller waits for this flush signal. Once it
goes high, the value of the data count output of the FIFO, which represents the number
of bytes currently stored in it, is copied into a local counter. The FIFO is then read and is
decreased simultaneously until it has reached 0. Thus the part of the FIFO that contains
fully transferred frames is completely read.

The necessity to buffer the data instead of directly writing it to the ROD after decoding
evolves out of a mismatch in the net data rates of the input and output data stream. An
FE chip is able to transmit at r · 40 Mbit/s. This transmission is 8B/10B coded which
yields only eight data bits per ten transmitted bits. Thus the net data rate of the input
stream is r · 32 Mbit/s. The ROD on the other hand can only accept data streams

25

3. Implementation

write controller

flush

q

wr

buffer FIFO

d

wr

clk

q

rd

full

data count

output controller

flush

d

rd

full

data count

clk

formatter data

wr

rod clk

clockϕ=0◦

rodclk

prefmt

write enable

Figure 3.5.: Receiver, buffer stage: Frames are buffered and forwarded to output stage.

at r · 40 Mbit/s. As frames have to be forwarded as a whole, the differences in these
bandwidths have to be compensated by the buffer. To add 1/5 the output rate to the
input rate for the duration of one frame, it is necessary to buffer at least 1/5 of the frame.
In general however, it is not possible to predict the size of a frame. Thus a frame

would have to be buffered completely, with one exception: It is possible to calculate the
maximum frame size that an FE chip will produce. Once the FIFO contains 1/5 of this
size plus a small safety range for frequency deviations of the clocks and to avoid the need
to check for off-by-one errors in the configuration, a flush can be safely initiated.
The maximum frame size for FE-I4 is easily calculable: First of all it is clear that only

the Pixel Data record sequence can produce the biggest frame size. It consists of:
SOF, (1) × DH, (0..n) × DR, (0..1) × SR, EOF

with n given by the amount of pixels triggered. [5].
The SOF and EOF are not transmitted to the ROD and therefore remain uncounted.

All records, the Data Header (DH), containing meta data about the following records
that are used to map the data to an event, Data Record (DR), which contains the actual
data, and Service Record (SR), which is used for error signalling, each are 3 bytes long.
Each DR contains 2 pixel values. If all 80 · 336 pixels are triggered, 13340 DRs are in the
respective frame. Thus the maximum size is

smax = (nmax + 2) records · 3 Bytes
record = 40326 Bytes

Therefore, a manual flush could be initiated after 8065 B. This is convenient, as a
FIFO which contains 213 Bytes = 8192 Bytes can be chosen and its full flag can be used

26

3.1. Configuration

buffer FIFO

d

wr

wr clk

q

rd

empty

rd clk d

clk

q
&

prefmt

write enable
clockϕ=0◦

to ROD

output clock

Figure 3.6.: Receiver, output stage: The data bitstream is synchronized to the output
clock and then forwarded to the ROD.

to signal a flush without EOF symbol.
The flushing itself, though synchronous to the clock of the rest of the receiver, has

to be performed at 40 MHz as required by the ROD. This is implemented by skipping
none, every second (for 80 Mbit/s) or every second and third (for 160 Mbit/s) clock cycle,
depending on the receiver’s clock rate.
To synchronize the data to a clock with a known phase relationship to the ROD clock

(see next Section) a FIFO is used (see Figure 3.6). It has separate read and write clocks,
the write clock is the 0◦ clock of the receiver, the read clock is the output clock. Write
is always enabled at the same clock edges the output controller did not skip. The read
enable input rd of the FIFO is connected to its empty signal in a way that guarantees
that the FIFO will always contain at least one readable bit at a rising output clock if it
stays in a stable phase relationship with clockϕ=0◦ . If this is not the case, for example
when skipping a clock edge while switching between data rates, it will stretch the last bit
and reestablish the buffer fill.

3.1.2. Clocks

Clock synthesis and distribution is not nearly as complex as the receiver, but it still holds
a concept that on the one hand reduces the amount of required logic in the eBOC and on
the other hand makes working with the eBOC simpler, as no configuration changes for
different laboratory set-ups are necessary.
To get an overview of the required clocks, one first has to find out where data is sent

synchronously to which clock. First of all, there is data transmitted from the eBOC to the
ROD. As the eBOC is also the clock source for the ROD, synchronization is achieved by
phase-shifting the latching clock, called output clock, in reference to the clock transmitted

27

3. Implementation

clkϕ=0◦

f=40 MHz

clkϕ=90◦

f=40 MHz

clkϕ=0◦

f=80 MHz

clkϕ=90◦

f=80 MHz

clkϕ=0◦

f=160 MHz

clkϕ=90◦

f=160 MHz

t
25 ns 6.25 ns 12.5 ns

Figure 3.7.: Phase and frequency relationships of the eBOC receiver clocks.

to the ROD, called ROD clock, so the ROD samples the data near the optimal point of
the waveform. Back from the ROD return the command lines. Again, another clock is
generated and used internally to correctly sample this waveform, referenced as FE clock.
The commands are then forwarded to the FE chips which can happen synchronous to
the FE clock. The loop is closed with the data returning from the FE-I4. However, it
is handled asynchronously to avoid the need to manually compensate for different cable
lengths.
As a result of this clocking scheme, it is possible to choose different cable lengths or

use the FE-I4 at different temperatures without having to adjust anything on the eBOC.
Also, no resynchronization has to be performed, except for the data recovery.
The phase relationships of the FE clock and the ROD clock to the output clock ϕc−ϕb

and ϕd − ϕb are constant and can be determined empirically and then set during design
time of the eBOC. It mainly depends on the short and fixed wire lengths between the
eBOC and the ROD, the fixed transceiver types and the temperature of the electronics,
which, in a cooled crate, is held within a small range, too.
In addition to this, the eBOC needs a variety of clocks at different frequencies and

phase relationships (see Figure 3.7). For processing of the r ·40 Mbit/s data input, clocks
at 40 MHz, 80 MHz and 160 MHz are necessary. Additionally, another three clocks at the
same frequency and shifted by 90◦ are required for the data recovery process.
The latter six clocks are generated by one PLL (see Figure 3.8) based on a 40 MHz

