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Abstract

A 2-category generalizes the concept of a category by adding 2-morphisms be-
tween arrows. The easiest example would be the category of small categories,
with functors between categories as the usual morphisms, and natural equiv-
alences between functors as 2-morphisms. One can weaken the notion of a
2-category to a weak 2-category. That is, the unit and associativity laws for
concatenation of arrows are only required to hold up to 2-morphisms.
An example for a weak 2-category is the correspondence 2-category Corr(2),
which consist of C∗-algebras as objects, C∗-correspondences as morphisms and
C∗-correspondence isomorphisms as 2-morphisms. Since invertible C∗-corres-
pondences are imprimitivity bimodules, isomorphisms in Corr(2) becomes Morita
equivalences.
Given an arbitrary weak 2-category, one can de�ne weak actions of groups, 2-
groups, groupoids or 2-groupoids on objects in the given category as 2-functors.
That is, given one of the former mentioned structures, every property of the
action is already encoded in the de�nition of the 2-functor. An interesting fact
about the correspondence 2-category is, that a group action α of a locally com-
pact group G on a C∗-algebra A in Corr(2) is equivalent to a saturated Fell
bundle A, such that A is isomorphic to the unit �ber A1.
Using the equivalence between crossed modules and 2-groups and the fact, that
crossed modules correspond in some way to quotient groups, one can generalize
this equivalence to 2-groups by de�ning a Fell bundle over a 2-group in a way,
that it is isomorphic two a pull-back bundle. Again, �nding the right notion of
continuity for 2-group actions in Corr(2) yields that this equivalence preserves
continuity.
Moreover, the results on discrete group actions can be easily extended two r-
discrete groupoids. And since there exist quotients and crossed modules over
groupoids, one can generalize the construction for discrete 2-groups to �nd a no-
tion of Fell bundles over- and weak actions of r-discrete 2-groupoids in Corr(2).
These can be showed to be still equivalent.
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Chapter 1

The Corr(2) 2-Category

In this chapter, we are going to construct the 2-category Corr(2). We are starting
with a quick introduction of the basic theory of imprimitivity bimodules, mostly
based on the work of Raeburn, Williams and Echterho� ( [8], [20]). Further-
more, we will de�ne C∗-correspondences, and establish the connection between
the latter and imprimitivity bimodules. Finally we will introduce the notion of
a (weak) 2-category, discuss how to de�ne actions of groups and groupoids as
2-functors between categories and use the previous results to de�ne the corre-
spondence 2-category Corr(2).

1.1 Imprimitivity modules

De�nition 1.1. Let A be a C∗-algebra, a (right) Hilbert A-module EA is a right
A-module with a scalar multiplication

λ(xa) = (λx)a = x(λa) ∀x ∈ EA, a ∈ A, λ ∈ C

and a map
〈·, ·〉 : EA × EA → A

satisfying the following conditions

(i) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉

(ii) 〈x, ya〉 = 〈x, y〉a

(iii) 〈y, x〉 = 〈x, y〉∗

(iv) 〈x, x〉 ≥ 0 if 〈x, x〉 = 0⇒ x = 0

for all x, y, z ∈ EA, α, β ∈ C and a ∈ A, which is complete with respect to the
scalar valued norm ‖x‖ = ‖〈x, x〉‖ 1

2 .
A Hilbert module is called full, if 〈EA, EA〉 is dense in A.

Example 1.2. Let A be a C∗-algebra. Then we can de�ne an Hilbert module
AA, where the right action is implemented by right multiplication, and the inner
product is given by 〈a, b〉A := a∗b.
From the existence of an approximate unit, it follows that AA is even a full
Hilbert A-module.
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De�nition 1.3. Let EA be a Hilbert A-module, x, y ∈ EA. We de�ne a compact
operator on EA by

θx,y : EA → A

z 7→ x〈y, z〉

and denote the set of compact operators by

K(EA) := span{θx,y : x, y ∈ EA}

Remark 1.4. Let A be a C∗-algebra, then K(AA) = A. Again this can be shown
easily by using the approximate unit of A.

Lemma 1.5. [20] Let A be a C∗-algebra, EA be an Hilbert A-module. Then
EA is a full left Hilbert K(EA)-module with respect to the natural left action
T · x = T (x) and the inner product K(EA)〈x, y〉 := θx,y

Proof. The proof is just some easy calculations and may be found in [20].

De�nition 1.6. Let A, B be C∗-algebras. We call A and B strongly Morita
equivalent if there is a full Hilbert A-module EA, such that B ∼= K(EA).
We will denote the equivalence by A ∼M. B.

De�nition 1.7. Let A, B be C∗-algebras. An A−B-imprimitivity module AXB
is an A−B-bimodule, which has to bilinear mappings

A〈·, ·〉 : AXB × AXB → A

〈·, ·〉B : AXB × AXB → B

such that AXB is a full left Hilbert A-module and a full right Hilbert B-module
satisfying the following conditions

(i) A〈x, y〉z = x〈y, z〉B

(ii) 〈a · x, y〉B = 〈x, a∗ · y〉B and A〈x · b, y〉 = A〈x, y · b∗〉

for all x, y, z ∈ AXB

Remark 1.8. For the sake of convenience, we will omit the indices provided that
it is clear about what kind of module we are talking.

Proposition 1.9. [20] Every full Hilbert B-module is a K(EB)−B-imprimitivity
bimodule with K(EB)〈x, y〉 := θx,y.
Conversely, if AXB is an A − B-imprimitivity bimodule, then there is an iso-
morphism φ : A→ K(AXB) such that φ(A〈x, y〉) = K(EB)〈x, y〉.