28

3.1. Configuration

Phase-Locked Loop

ref clkϕ=90◦

f=160 MHz

clkϕ=0◦

f=160 MHz

clkϕ=90◦

f=80 MHz

clkϕ=0◦

f=80 MHz

clkϕ=90◦

f=40 MHz

clkϕ=0◦

f=40 MHz

Digital Clock Manager

ref

clkϕ=ϕd
f=40 MHz

clkϕ=ϕc

f=40 MHz

clkϕ=ϕb
f=40 MHz

Osc ·16 90◦÷4

÷4

90◦÷8

÷8

90◦÷16

÷16

clockϕ=0◦

clockϕ=90◦

ϕb

ϕc

ϕd

ROD clock

FE clock

output clock

Figure 3.8.: Clock synthesis: The PLL generates the receiver clocks, the DCM is re-
sponsible for phase shifting sampling and output clocks.

reference clock. This clock is first multiplied by 16 which is required to stay within the
operating range of the Voltage Controlled Oscillator (VCO) which actually generates this
640 MHz signal. The frequency of this signal is then divided down by 16, 8 or 4. The VCO
has outputs with 0◦, 45◦, 90◦, . . . phase shift. Those are used to generate the phase-shifted
clocks. At the output of the PLL, the correct clock for the current mode of operation is
selected using multiplexers that are designed to switch between clocks, called BUFGMUX.

The first three clocks are generated by a DLL1 of the FPGA (also Figure 3.8). It inserts
an appropriate delay into the clock lines to shift the clock to the ROD by ϕc and the clock
for sampling data from the ROD by ϕd.

29

3. Implementation

d

clk

qFE command

FE clock

Figure 3.9.: Scheme of the command path.

3.1.3. Command Path

In the command path the ROD transmits its commands to the FE chip. Due to the
clocking scheme, the tasks of the FPGA in this path are trivial by comparison to the
receiver path. It simply registers the incoming data stream to match the clock phase of
the FE chip clock (see Figure 3.9). Afterwards it is directly forwarded to the FE chips.

3.1.4. Setup Bus

The FE-I3 + MCC version of the eBOC presented in Section 2.1.5 did not have to perform
complex tasks. Especially, except its initial configuration with DIP switches2and the clock
management, it did not contain states. The receiver of the eBOC for FE-I4 inherently
has several states which may be of interest to the rest of the read-out electronics. This
begins at the input stage where the data recovery has to hold information on where to
sample the incoming data stream and the sync detector which has to be able to keep the
data stream aligned to symbols without any commas for a long period of time. Further
into the receiver are the 8B/10B decoder which holds the RD and is able to detect some
errors and the buffer which in normal operation at times holds a full frame.
For the BOC, a separate band, the Setup Bus is used to configure and read its state.

The eBOC for FE-I4 is planned to use this bus as for configuration (as alternative to the
switches on the board itself) and to send back state information. This, however, is not
yet implemented. For now, the eBOC is configured with 8 control lines which are wired
to DIP switches.

3.1.5. Reset Circuitry

The eBOC does not contain a global reset circuit. Its initial state is established by the
fixed FPGA reset during configuration. All external components are stateless and thus
do not require a reset.

1which is contained in a Digital Clock Manager
2DIP switches are switches specialized on configuring electronics equipment. Their name is derived from
the Dual Inline Package.

30

3.2. Hardware

3.2. Hardware

3.2.1. FPGA Selection

Before a new eBOC could be designed, an appropriate FPGA had to be chosen. There is
a set of definite criteria for this selection:
Of course, the FPGA has to be able to hold the logic described in the last section,

preferably with some additional space for future modifications. The device occupancy
in terms of logic can be determined running the implementation tools of any considered
FPGA to map the design to it. This criterion turned out not to be a problem, as the
design is able to be synthesized into a comparably small logic complex.
Second, the FPGA has to provide the required number of I/Os that support the required

I/O standards3. Each FE chip takes up three differential I/Os (clock, commands and
data) and five CMOS I/Os4 for the connection to the ROD. Also, I/Os for clocks and
configuration are required. Limitations placed on the same I/O standards have to be
taken into consideration. For example, some I/O pins may not support a standard or
allow only inputs for a standard on them and restrictions on simultaneously switching
outputs (SSOs) may be imposed.
The design runs at clock speeds of up to 160 MHz. Some parts of the circuit even

have to be able to be clocked at 4/3 times that frequency for the data recovery to work.
Determining an FPGA which is able to support this design can also be done with the
implementation tools, specifically the timing analyzer described in Section 2.2.5.
As already mentioned previously in this chapter, the configuration requires a certain

amount of memory to buffer at least one fifth of the data record frames. This memory
could be external to the FPGA, however, this would require more pins for the memory
connection and more logic for the memory controller or a dedicated memory controller.
A fifth criterion is the available package. In general, FPGAs are high pin-density

devices that come in appropriate packages like Ball Grid Arrays (BGA). Simple packages
with leads that are reachable after the soldering process like Quad Flat Pack (QFP) are
becoming more and more an exception in modern FPGA technology. Having to use BGA
or even smaller and more complex packages to work with has a number of disadvantages:
First, a PCB for pins that are arranged in a grid array with a small pitch has to have

3An I/O standard refers to the requirements on receivers and transmitters which should be connected,
specifically voltage levels, current or termination properties. Adherence to the I/O standard of a
transmitter or receiver is important for correct discrimination between the signalled states.

4CMOS (Complementary Metal-Oxide-Semiconductor) refers to a commonly used semiconductor tech-
nology. A CMOS I/O is a single ended receiver or transmitter which adheres to the requirements
given by this technology.

31

3. Implementation

several layers, depending on the grid size which greatly increases its cost while making it
hard to debug. Second, the soldering process for BGA components requires some expertise
and equipment, for example an X-Ray apparatus for checking the result.

Additionally, FPGAs may require several voltages for operation. This ranges from one
voltage for the whole FPGA to a separate core voltage, separate voltages for the different
preconfigured parts of the FPGA like transceivers and memory and of course several
voltages for the different I/O standards. With the necessity of more voltages, the PCB
routing grows more complex and additional DC to DC converters are required.

A minor criterion that was taken into consideration was the vendor. The FPGAs
used on the ROD are made by Xilinx and appropriate tools, software and experience are
available.

At last the price of the FPGA has to be taken into consideration. This can range from
as little as a few Euros up to several ten thousands which would not be within the budget
for this project.

With the restrictions of searching a Xilinx FPGA that has to be available in a QFP
package, the originally vast number of devices was reduced severely. When looking at the
families still in production, only the low-cost families Spartan 3, Spartan 3A, Spartan 3E
and Spartan 6 FPGAs match. Modern Virtex devices are not available in leaded packages,
as are the more complex Spartan and all devices of the newest generation.

With a look at the decommissioning of the tools for older FPGA generations, the
focus fell on Spartan 6 where two devices match: XC6SLX4 and XC6SLX9 [9]. Both are
available in 144-pin QFP packages. The XC6SLX6 fails to provide the required memory.
The XC6SLX9 has enough I/O pins, logic resources and memory to handle four FE chips.
Additionally it contains everything required for the clock management needed by the
configuration. Thus, those devices were not required to be external anymore, which was
the case on the old eBOC.

Only one I/O standard is not supported: The ROD requires the clock to comply with
the PECL (Positive Emitter-Coupled Logic) I/O standard5. This however can be com-
pensated with an external clock buffer.

These features are supported with only two separate voltages, a 1.2 V core voltage and
a 3.3 V voltage for I/O. This is acceptable as it is common for FPGAs with comparable
features and does not introduce notable routing complexity.

5PECL uses emitter-coupled logic, which has a high switching speed at the cost of high current con-
sumption. Due to this, it is especially suited for clock transmission.

32

3.2. Hardware

3.2.2. The Printed Circuit Board

After defining the design constraints in the previous and this chapter, it is possible to map
the configuration to physical components and create a Printed Circuit Board (PCB).
As mentioned in Section 3.2.1, the chosen FPGA is sufficient to support four FE-I4

chips and is capable of nearly all required I/O standards. Thus the ICs necessary to
build the eBOC are two XC6SLX9 FPGAs with appropriate flash memories to store their
configuration, a PECL driver for the clock to the ROD, a 40 MHz oscillator and a clock
buffer to distribute this clock signal to the two FPGAs. Additionally a voltage regulator
is required to supply the core voltage of 1.2 V of the FPGA. A block schematic of this
mapping is depicted in Figure 3.10.
Each FPGA contains the logic to handle four FE chips and the complete logic to perform

the required clock synthesis and configuration management. There are two differences
between the two FPGAs: First, the North FPGA’s rodclk output is discarded, whereas
the South FPGA’s rodclk output is fed into a PECL driver and then routed to the ROD.
Second, the oscillator is fed into opposite I/O banks6 of the FPGAs to simplify the routing
of the clock.
The two separated clock syntheses are not a problem as all clocks are derived from the

oscillator which is common for both FPGAs. Also, the DCMs and PLLs have a fixed
phase-relationship between the input and the output. Thus, with the exception of minor
differences due to different routing delays, the clocks synthesized on both FPGAs are
equal in phase and frequency.
Figure 3.11 shows a front view on the layout of the PCB. The North and South FPGA

are clearly visible in the center. North of each FPGA, DIP switches, LEDs and some I/O
pins are available for debugging. The Setup Bus is connected to the northwest of both
FPGAs and leads to the 160-way connector in the northwest corner of the PCB which is
used to connect to the ROD.
In the southwest of the FPGAs, the Flash ROMs are placed which configure the FPGA.

All four are connected to one JTAG bus, accessible through a 7 · 2-pin header.
At the south I/O banks, the command and data lines from and to the ROD are con-

nected. The latter lead together with the ROD clock to the southern 160-way connector
which leads to the ROD, too. The PECL driver for the ROD clock is set directly adjacent
to this connector. Additionally, 5 V and 3.3 V are supplied through this connector.
The FE chip connectors are placed on the opposite side. Each has its own power

connector to supply the FE chip directly at the eBOC. Of course, each FE chip connector
6An I/O bank is a a set of I/O pins which are supplied with the same voltages. In our case, the I/O
banks are, with few exceptions, assigned to the four sides of the IC.

33

3. Implementation

North FPGA XC6SLX9

setup bus

data out

cmd in

rodclk

fe data in

fe cmd out

fe clk out

ref

XCF04S

South FPGA XC6SLX9

setup bus

data out

cmd in

rodclk

fe data in

fe cmd out

fe clk out

ref

XCF04S

3.3 V
1.2 V
LDO

40 MHz
Oscillator

FE chip 8

FE chip 7

FE chip 6

FE chip 5

FE chip 4

FE chip 3

FE chip 2

FE chip 1

PECL
Driver

ROD clock

Setup Bus

ROD input links

ROD input links

FE commands

FE commands

to ROD to FE chips

Figure 3.10.: Block diagram of the configuration mapped to the selected FPGA and
extended by the necessary periphery.