Proof. [20] Suppose EB is a full Hilbert B-module, Lemma 1.5 says that K(EB)EB
is a full left Hilbert K(EB). The �rst identity of condition (ii) of De�nition 1.7
follows directly from the fact, that K(EB) acts by adjointable operators. For
the second, let b ∈ B, x, y, z ∈ EB , and compute:

K(EB)〈x · b, y〉(z) = (x · b) · 〈y, z〉B = x · 〈y · b∗, z〉B = K(EB)〈x, y · b∗〉(z)

The associativity condition is the de�nition of K(EB)〈x, y〉 = θx,y, thus we have
proved the �rst assumption.
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Now suppose X is an A−B-imprimitivity bimodule. Since A acts by adjointable
operators, the map φ : A → L(X ), de�ned by φ(a)(x) := a · x is a homomor-
phism of C∗-algebras, and hence has closed range. The associativity condition
of De�nition 1.7 implies that φ(A〈x, y〉) = K(X )〈x, y〉 for all x, y ∈ X , so φ(A)
must be precisely K(X ). Suppose φ(a) = 0 for some a in A. Since A〈X ,X〉 spans
a dense ideal, we can approximate a by an element of the form a

∑
i A〈xi, yi〉.

But if φ(a) = 0, then

a ∼ a
∑
i

A〈xi, yi〉 =
∑
i

A〈a · xi, yi〉 = 0

Thus φ is an isomorphism.

De�nition 1.10. Let X , Y be A − B-imprimitivity bimodules. An A − B-
imprimitivity bimodule isomorphism is a bimodule isomorphism ϕ : X → Y that
preserves inner products. That is 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for both inner products
and all x, y ∈ X .

De�nition 1.11. [8] Let X be an A−B-imprimitivity bimodule. A multiplier
of X is a pair m = (mA,mB), where mA : A → X is A-linear, mB : B → X is
B-linear, and

mA(a) · b = a ·mB(b) ∀a ∈ A, b ∈ B.

We writeM(X ) for the set of multipliers of X .

As usual, we de�ne a ·m := mA(a) and m · b := mB(b). Further, there is
an injective embedding of X intoM(X ) via x 7→ (xA : a 7→ a · x, xB : b 7→ x · b).
M(X ) is an A-B-bimodule, and we refer to it as the multiplier bimodule of X .
In case X = AAA. The multiplier bimodule over X is equal to the multiplier
algebraM(A).

Proposition 1.12. [8] Let X be an A−B-imprimitivity bimodule. ThenM(X )
is an A−B bimodule, satisfying the following conditions:

(i) A · M(X ) ⊆ X andM(X ) ·B ⊆ X

(ii) If M is any other A−B bimodule which contains X and satis�es (i), then
there exists a unique bimodule homomorphism M → M(X ) which is the
identity on X .

Moreover, any A − B-bimodule which contains X and satis�es conditions (i)
and (ii) is isomorphic (as an A−B bimodule) toM(X ).

Proof. Cf. [8, Proposition 1.2]

De�nition 1.13. Let X be an A − B-imprimitivity bimodule. We denote by
L(B,X ) the set of all B-linear operators T : B → X which are adjointable, i.e.,
for which there is a B-linear map T ∗ : X → B, such that

〈T (b), x〉B = b∗T ∗(x) ∀b ∈ B, x ∈ X

Similarly, we de�ne the set L(A,X
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Lemma 1.14. Let m ∈M(X ). Then mB ∈ L(B,X ), with m∗B(x) given by the
unique element of B satisfying

mA(A〈z, x〉) = z · (m∗B(x))∗ ∀z ∈ X (1.1)

Similarly, mA ∈ LA(A,X), with m∗A(x) characterized by

(m∗A(x))∗ · z = mB(〈x, z〉B) ∀z ∈ X (1.2)

Moreover, m∗B(a · x) = 〈mA(a∗), x〉B and m∗A(x · b) = A〈x,mB(b∗)〉.

Proof. Cf. [8, Lemma 1.3]

De�nition 1.15. [20] Let X be an A−B-imprimitivity bimodule, Y a B−C-
imprimitivity bimodule. Let X � Y be the algebraic tensor product. Consider
the subspace N := span{(x · b⊗ y− x⊗ b · y) : x ∈ X , y ∈ Y, b ∈ B} and de�ne

X �B Y := (X � Y)/N

De�ne some pre-inner products on X �B Y by

〈〈x1 ⊗B y1, x2 ⊗B y2〉〉C := 〈〈x2, x1〉B · y1, y2〉C
A〈〈x1 ⊗B y1, x2 ⊗B y2〉〉 := A〈x1, x2 · B〈y2, y1〉〉

The completion X ⊗B Y of X �B Y with respect to the inner pre-products is
called the internal tensor product of X and Y.

Remark 1.16. The inner product de�ned on X ⊗B Y are not arbitrary. In fact,
they are uniquely determined by the condition that X ⊗B Y becomes an A−C-
imprimitivity bimodule. For further details, see [20]

Remark 1.17. To check that a linear map ϕ : X → Y is an isomorphism, it
su�ces to show that it preserves inner products and that its image is dense in
Y.
To see this, note that since ϕ preserves inner products, hence it is isometric
and therefore has closed range. Thus from density of the image we can deduce
surjectivity. Also for x, y ∈ H, b ∈ B we have

〈ϕ(x), ϕ(y · b)〉B = 〈x, y · b〉B = 〈x, y〉B · b
= 〈ϕ(x), ϕ(y)〉 · b = 〈ϕ(x), ϕ(y) · b〉

Hence ϕ commutes with the B-action and is therefore a right B-module isomor-
phism. An analogue calculation shows that ϕ is also a left A-module isomor-
phism.