34

3.2. Hardware

Figure 3.11.: Front view of the PCB design.

35

3. Implementation

has a data, clock and command differential pair to the east side of one FPGA7.
In the middle of the board, the 1.2 V voltage regulator and the oscillator with its buffer

are placed. The clock buffer is also able to accept an external clock which can be supplied
via an optional SMA socket8.
All power rails, the aforementioned 5 V and 3.3 V which are supplied by the ROD

and the 1.2 V rail are able to be manually switched on and off by removing a jumper.
For debugging, the eBOC can also be powered from an external 3.3 V and/or 5 V power
supply. The 1.2 V are always derived from the 3.3 V and cannot be supplied separately
without removing the voltage regulator.

3.3. Changes to the MCC Emulator

The MCC Emulator was only able to transmit data at 40 Mbit/s prior to this thesis, but
80 Mbit/s and 160 Mbit/s were required for testing. Thus the MCC Emulator had to be
reconfigured to comply to these parameters.
A simplified block diagram of the MCC Emulator is shown in Figure 3.12. Its main parts

are the command decoder which is responsible for matching the input to the implemented
commands, the Pixel Simulator which is controlled by a set of control lines and two
separately wired registers. It outputs raw FE-I3 data which is then 8B/10B framed and
encoded by the frame builder and encoder.
Those three blocks are supplied by a single DCM whose configuration allows to derive

a 5 MHz and 4 MHz clock from the 40 MHz clock from the eBOC. Those two clocks are
used solely by the frame builder. The 40 MHz clock from the DCM is fed into all three
modules.
Due to the small time frame available for this thesis, a nearly completely external

solution was chosen to allow higher bandwidths. This solution is depicted in Figure 3.13
and contains an additional DCM and a 1-bit-FIFO in the command path to allow stable
handover of data from the input clock domain to the faster clock. The DCM increases the
frequency of the whole Emulator by a factor r and thus, given successful timing analysis,
has no impact on the logic itself.
The sole internal change has been done in the command decoder: It has a clock enable

signal which is tied to the delayed and negated empty signal of the FIFO. Also, the FIFO
is configured to automatically perform a read operation once it is not empty. Thus the

7In the current version, the eBOC layout still foresees some components which should not be populated,
near the area that was just described. Those were planned to be used in case the FPGAs are unable
to provide a signal acceptable to the FE-I4.

8A connector for coaxial transmission lines.

36

3.3. Changes to the MCC Emulator

MCC Emulator

Command
Decoder

Pixel
Simulator

frame builder &
8b/10b encoder

DCM

ref

clkf=4 MHz

clkf=5 MHz

clkf=40 MHz

fe cmd

fe clk

fe data

÷10

÷8

Figure 3.12.: Simplified schematic of the MCC Emulator as provided by Benjamin von
Ardenne [7].

command decoder decodes only the next bit of the command line, once a new one is
available. Also, this happens synchronous to the faster clock.

3.3.1. The Pattern Generator

The Pattern Generator is an alternative configuration for the MCC Emulator hardware
which allows to send custom frames to the eBOC.
The configuration is relatively simple. As the MCC, it contains a command decoder,

which in contrast to the MCC is only able to decode triggers, and an 8B/10B encoder.
While the command decoder is clocked with the input clock, the rest of the configuration
uses the output of a DCM and thus generally r times the input clock of 40 MHz.
For each scenario, the pattern generator can be supplied with a set of comma symbols

and raw data as well as the desired data rate. Once a trigger is received, the pattern
generator starts to encode this stream and transmits it to the eBOC.
This allows to easily reproduce any problems with the eBOC configuration and, due

to its simplicity, an error can be quickly related to the eBOC or the pattern generator,
which is not the case with the MCC Emulator.

37

3. Implementation

Command
Decoder

FIFO

q

clk

q

¬empty

clk

Pixel
Simulator

frame builder &
8b/10b encoder

DCM

ref

clkf=4 MHz

clkf=5 MHz

clkf=40 MHz

DCM

ref clkf=r·40 MHz

fe cmd

fe clk

fe data

MCC Emulator

÷10

÷8

·r

Figure 3.13.: Figure 3.12 extended by the modifications made to allow higher band-
widths.

38

4. Test and Validation

4.1. Simulation

The simulation performed concentrates on the receiver section due to the simplicity of
the others. An 8B/10B encoder from Xilinx [23] has been put together with a serializer
to create an input data stream for the receiver section. On the other side of the receiver
section, the up to four channels are pushed into a shift register. Then the content of
the shift register is compared with the input stream before the aforementioned 8B/10B
encoder and asserts a signal once it has been detected.
There are three parameters that are accessible directly by this external simulation. The

first parameter is the mode in which the buffer is working. Therefore, two test streams
have been created: One is shorter than 1/5 of the maximum frame size to check whether
the buffer operates if it has to buffer a full frame. The other is sufficiently long to check
how the buffer performs if 1/5 of the maximum frame size is exceeded.
The second and third parameters affect the resynchronization circuitry: An initial phase

shift ϕi between and a factor z on the clock frequencies of the receiver and sender. Though
the latter should not occur with the FE-I4, this should be sufficient to simulate the phase
shift of the clock caused by temperature changes.
The simulation has been performed with varying parameters, namely two frames with

a size of 10 and 9994 Bytes, ϕ = 0 ns, 2.5 ns · z and z = 99.5 %, 99.9 %, 100 %, 100.1 %,
100.5 %.