De�nition 1.18. [20] Let X be an A − B-imprimitivity bimodule. Let X ∗
denote the conjugate vector space of X . Then there is an additive bijection
[ : X → X ∗ such that [(λx) = λ[(x). X ∗ is a B − A-imprimitivity bimodule
with module actions

b · [(x) = [(x · b∗)
[(x) · a = [(a∗ · x)
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and inner products

B〈[(x), [(y)〉 = 〈x, y〉B
〈[(x), [(y)〉A = A〈x, y〉

for all y, x ∈ X , a ∈ A, b ∈ B. The module X ∗ is called the dual of X

Proposition 1.19. [20] Let X be an A−B-imprimitivity module, and let X ∗
be its dual. Then there is an isomorphism ϕB : B(X ∗⊗AX )B → BBB such that
ϕB([(x) ⊗A y) = 〈x, y〉B for all x, y ∈ H and an isomorphism ϕA : A(X ⊗B
X ∗)A → AAA such that ϕA(x⊗B [(y)) = A〈x, y〉

Proof. The map ([(x), y) 7→ 〈x, y〉 is bilinear and A-balanced, hence gives a
linear map ϕB : X ∗ ⊗A X → B satisfying ϕB([(x) ⊗A y) = 〈x, y〉B . We prove
that ϕB is an isometry by some easy calculations:

〈ϕB(
∑
i

[(xi)⊗A yi), ϕB(
∑
j

[(uj)⊗A vj)〉B

=
∑
i,j

〈〈xi, yi〉B , 〈uj , vj〉B〉B

=
∑
i,j

〈yi, xi〉B〈uj , vj〉B

=
∑
i,j

〈yi, xi · 〈uj , vj〉B〉B

=
∑
i,j

〈yi,A〈xi, uj〉 · vj〉B

=
∑
i,j

〈〈[(uj), [(xi)〉A · yi, vj〉B

=〈〈
∑
i

[(xi)⊗A yi,
∑
j

[(uj)⊗A vj〉〉B

An analogue computation shows that ϕA also preserves the left inner product.
Since an imprimitivity bimodule is full as a left respectively right Hilbert mod-
ule, the image of ϕA is dense in B, hence ϕA is an imprimitivity bimodule
isomorphism.

Proposition 1.20. The inverse of an imprimitivity bimodule is determined
uniquely up to isomorphisms

Proof. Let X be anA−B-imprimitivity bimodule and Y be aB−A-imprimitivity
bimodule such that there is an isomorphism v : X ⊗B Y → A, then we get an
induced isomorphism

v̂ : Y ∼−→ B ⊗B Y
ϕ−1
B ⊗BIdY−−−−−−−→ (X ∗ ⊗A X )⊗B Y

IdX∗ ⊗Av−−−−−−→ X ∗ ⊗A A
∼−→ X ∗

Corollary 1.21. Let X be an A − B-imprimitivity bimodule, Y be a B − A-
imprimitivity bimodule and let v : X ⊗B Y

∼−→ A and w : Y ⊗A X
∼−→ B be

imprimitivity bimodule isomorphisms, and assume that

v ⊗A IdX = IdX ⊗Bw : X ⊗B Y ⊗A X → X . (1.3)

5



Then ŵ and v̂ are inverse to each other.

Proof. Assume that Y = X ∗ and that v and w are the canonical isomorphisms
ϕA respectively ϕB as de�ned in Proposition 1.19. Notice, that condition (1.3)
is equivalent to

IdY ⊗Av = w ⊗B IdY : Y ⊗A X ⊗B Y → Y,

since

X ⊗B Y ⊗A X ⊗B Y

w⊗Id

))Id⊗w //

w⊗w

55X ⊗B Y
w //A .

Then calculate

ŵ ◦ v̂ : X ∗ ∼= B ⊗B X ∗
ϕ−1
B ⊗BIdX∗−−−−−−−−→ X ∗ ⊗A X ⊗B X ∗

IdX∗ ⊗AϕA−−−−−−−→ X ∗ ⊗A A ∼= B ⊗B X ∗

ϕ−1
B ⊗BIdX∗−−−−−−−−→ X ∗ ⊗A X ⊗B X ∗

IdX∗ ⊗AϕA−−−−−−−→ X ∗ ⊗A A ∼= X ∗.

That is,

ŵ ◦ v̂ : b · [(x) · a ∼7−→ b⊗B [(x) · a
ϕ−1
B ⊗BIdH∗7−−−−−−−−→ [(zb)⊗A yb ⊗B [(x) · a

IdH∗ ⊗AϕA7−−−−−−−→ [(zb)⊗A 〈yb, [(x) · a〉A
∼7−→ B〈[(zb), yb〉 ⊗B [(x) · a

ϕ−1
B ⊗BIdH∗7−−−−−−−−→ [(zb)⊗A yb ⊗B [(x) · a

IdH∗ ⊗AϕA7−−−−−−−→ [(zb)⊗A 〈yb, [(x) · a〉A
∼7−→ B〈[(zb), yB〉 · x · a

So ŵ ◦ v̂ acts as identity. From the former equation system one can deduce
that obviously condition (1.3) holds in case that v and w are the canonical
isomorphisms. On the other hand one can deduce that ŵ ◦ v̂ acts as identity for
any v, w ful�lling (1.3).

Remark 1.22. Let z1, z2, x ∈ X , y ∈ Y. Using the condition v⊗AIdX = IdX ⊗Bw
from the former corollary, we can calculate

B〈v̂(〈z1, z2〉 · y), [(x)〉 = B〈[(z1) · v(z2 ⊗B y), [(x)〉
= B〈[(z1), [(x) · v(z2 ⊗B y)∗〉
= B〈[(z1), [(v(z2 ⊗B y)⊗A x)〉
= 〈z1, z2 ⊗B w(y ⊗A x)〉B
= 〈z1, z2〉Bw(y ⊗A x)

= w(〈z1, z2〉B · y ⊗A x)

Thus, B〈v̂(y), [(x)〉 = w(y ⊗A x).
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Theorem 1.23 (Rie�el Correspondence). [6] Let A, B be C∗-algebras, X be
an A−B-imprimitivity bimodule and I ⊂ B be a closed ideal. De�ne the ideal
induced by I as

X -Ind I := {a ∈ A : aX ⊂ X I}
Then there is an inclusion preserving one-to-one correspondence between closed
ideals in B, induced ideals in A and submodules of the form X I. Moreover, for
any closed ideal I in B, we get

(i) X -Ind I = A〈X I,X I〉

(ii) (X -Ind I)X = X I

(iii) 〈(X -Ind I)X , (X -Ind I)X〉B = I

1.2 C∗-correspondences

De�nition 1.24. Let A, B be C∗-algebras, a C∗-correspondence φ(A)XB from
A to B is a full Hilbert B-module XB , together with a non-degenerate homo-
morphism φ : A→ L(XB). We call φ the left action of A.

Example 1.25. Let A, B be C∗-algebras, φ : A → M(B) be a non-degenerate
homomorphism, then the Hilbert B-module BB becomes a C∗-correspondence

φ(A)BB sinceM(B) ∼= L(BB) (cf. [16]).

Remark 1.26. In [5], a right Hilbert A-B bimodule is de�ned as a full Hilbert B-
module, with a non-degenerate left action by a C∗-algebra A. Since 〈a · x, y〉 =
〈x, a∗ · y〉 for any right Hilbert A−B bimodule, A acts by adjointable operators
and the left action may be expressed by a homomorphism φ : A → L(EB) such
that a ·x := φ(a)x. Therefore there is a one-to-one correspondence between C∗-
correspondences and right Hilbert bimodules. We will use this correspondence
implicitly on several occasions.

De�nition 1.27. Considering the previous remark, an isomorphism of C∗-
correspondences is a bimodule isomorphism, which is unitary with respect to
the inner product

Proposition 1.28. [5] Let A, C be C∗algebras, and φ, ψ be non-degenerate
homomorphisms of A into M(C). Then φ(A)CC ∼= ψ(A)CC i� there exists u ∈
UM(C) such that uψ = φu (we say u intertwines ψ and φ).

Proof. If uψ = φu, the map c 7→ uc is a Hilbert module automorphism of CC
which intertwines the left-actions coming from φ and ψ.
Conversely, suppose φ(A)CC ∼= ψ(A)CC , so there exists a linear bijection λ : C →
C, such that

λ(cd) = λ(c)d, λ(c)∗λ(d) = c∗d, and λ(φ(a)c) = ψ(a)λ(c)

for each c, d ∈ C. De�ne µ : C → C by µ(c) = λ−1(c∗)∗. The �rst two imply
that (µ, λ) is an invertible multiplier of C, thus there exists an invertible element
u ∈M(C), such that λ(c) = u · c for all c. Since

u−1 · c = λ−1(c) = λ−1(c∗∗)∗∗ = µ(c∗)∗ = (c∗ · u)∗ = u∗ · c

u is unitary, and by the third property of λ, u intertwines φ and ψ.
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De�nition 1.29. Let φ(A)XB and ψ(B)YC be C∗-correspondences, denote by
X � Y the algebraic tensor product. Consider the subspace N := span{x · b �
y − x� ψ(b)y : x ∈ X , y ∈ Y, b ∈ B} and de�ne

X �B Y := (X � Y)/N

Let A and C act on X �B Y by

a · (x�B y) := (φ(a)x�B y) (x�B y) · c := x�B (y · c)

Further, de�ne some pre-inner product on X � Y by

〈〈x1 � y1, x2 � y2〉〉C = 〈y1, ψ(〈x1, x2〉B)y2〉C

The completion X ⊗ Y := X �B Y is called internal or interior tensor product.

Proposition 1.30. The internal tensor product of two C∗-correspondences

φ(A)XB and ψ(B)YC is a C∗-correspondence from A to C.

Proof. The proof, that X ⊗ Y is a Hilbert C∗-module, can be found in [16,
Proposition 4.5]. To show, that it is indeed a C∗-correspondence, we have to
check that the left action is adjointable and non-degenerate. The �rst part is
just some easy calculations:

〈〈a · (x1 ⊗ y1), x2 ⊗ y2〉〉C = 〈〈(φ(a)x1)⊗ y1, x2 ⊗ y2〉〉C
= 〈y1, ψ(〈φ(a)x1, x2〉B)y2〉C
= 〈y1, ψ(〈x1, φ(a)∗x2〉B)y2〉C
= 〈〈x1 ⊗ y1, ((φ(a)∗x2)⊗ y2〉〉C
= 〈〈x1 ⊗ y1, a

∗ · (x2 ⊗ y2)〉〉C

Further, since φ(A)X is dense in X , φ(A)(X �BY) is obviously dense in X �BY
and hence φ(A)(X )⊗BY) is dense in X⊗BY. That is, A act non-degenerate.