4.1.1. Simulation Results for 40 Mbit/s, 10 Bytes, ϕ = 0 ns, z = 1

As an example, the simulation for 40 Mbit/s mode and small parameters will be described.
Figure 4.1 shows the sync detector and data recovery behaviour for 10 Bytes, ϕ = 0 ns,
z = 1. The sync detector has locked to the correct sampling point at 200 ns. Until
375.0 ns, the sync detector receives only non-8B/10B data, which is due to the delay of
the sync detector and the intentional transmission of a short alternating sequence, which
has been arbitrarily chosen to recreate the time before bootstrapping of the read-out
system has been completed. Then the first synchronization symbol is received between

39

4. Test and Validation

Figure 4.1.: Simulation of the sync detector and data recovery.

Figure 4.2.: Simulation of the write controller at the beginning of a frame.

375 ns and 625 ns (see Figure 2.2). Two clock cycles later the sync0 signal is asserted.
This delay is due to the delay of the deserializer and of the sync detector itself. This is
followed by two additional ones until 1125 ns. Between this point and 1375 ns an SOF is
received. sync0 is asserted at the expected point of time.

Figure 4.2 shows the behaviour of the write controller, with the same absolute times as
in Figure 4.1. Again, the reception of the three initial synchronization symbols is shown
and they are decoded properly to their representation 00111100, k = 1. The same is the
case for the SOF symbol. After the SOF symbol, the data is correctly latched into the
FIFO using the wr signal, starting at 1750 ns.
The last data symbol has been decoded at 3950 ns with the EOF following 250 ns later.

The write controller correctly detects the end of the frame and asserts the flush signal.
The output controller picks up this signal and starts to read the first byte from the buffer

Figure 4.3.: Simulation of the write controller at the end of a frame and the interaction
with the output controller.

40

4.2. Timing Analysis

FIFO at 4275 ns, the data is pushed into the output FIFO two clock cycles later. Though
not shown in a Figure, the simulation continued until the whole data was successfully
received by the simulation logic.
This, together with the successful simulations for the other parameters, shows that in

general the logic devised for the eBOC is functional.

4.2. Timing Analysis

Timing analysis is automatically performed by the FPGA toolchain. However, the used
timing analyzer is not capable to check live up to all constraints as it is unable to check
timing across clock domains1 [17].
The timing analysis yields that all constraints are met, except some in the data recovery

module. These failures can be discarded as failsafe of the timing analyzer because of the
aforementioned lack of functionality.

4.3. Measurements On A Prototype

A prototype of the eBOC PCB has been manufactured in-house. Due to some restrictions
imposed by machining equipment which was brought into service only recently, differences
between prototype and model exist. Those are mainly limited to additional copper areas
with connection to ground or no connection at all. A photograph of the prototype is
shown in Figure 4.4.
Two issues came up in this revision. First of all, a pin from the ROD was accidentally

connected to the FPGA. As this pin was connected to the +12 V supply, this destroyed
the FPGA. To replace the FPGA, two methods were considered. The FPGA could be
mechanically cut out, but this would induce mechanical stress on the PCB pads. On the
other hand, the FPGA could be desoldered with a professional desoldering tool2. The
latter was chosen, which worked quite well. Only two pads, both leading to the debug
connector, were destroyed during cleaning.
This solution is responsible for the second issue as it greatly added to the degradation of

the through-hole plating. The resistance of all vias near the FPGA, where measurements
could be performed, increased about one order of magnitude. One outliner even reached
a resistance of 10 Ω. Most of the problematic vias were responsible for supplying the

1A clock domain is the range of the logic, where data is handled synchronously to a single clock. Once
the data should be handled by a nother clock, this requires extra care to make sure the required
timing constraints are met.

2Weller WQB 4000 SOPS

41

4. Test and Validation

Figure 4.4.: The eBOC prototype.

42

4.3. Measurements On A Prototype

FPGA’s operating voltages, thus the performance of this eBOC is not optimal and may
degrade further.

4.3.1. Clocks

To verify correct clock synthesis behaviour, the receiver clocks have been routed to the
debug connectors. 0◦ and 90◦ phase shifts were observed in separate measurements, due
to channel limitations on the measuring equipment and debug connector. As a reference,
the ref input clock of the PLL that generates the output clocks, has also been routed to
a debug pin.
Figure 4.5 shows the two measurements. In the top oscillogram, clocks with ϕ = 0◦ are

shown. By comparing the positions of the rising and falling edges, one can easily see that
the clocks are aligned correctly. Also, the generated clocks’ frequencies are 2r−1 of the
reference frequency, as the waveforms were captured with persistence and thus they are
stable. This observation also applies to the bottom capture. In addition, the 90◦ phase
shift can be observed.
Also, the latching clocks generated by the DCMs have to be aligned to the data. Phase

shift values of ϕd = 0, ϕc = ϕb = 90◦ were configured. Figure 4.6 shows the ROD clock
after the PECL driver and the data to the ROD. One can clearly see that the data is
latched synchronous to the falling edge of the clock. Figure 4.7 shows the FE clock in
reference to the commands read from the ROD. The same conditions are met.

4.3.2. LVDS Signal Integrity

The LVDS signal integrity has been measured at each LVDS receiver. Figure 4.8 shows
the results: All signals have a voltage swing of about 600 mV or more, which greatly
exceeds the required 100 mV [24].

4.3.3. Power Measurement

The power dissipation of this prototype has been measured to check if the values are within
reasonable ranges and to contribute to the validation of future builds of this eBOC. The
results are listed in Table 4.1.
During measurement, the eBOC has been kept within the air-cooled read-out crate,

even if not connected to the ROD. The temperature, measured with a thermocouple
directly behind the fan below the eBOC, stayed within 24.1 ◦C and 25.1 ◦C (±2 %).
Additionally, the expected power dissipation has been analyzed using the Xilinx XPower

Analyzer. Of course, the analysis does not take into account the external oscillator and

43

4. Test and Validation

Figure 4.5.: Clock phase and frequency relationships around the PLL, measured at the
debug connectors:
(top) 1. ref, 2. clkϕ=0◦

f=40 MHz, 3. clkϕ=0◦

f=80 MHz, 4. clkϕ=0◦

f=160 MHz,
(bottom) 1. ref, 2. clkϕ=90◦

f=40 MHz, 3. clkϕ=90◦

f=80 MHz, 4. clkϕ=90◦

f=160 MHz,
(see Figure 3.8 for a reference of the designators).