Remark 1.31. Let φ(A)XB be a C∗-correspondence. Then obviously

φ(A)XB ⊗B IdB(B)BB ∼= φ(A)XB and IdA(A)AA ⊗A φ(A)XB ∼= φ(A)XB

Lemma 1.32. [20] Let EA be a Hilbert A-module, de�ne

Dx : EA → A Lx : A→ EA
y 7→ 〈x, y〉 a 7→ x · a

then D∗x = Lx and thus Dx ∈ L(EA, A) and Lx ∈ L(A, EA).
Further D : x 7→ Dx de�nes an isometric conjugate linear isomorphism EA

∼−→
K(EA, AA) and L : x 7→ Lx de�nes an isometric linear isomorphism EA

∼−→
K(AA, EA).

Proof. [20] To prove, that D∗x = Lx, calculate

〈Dx(y), a〉A = 〈x, y〉∗Aa = 〈y, x〉a = 〈y, x · a〉A = 〈y, Lx(a)〉.

D is obviously conjugate linear, because the inner product is conjugate linear
in its �rst argument. To see that D is isometric, calculate

‖Dx‖ = sup{‖〈x, y〉A‖A : ‖y‖A ≤ 1} = ‖x‖EA
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This yields in particular, that D has closed range. Since Dx·a∗ = θx,a, the range
of D contains all �nite linear combinations of operators of the form θx,a. Since
these are dense in K(EA, A), D is surjective.
For the assertions about L, note that L : x 7→ D∗x and apply the �rst part.

Proposition 1.33. [6] Let ϕ(A)XB, ψ(B)YA be C∗-Correspondences, such that

ϕ(A)XB ⊗B ψ(B)YA ∼= AAA and ψ(B)YA ⊗A ϕ(A)XB ∼= BBB

Then ϕ(A)XB is an A−B-imprimitivity bimodule and Y ∼= X ∗

Proof. The second statement is clear since it has already been proved in Theo-
rem 1.20. So we only have to show that ϕ(A)XB is an imprimitivity bimodule.
By proposition 1.9 that means, ϕ is an isomorphism between A and K(XB).
At �rst, we show that ϕ is faithful. Let ΨA : ϕ(A)(X ⊗B Y)A

∼−→ AAA be the
given isomorphism and L : A→ L(AA), a 7→ (La : b 7→ ab) be the canonical left
action.
Assume ϕ(a)x = 0 for all x ∈ X , then ϕ(a)(x ⊗B y) = 0 for all x ∈ X , y ∈ Y
and thus ϕ(a)z = 0 for all z ∈ X ⊗B Y. But since ΨA(ϕ(a)z) = LaΨA(z) = 0,
a = 0 because L is faithful (cf. [16]).
To see that ϕ(A) = K(XB), let ΨB : ψ(B)(Y ⊗A X )

∼−→ BBB , and de�ne Φ: Y →
L(X , B) by

Φ(y)x = ΨB(y ⊗ x)

Then
Φ(ψ(b)y)x = Ψ(ψ(b)y ⊗ x) = LbΨ(y ⊗ x) = LbΨ(y)x

note that L(X , B) becomes a Hilbert L(X )-module with inner product 〈T1, T2〉 =
T1T

∗
2 .

〈〈Φ(y1),Φ(y2)〉x1, x2〉 = 〈Φ(y1)∗Φ(y2)x1, x2〉
= 〈Φ(y2)x1,Φ(y1)x2〉B
= 〈ΨB(y2 ⊗ x1),ΨB(y1 ⊗ x2)〉
= 〈y2 ⊗ x1, y1 ⊗ x2〉
= 〈ϕ(〈y1, y2〉A)x1, x2〉B

for all xi ∈ X , yi ∈ Y. Hence 〈Φ(y1),Φ(y2)〉 = ϕ(〈y1, y2〉A) and thus Φ(ψ(b)x ·
a) = LbΦ(x) · ϕ(a) (cf. [5, Remark 1.17 (2)]). Now

X = ϕ(A)X = Φ(Y)∗Φ(Y)X = Φ(Y)∗Ψ(Y ⊗A X )

= Φ(Y)∗B = Φ(ψ(B)Y)∗ = Φ(Y)∗

and using Lemma 1.32

ϕ(A) = Φ(Y)∗Φ(Y) = XX ∗ = K(X )

9



1.3 2-Categories and related structures

De�nition 1.34. A (strict) 2-category C consist of:

(i) a collection of objects C(0)

(ii) a collection of arrows between objects C(1) together with a source map
s : C(1) → C(0), a target map r : C(1) → C(0), a multiplication

◦ : C(1)
s×r C(1) → C(1)

(f, g) 7→ f ◦ g

such that for any f, g ∈ C(1)
s×r C(1), s(f ◦ g) = s(g) and r(f ◦ g) = r(f),

and for any composable f, g, h ∈ C(1), f ◦ (g ◦ h) = (f ◦ g) ◦ h, and a
unitarrow 1x ∈ C(1) for all x ∈ C(0), such that, 1x ◦ g = g respectively
f ◦ 1x = f for all f, g ∈ C(1) satisfying r(g) = x respectively s(f) = x.
We de�ne C(1)(y, x) := s−1(y)∩ r−1(x) to be the collection of arrows with
source y and target x.

(iii) a collection of bigons between arrows C(2), together with a source map
s(2) : C(2) → C(1) and a target map r(2) : C(2) → C(1), an associative hor-
izontal multiplication ·h : C(2) × C(2) → C(2) and an associative vertical
multiplication ◦ : C(2) × C(2) → C(2). Such that for any (f1, f2), (g1, g2) ∈
C(1)

s×r C(1) satisfying a(f1) = g1 and b(f2) = g2 for some bigons a, b

a(f1) ◦ b(f2) = (a ·h b)(f1 ◦ f2),

and for any f, g, h ∈ C(x, y) such that a(f) = g and b(g) = h for some
bigons a, b

b(a(f)) = (b ◦ a)(f).

Further, horizontal and vertical multiplication have to respect some co-
herence law, that is: let a1, a2, b1, b2 be some bigons in C, such that
s(2)(bi) = r(2)(ai) for i = 1, 2 and a2 ·h a1 and b1 ·h b2 are de�ned. Then

(b1 ·h b2) ◦ (a1 ·h a2) = (b1 ◦ a1) ·h (b2 ◦ a2)

Remark 1.35. For the sake of convenience, it is common practice to omit the ◦
to denote multiplication of arrows or vertical multiplication of bigons. That is,
f ◦ g becomes fg and a ◦ b becomes ab for some composable arrows f, g ∈ C(1)

respectively some vertically composable bigons a, b ∈ C(2).

Remark 1.36. A strict 2-category C can be de�ned through commutative dia-
gramms. Let x, y, z denote objects in C, → arrows and ⇒ bigons. Then we get
the multiplication between arrows by:

x yvv
z

vv 7→ x z
vv

The horizontal multiplication will be de�ned by

z y

f1

||

g1

bb a
��

x

f2

||

g2

bb b
��

7→ z x.

f1f2

||

g1g2

bb a·hb
��
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and the vertical multiplication becomes

y x

f

��
goo

h

[[
a��

b��
7→ y x.

f

||

h

bb b◦a
��

Further, we can represent the interchange law by

z y

f1

��
g1oo

h1

\\
a1��

b1��
x,

f2

��
g2oo

h2

]]
a2��

b2��

in the sense that it does not matter if we �rst compose vertically, and then
horizontally or the other way round to get the bigon f1 ◦ f2 ⇒ h1 ◦ h2.

De�nition 1.37. A strict 2-Groupoid is a 2-Category G whose object class is
a set and where all 1- and 2-morphisms are invertible.
A strict 2-group is a 2-groupoid G whose object class is the one-elemental set
denoted by {?}.

De�nition 1.38. A weak 2-Category C is similar to a (strict) 2-category, but
weakened in the sense, that the unit and associativity law only hold up to
isomorphisms. That is, for any composable f, g, h ∈ C, there is an invertible
bigon af,g,h ∈ C(2), the associator, such that

f ◦ (g ◦ h)
af,g,h
===⇒ (f ◦ g) ◦ h

and for any x, y ∈ C(0), f ∈ C(1)(x, y), there are invertible bigons lf , rf , the left
and right unitor, such that

1x ◦ f
lf
=⇒ f

rf⇐= f ◦ 1x.

Further the associators and unitors have to respect certain coherence laws. That
is, for any composable e, f, g, h ∈ C(1) the following diagrams have to commute

((e ◦ f) ◦ g) ◦ h +3

��

(e ◦ f) ◦ (g ◦ h) +3 e ◦ (f ◦ (g ◦ h))

(e ◦ (f ◦ g)) ◦ h +3 e ◦ ((f ◦ g) ◦ h)

KS
,

(1.4)

and provided, that f ∈ C(1)(y, z) and g ∈ C(1)(x, y):

(f ◦ 1y) ◦ g

#+PPPPPPPPPPPP

PPPPPPPPPPPP
+3 f ◦ (1y ◦ g)

s{ nnnnnnnnnnnn

nnnnnnnnnnnn

f ◦ g

.

(1.5)

11



De�nition 1.39. [2] Let C, G be two weak 2-categories. A morphism of
2-categories (or weak 2-functor) consists of the following data:

• a map F : C(0) → G(0),

• a Functor F (x, y) : C(1)(x, y) → G(1)(F (x), F (y)) for each pair of objects
x, y,

• a natural bigon ω(f1, f2) : F (f1)◦F (f2)⇒ F (f1 ◦f2) for each pair (f1, f2)
of composable arrows; where naturality means that the following diagrams
commute for all pairs of bigons n1 : f1 ⇒ g1, n2 : f2 ⇒ g2 between com-
posable arrows:

F (f1) ◦ F (f2)
ω(f1,f2) +3

F (n1)·hF (n2)

��

F (f1 ◦ f2)

F (n1·hn2)

��
F (g1) ◦ F (g2)

ω(g1,g2)
+3 F (g1 ◦ g2);

(1.6)

• bigons ux : 1F (x) ⇒ F (1x).

As well as some coherence laws

(F (g1) ◦ F (g2)) ◦ F (g3)
a′(F (g1),F (g2),F (g3)) +3

ω(g1,g2)·hIdF (g3)

��

F (g1) ◦ (F (g2) ◦ F (g3))

IdF (g1) ·hω(g2,g3)
��

F (g1 ◦ g2)F (g3)

ω(g1◦g2,g3)
��

F (g1)F (g2 ◦ g3)

ω(g1,g2◦g3)
��

F ((g1 ◦ g2) ◦ g3)
F (a(g1,g2,g3))

+3 F (g1 ◦ (g2 ◦ g3))

(1.7)

F (1x) ◦ F (g)
ω(1x,g) +3

KS
u·hIdF (g)

F (1x ◦ g)

F (lg)

��
1F (x) ◦ F (g)

lF (g)

+3 F (g)

F (g) ◦ F (1y)
ω(g,1y) +3

KS
IdF (g) ·hu

F (g ◦ 1y)

F (rg)

��
F (g) ◦ 1F (y) rF (g)

+3 F (g).