44

4.3. Measurements On A Prototype

Figure 4.6.: ROD input data (2) in relation the the ROD clock (1).

Figure 4.7.: Commands from the ROD (2) in relation to the FE clock (1).

45

4. Test and Validation

Figure 4.8.: LVDS signal integrity measurements, test point on receiver side. 1. FE
command, 4. FE clock, 3. FE data

clock buffer, which alone require 22 mA, leaving a measured operating current of about
145 mA for the FPGA3. Comparing the results from Table 4.2 to the measured values,
one can see that both match quite well.

4.4. Testing With The MCC Emulator

For functional validation, the eBOC has been connected to the ROD and one MCC
Emulator, which for some tests has been programmed with the Pattern Generator config-
uration. On the ROD, a program called MccRawViewer, which was derived by Benjamin
von Ardenne from a program written by Andreas Korn, is used. It initializes the ROD
and sends triggers as they are requested by the user. To verify the result, it dumps the
INPUT_MEM of the ROD and tries to decode the received data frame. The INPUT_MEM
is the directly4 after the inputs of the ROD and thus contains the data as it is processed
by the ROD.

3This figure is based on the 160 MHz mode with all receivers enabled, nearly no current added for
triggering as it is too small, but subtracting the measurement with the FPGA having no core voltage,
as this is the current consumption of the oscillator and clock buffer.

4Actually, there is still a non-functional MUX in the way.

46

4.4. Testing With The MCC Emulator

Parameters Current (mA)
FPGA core voltage not supplied, eBOC not connected to ROD 22.2
All FPGA voltages supplied, eBOC not connected to ROD, FPGA
not configured

30.5

All FPGA voltages supplied, FPGA not configured 33.1
40 MHz mode, no receiver enabled, no module connected 143
40 MHz mode, one receiver enabled, one module connected 143
40 MHz mode, one receiver enabled, triggering one module 144
80 MHz mode, no receiver enabled, no module connected 150
80 MHz mode, one receiver enabled, one module connected 151
80 MHz mode, one receiver enabled, triggering one module 151
160 MHz mode, no receiver enabled, no module connected 159
160 MHz mode, one receiver enabled, one module connected 159
160 MHz mode, one receiver enabled, triggering one module 161
160 MHz mode, all receivers enabled, no module connected 160

Table 4.1.: Current consumption of the eBOC in mA on the 3.3 V supply, ±2 % accu-
racy.

Pins Voltage (V) Current (mA)
Static Dynamic Total

VccINT 1.2 8 26 34
VccAUX 3.3 53 15 68
VccO 3.3 37 4 41
Total 98 45 143

Table 4.2.: Results of the power consumption analysis performed with the Xilinx
XPower Analyzer.

For this thesis, the MccRawViewer has been modified to dump the correct ranges of
the INPUT_MEM to compensate for the new link mapping. An error counter has been
introduced to count errors produced by the decode routine. Also, the measurement can
now be automatically repeated for long-term testing.
A major limitation of this approach is that the INPUT_MEM is set before the decoders

which would multiplex the 40 Mbit/s input channels. To still allow testing of the eBOC
with an intelligent decoder behind the ROD, the eBOC configuration has been slightly
adapted for this test. Instead of mapping r · 40 Mbit/s input data rate to r links to the
ROD, only one link is used no matter what the input data rate was. This is possible due
to the frame buffering on the eBOC, however, only frames that are actually smaller than
1/5 the maximum frame size can be transmitted correctly. Frames that are considerably

47

4. Test and Validation

Data Data

D
ur
at
io
n 8B/10B ROD

Source Rate bits

Er
ro
rs Error Rate Events

Er
ro
rs Error Rate

(Mbit
s) Upper Limit Upper Limit

(min) 90% CL 90% CL
PG 40 836 2.0 · 1012 0 1.2 · 10−12 1.4 · 105 0 1.6 · 10−5

MCCE 80 1305 6.3 · 1012 0 3.7 · 10−13 2.3 · 105 0 1.0 · 10−5

PG 160 806 7.7 · 1012 0 7.2 · 10−14 − − −
MCCE 160 2541 24.4 · 1012 0 4.2 · 105 0 5.5 · 10−6

Table 4.3.: Results of the error rate measurements with the MCC Emulator (MCCE)
and Pattern Generator (PG) and the upper limits for the error rates at the
ROD and 8B/10B test points with 90% confidence level. In the PG/160
measurement, no event decoding was performed, thus there is no data avail-
able for event error rate measurement.

larger will create a buffer overflow in the eBOC as the FIFO read rate is less the write
rate.
The MCC Emulator was additionally modified to support injection of channel inversion

errors. This has been done to verify that the eBOC correctly detects errors in the 8B/10B
coded transmission and the error counter of the MccRawViewer works.

4.4.1. Error Rates

For testing the bit error rate, the measurement has been automated to generate a large
number of events. The error outputs of the decoder have been routed to a debug connector
to which a storage oscilloscope has been connected. The oscilloscope was configured to
trigger on rising edges of this output.
Before the beginning and after the end of each measurement, the data channel has been

inverted to ensure correctness of the error detection setup. The values were then reset
and the measurement ran several hours.
Table 4.3 lists the results of the error measurements. Given these values, an upper limit

for the error rate with 90% confidence level have been calculated as already described in
[6, 7] using

εerr = 1− n+1
√

0.1

with n being the number of events or bits, respectively.
Several errors that have been measured during these tests were not included in this

table. This was done as the errors could be attributed to the attached programmer of the

48

4.4. Testing With The MCC Emulator

MCC Emulator, as they only occured while other devices in the laboratory were switched
on and off and the programmer was connected. Also, the MCC Emulator FPGA was
always left unconfigured. This has already been observed by Matthias George [6], who
came to the same conclusion.
The measured and calculated values show that the eBOC works stable over a reasonable

time segment. The upper limits for the error rates for frames are not very low but largely
depend on the time available for measurement.