(1.8)

If in addition, the bigons ux and ω(g, f) are invertible, we speak of a homomor-
phism of weak 2-categories. If they are all identities, we get a (strict) 2-functor
(this notion is only interesting if both 2-categories are strict).

De�nition 1.40. A strict 2-group action of a 2-group G on a C∗-algebra A
is a (strict) 2-functor from the 2-group into a (strict) category of C∗-algebras,
which maps the object ? ∈ G(0) onto A.

Remark 1.41. Due to the strictness condition, there is only one reasonable choice
for the 2-category of C∗-algebras. That is the category C∗(2), which consists
of C∗-algebras as objects, non-degenerate ∗-homomorphisms A → M(B) as
arrows, and unitary intertwiner between such ∗-homomorphisms as bigons. For
further details, cf. e.g. [2]
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De�nition 1.42. [2] Let G be a discrete group, C a weak 2-category. We can
viewG as a weak 2-categoryG by de�ningG(0) := {?}, G(1) := G, and any bigon
to be the identity. A weak action of G on an object A in C is a homomorphism
of weak 2-categories from G to C, which maps ? to A. By De�nition 1.39, we
get

• an arrow αg : A→ A for all g ∈ G

• a bigon u : 1A → α1

• bigons ω(g1, g2) : αg1αg2 ⇒ αg1g2 .

and the simpli�ed coherence laws

α1 ◦ αtKS

u·hIdαg

ω(1,g) +3 α1·g αg ◦ α1KS
Idαg ·hu

ω(g,1) +3 αg·1

1 ◦ αg ks +3 αg αg ◦ 1 ks +3 αg

(1.9)

and

(αg1αg2)αg3

ω(g1,g2)·hIdαg3
��

ks +3 αg1(αg2αg3)

Idαg1
·hω(g2,g3)

��
αg1g2αg3

ω(g1g2,g3) #+NNNNNNNNNN

NNNNNNNNNN
αg1αg2g3

ω(g1,g2g3)s{ pppppppppp

pppppppppp

αg1g2g3

(1.10)

where the ⇔ denote the unit and associativity bigons from the 2-category C.

Proposition 1.43. There is a weak 2-category Corr(2), which consists of C∗-
algebras as object class, C∗-correspondences as 1-morphisms and isomorphisms
of C∗-correspondences as 2-morphisms. The composition of 1-morphisms is
given by the interior tensor product, that is, for two C∗-correspondences φ(A)XB,
ψ(B)YC , we de�ne

Y ◦ X := X ⊗B Y. (1.11)

The vertical multiplication of two 2-morphisms b1, b2 is given by concatenation,
that is

b1 ◦ b2 := b1b2, (1.12)

and the vertical multiplication of some bigons a1, a2 is given by

(a2 ·h a1) := a1 ⊗B a2, (1.13)

such that for any x ∈ X , y ∈ Y,

(a1 ⊗B a2)(x⊗B y) := a1(x)⊗B a2(y). (1.14)

Proof. Let φ(A)XB , ψ(B)YC , θ(C)ZD be C∗-correspondences, de�ne the range and
source maps by s(φ(A)XB) := A, r(φ(A)XB) := B. Then our multiplication yields

s(Y ◦ X ) = s(X ⊗B Y) = A = s(X )

r(Y ◦ X ) = r(X ⊗B Y) = C = r(Y)
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Further, by Remark 1.31, for any C∗-algebra A the C∗-correspondence IdA(A)AA
ful�lls the conditions of a unit arrow, hence we de�ne 1A := IdA(A)AA and the

isomorphisms in Remark 1.31 to be the bigons lA and rA. Moreover, r(2) := Ran,
and s(2) := Dom. To show that (X ⊗B Y) ⊗C Z ∼= X ⊗B (Y ⊗C Z), we use
the natural isomorphism (X �B Y)�C Z

∼−→ X �B (Y �C Z) and show that it
respects inner products and module actions.
Since 〈〈·, ·〉〉D is an inner product, and hence bilinear. It is su�cient to proof
the invariance for some basis vectors xi ⊗ (yi ⊗ zi) ∈ X ⊗B (Y ⊗C Z), i = 1, 2.
Hence

〈〈x1 ⊗ (y1 ⊗ z1), x2 ⊗ (y2 ⊗ z2)〉〉D = 〈〈y1 ⊗ z1, ψ(〈x1, x2〉B)(y2 ⊗ z2)〉〉D
= 〈z1, θ(〈y1, ψ(〈x1, x2〉B)〉C)z2〉D
= 〈z1, θ(〈〈x1 ⊗ y1, x2 ⊗ y2〉〉C)〉D
= 〈〈(x1 ⊗ y1)⊗ z1, (x2 ⊗ y2)⊗ z2〉〉D

Further, we get

a · ((x⊗ y)⊗ z) = (a · (x⊗ y))⊗ z = ((φ(a)x)⊗ y)⊗ z
∼= (φ(a)x)⊗ (y ⊗ z) = a · (x⊗ (y ⊗ z))

and an analogous computation for the right action. Thus our isomorphism
respects the inner product and module actions, and is therefore an isomorphism
of C∗-correspondences, ergo an associator.
The computations to check the diagrams (1.4) and (1.5) of De�nition 1.38 are
easy, but lengthy, and will therefore be omitted.
Last thing to check is the interchange law. Let ai, bi ∈ Corr(2)(2), such that
s(2)(bi) = r(2)(ai) for i = 1, 2 and a2 ·h a1 and b1 ·h b2 are de�ned. Then