4.4.2. Problems with the modified MCC Emulator at 40 Mbit/s

During testing, the modified MCC Emulator turned out to not work at 40 Mbit/s any-
more. The problem could be tracked down to the frame builder and 8B/10B encoder
block. As the data from the Pixel Simulator, which is available at a debug connector of
the MCC Emulator, is still correct. This is particularly irritating, as the configuration in
this area is still the same, it not simply operates at a higher frequency. Operation at this
frequency however has been verified by the timing analyzer.
Due to time constraints and as the 40 Mbit/s mode is secondary, no further analysis

has been performed on this error. However, it points to a currently undiscovered problem
in the original MCC Emulator firmware that has not been discovered prior to this thesis
and may cause problems if it is modified for other projects.

49

5. Summary

As a contribution to the development of the read-out chain for the new FE-I4 Pixel
Detector chip for the IBL project, the electrical Back-Of-Crate card has been redesigned
to fit the new requirements. Those were primarily the higher data rate per link and
decoding of an 8B/10B data channel.
An FPGA configuration has been implemented which supports resynchronization of

the data channel of the FE chip. Therefore, it allows plug-and-play handling of different
cable lengths and tolerates other delay-changing parameters on the clock line. A vendor-
supplied decoder has been used to handle the 8B/10B code, which eliminates most errors
originating from a self made 8B/10B decoder, as this has already been tested thoroughly.
Further parts of the logic are responsible for buffering and forwarding the data while
demultiplexing it to up to four links to the ROD. With these capabilities in mind, a
clocking scheme has been revised which reduces the logic required for the transmitter
path and enables stable operation for all components through perfectly adjustable clocks.
This configuration has then been simulated with several varying parameters to validate

its functionality. These parameters were chosen to recreate situations the eBOC is likely
to encounter in operation.
Using the synthesis results of the configuration, a timing analysis and a set of other

mostly physical parameters, an FPGA was chosen, a member of the Spartan-6 family, the
XC6SLX9. A PCB has been designed around two devices of this type to support eight
FE-I4 chips at 160 Mbit/s. The link mapping to the ROD has been corrected to that
used by the original BOC. Additionally, the FE-I4 chips can be directly supplied through
power connectors on the eBOC.
A prototype of this PCB has been created, hosting only one of the two FPGAs and

connectors for two modules. It had to be assumed that the performance of this eBOC is
degraded due to changes on the PCB imposed by the machining equipment and that parts
of the PCB were exposed to heat beyond its specified range. After additional rework, an
apparently functioning eBOC configuration could be programmed onto the FPGA.
The electrical performance of the prototype was tested. In particular, the operating

currents of different functional units for their respective operation modes were measured.

51

5. Summary

Those numbers were compared to the result of a power dissipation analysis performed
with vendor tools. Also, the performance of the differential transmission lines has been
verified.
For testing, the MCC Emulator has been modified to support 80 Mbit/s and 160 Mbit/s

using an external DCM which shifts the system frequency by a factor of 1, 2 or 4 and
a modification which enabled decoding of the command input regardless of the system
frequency. Also an alternative configuration for the MCC Emulator hardware, the Pattern
Generator, has been programmed which was able to recreate the simulation performed of
the receiver.
With the first test runs with the MCC Emulator, the clocks have been adjusted. Both

adjustments have been verified by capturing the clocks in respect to their synchronous
data channels.
At last, the setup was configured to perform a full test of the readout chain with the

new eBOC and MCC Emulator. Errors in the 8B/10B and frame decoding have been
recorded and none have been discovered. The test parameters have then been used to
calculate an upper limit of the bit and event error rate.

52

6. Future Work

Now that an eBOC adapted to the FE-I4 has been prototyped and tested, the remaining
parts of the read-out chain have to be ported. The new ROD is already on its way and
thus the next step would be to build a new read-out chain with the new ROD, eBOC and
a real FE-I4 module to port the ROD configuration to the new protocol.
Within the medium term, a new eBOC prototype should be built, due to the poor

electrical performance measured. Through-hole plating of this type has already shown
signs of further degradation over time in other projects and may cause problems and
inconsistent behaviour of the eBOC. Also, in this revision, the connection from the FPGA
to the pin BOC_AUX from the ROD should be removed. All components should be
populated on this prototype to be able to perform a full validation.
Decoding the 8B/10B data on the eBOC introduces an additional buffer stage in the

data path. This is generally not necessary and could be avoided by decoding the 8B/10B
data on the ROD or accepting data at 32 Mbit/s instead of the fixed 40 Mbit/s per link.
Currently, the data rate and enabled modules of the eBOC are configured using DIP

switches. This introduces an additional step which has to be taken into account when
setting up the eBOC. It would be easier, if the eBOC could automatically detect connected
modules and their data rates using the synchronization pattern that is transmitted on the
silent data lines.
If the MCC Emulator should be used for other projects than this, the error 40 Mbit/s

mode should be investigated as this points to an error in the configuration that may occur
again in the future.
Currently, the only way for the eBOC to signal its status is using the status LEDs and

the debug header, which is not feasible for debugging, which is a major task for a setup
that contains this eBOC. Thus, the eBOC configuration should be extended to correctly
work with the Setup Bus, as the BOC itself does. This could be used to dump the eBOC
status or FIFOs, which is already possible at several points on the ROD.

53

A. 8B/10B Coding Map

5B/6B

Name Source Encoded
EDCBA abcdei

RD=-1 RD=+1

D.00 00000 100111 011000
D.01 00001 011101 100010
D.02 00010 101101 010010
D.03 00011 110001
D.04 00100 110101 001010
D.05 00101 101001
D.06 00110 011001
D.07 00111 111000 000111
D.08 01000 111001 000110
D.09 01001 100101
D.10 01010 010101
D.11 01011 110100
D.12 01100 001101
D.13 01101 101100
D.14 01110 011100
D.15 01111 010111 101000
D.16 10000 011011 100100
D.17 10001 100011
D.18 10010 010011
D.19 10011 110010
D.20 10100 001011
D.21 10101 101010
D.22 10110 011010
D.23 10111 111010 000101
D.24 11000 110011 001100
D.25 11001 100110
D.26 11010 010110
D.27 11011 110110 001001
D.28 11100 001110

K.28 11100 001111 110000

3B/4B

Name Source Encoded
HGF fghj

RD=-1 RD=+1

D.x.0 000 1011 0100
D.x.1 001 1001
D.x.2 010 0101
D.x.3 011 1100 0011
D.x.4 100 1101 0010
D.x.5 101 1010
D.x.6 110 0110
D.x.P7 111 1110 0001
D.x.A7 111 0111 1000

K.x.0 000 1011 0100
K.x.1 001 0110 1001
K.x.2 010 1010 0101
K.x.3 011 1100 0011
K.x.4 100 1101 0010
K.x.5 101 0101 1010
K.x.6 110 1001 0110
K.x.7 111 0111 1000

55

Bibliography

[1] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock,
LHC Design Report, CERN, Geneva (2004)

[2] A. Collaboration, ATLAS detector and physics performance: Technical Design Re-
port, 1, Technical Design Report ATLAS, CERN, Geneva (1999)

[3] M. Capeans, G. Darbo, K. Einsweiller, M. Elsing, T. Flick, M. Garcia-Sciveres,
C. Gemme, H. Pernegger, O. Rohne, R. Vuillermet, ATLAS Insertable B-Layer Tech-
nical Design Report, Technical Report CERN-LHCC-2010-013. ATLAS-TDR-019,
CERN, Geneva (2010)

[4] M. Garcia-Sciveres, ATLAS Experiment Pixel Detector Upgrades, Technical Report
ATL-UPGRADE-PROC-2011-006, CERN, Geneva (2011)

[5] F.-I. Collaboration, The FE-I4A Integrated Circuit Guide (2011), version 11.3

[6] M. George, Implementation of an Electrical Read-Out System for Multi-Module Lab-
oratory Tests of the ATLAS Pixel Detector (2009)

[7] B. von Ardenne, Development of new data transmission methods for the read-out
system of the ATLAS Pixel Detector (2010)

[8] Xilinx, Virtex-6 FPGA Configurable Logic Block (2009), v1.1

[9] Xilinx, Spartan-6 Family Overview (2011), v1.7

[10] Xilinx, Spartan-6 FPGA Configurable Logic Block (2010), v1.1

[11] Xilinx, Spartan-6 FPGA Clocking Resources (2011), v1.6

[12] Xilinx, Spartan-6 FPGA Block RAM Resources (2011), v1.5

[13] Xilinx, Spartan-6 FPGA Memory Controller (2010), v2.3

[14] P. J. Ashenden, The Designer’s Guide to VHDL, third edition

57

Bibliography

[15] Xilinx, Synthesis and Simulation User Guide (2011), v 13.1

[16] Xilinx, ISim User Guide (2009), v 11.3

[17] Xilinx, Timing Constrains User Guide (2011), v 13.1

[18] Xilinx, LogiCORE IP FIFO Generator (2011), v8.1

[19] Xilinx, Platform Flash In-System Programmable Configuration PROMs (2010), v2.18

[20] A. Widmer, P. Franaszek, A DC-balanced, partitioned-block, 8B/10B transmission
code, IBM Journal of research and development 27(5), 440 (1983)

[21] N. Sawyer, Data Recovery, Xilinx (2005), URL http://www.xilinx.com/support/
documentation/application_notes/xapp224.pdf

[22] P. Vo, Parameterizable 8b/10b Decoder, Xilinx (2008), XAPP1112, v1.1

[23] P. Vo, Parameterizable 8b/10b Encoder, Xilinx (2008), XAPP1122, v1.1

[24] J. Brunetti, B. Von Herzen, The LVDS I/O Standard, Xilinx (1999), XAPP230, v1.1

58

http://www.xilinx.com/support/documentation/application_notes/xapp224.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp224.pdf

Acknowledgements

I thank Prof. Dr. Arnulf Quadt and PD Dr. Jörn Große-Knetter for making this the-
sis possible, their outstanding organizational efforts and professional supervision, Nina
Krieger for providing me with her knowledge about the setup, conceptual help and de-
bugging help during commissioning of the prototype and support while writing this doc-
ument, and the other members of the institute for it was a pleasure to work and spend
time with them.
Thanks are going to the electronics workshop and especially Reinhard Mielke, who

spared no efforts in providing me with a circuit board for the prototype, despite the long
list of issues with the machining equipment.
Nonetheless I’d like to thank Sabine Wolff, my family and friends for supporting and

bearing me for the last six months, which allowed me to write this thesis in the first place.

59

Erklärung nach §12(7) der Prüfungsordnung für den Bachelor-Studiengang
Angewandte Informatik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig ver-
fasst habe, keine anderen als die angegebenen Quellen und Hilfsmit-
tel benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus
veröffentlichten Schriften entnommen wurden, als solche kenntlich
gemacht habe.

Göttingen, den September 29, 2011

(Johannes Agricola)