((b1 ·h b2) ◦ (a1 ·h a2)) = ((b2 ⊗ b1) ◦ (a2 ⊗ a1))

= (b2 ⊗ b1)(a2 ⊗ a1)

= b2a2 ⊗ b1a1

= b1a1 ·h b2a2

= (b1 ◦ a1) ·h (b2 ◦ a2).
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Chapter 2

Weak Group Actions in

Corr(2)

We are starting with a short wrap-up of some basic properties of locally compact
groups, with a focus on separation properties. It follows a more substantial
discussion of general bundle theory, concentrating especially on Banach and
Banach ∗-algebraic bundles and leading to the de�nition of a Fell bundle. In the
following I will present a result by Buss, Meyer and Zhu, originally stated in [2],
which says that weak group actions of discrete groups in Corr(2) correspond
one-to-one to saturated Fell bundles.
Finally, we will introduce C0(X)-Algebras, and prove that they are equivalent
to upper semi-continuous C∗-bundles. Using this result, it is easy to derive an
equivalence of upper semi-continuous bundles of A-A-imprimitivity bimodules
and a C0(X,A) − C0(X,A)-imprimitivity bimodules. We use this to �nd a
notion of continuity for group actions in Corr(2) and show, that this yields
an equivalence between continuous group actions in Corr(2) and continuous
saturated Fell bundles.

2.1 Topological preliminaries

The following lemma is a slight generalization of [23, Proposition 5.3.4.].

Lemma 2.1. Let X, Y be locally compact spaces, B be a Banach space. Let
f ∈ C0(X,C0(Y,B)) and de�ne g(x, y) := f(x)(y), then g ∈ C0(X × Y,B).

Proof. We have to prove that g is continuous at an arbitrary point (x, y) ∈
X×Y . Given ε > 0, there exists a neighborhood U of x, such that the condition
x′ ∈ U implies

‖f(x)− f(x′)‖C0(Y,B)) = sup
y′∈Y

‖g(x, y′)− g(x′, y′)‖B <
ε

2
.

There also exists a neighborhood V of y, such that y′ ∈ V implies ‖f(x)(y) −
f(x)(y′)‖B < ε

2 . Consequently, if (x′, y′) ∈ U × V , then

‖g(x′, y′)− g(x, y)‖B ≤ ‖g(x′, y′)− g(x, y′)‖B + ‖g(x, y′)− g(x, y)‖B < ε.

Hence g is continuous, which proves the assumption.
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Lemma 2.2. [24, Lemma 1.25] Let X be a locally compact Hausdor� space,
then X is completely regular. That is, for every point x in X, and every closed
subset Y ⊂ X such that x 6∈ Y , there is a continuous function f : X → [0, 1],
such that f(x) = 1 and f(Y ) = 0.

De�nition 2.3. A topological group is a group G together with a Hausdor�
topology T , such that (g, h) 7→ gh−1 is continuous on G×G to G.

Remark 2.4. Some authors do not require the topology T to be Hausdor�. But
since we need Hausdor� for many of our results, and since it is common practice
to de�ne topological groups to be Hausdor�, we adopt this convention here.

Lemma 2.5. [24, Lemma 6.2] Let G be a topological group, H be a subgroup
of G. Then

(i) the quotient map π : G→ G/H is open.

(ii) If H is normal, then G/H is a topological group

Lemma 2.6. [13, Theorem 8.4] Let G be a topological group, if G is T0, then
G is completely regular

De�nition 2.7. [25] A locally compact group is a topological group G, in which
every point has a compact neighbourhood.

Remark 2.8. Since any locally compact group is also a locally compact Hausdor�
space, by Lemma 2.2 any locally compact group is completely regular.

Proposition 2.9. [24, Proposition 6.6, Theorem 6.7] Let G be a locally compact
group, H be a closed normal subgroup of G. Then G/H is a locally compact
group

2.2 Banach- and Banach algebraic Bundle The-

ory

De�nition 2.10. [11] Let X be a topological Hausdor� space. A bundle over
X is a pair (B, π), where B is a topological Hausdor� space and π : B → X is
a continuous, open surjection. We denote the pair (B, π) by B and call X the
base space, B the bundle space, and π the bundle projection. For every x in X,
π−1 (x) is called �ber over x and will be denoted by Bx.

De�nition 2.11. [11] Let B = (B, π) be a bundle, a map f : X → A which
satis�es f(x) ∈ Ax for all x ∈ X (i.e., f ∈

∏
x∈X Ax) is called a cross-section.

By Γ(B) ⊂
∏
x∈X Ax we denote the the set of continuous cross-sections, and by

Γ0(B) ⊂ Γ(B) be the subset of continuous cross-sections vanishing at in�nity.
Moreover, if for all b in B, there exists a cross-section γ, such that γ(π(b)) = b,
we say that B has enough continuous cross-sections.

Remark 2.12. In his early work (e.g. [10]), Fell used the term cross-sectional
function for non-continuous cross-section, and the term cross-section exclusively
in the continuous case. Moreover, in many papers cross-sections are simply
referred to as sections, and non-continuous cross-sections in this context are
often de�ned as selections (e.g. [4]).
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De�nition 2.13. [11] A Banach bundle B over a Hausdor� topological space
X is a bundle (B, π) together with a binary operation +, a norm, and a scalar
multiplication such that every �ber Bx is a Banach space and the following
conditions hold:

(i) B 3 b 7→ ‖b‖ ∈ R+ is continuous,

(ii) the operation
+: B ×X B → B

is continuous,

(iii) for every λ ∈ C, b ∈ B, the map b 7→ λb is continuous,

(iv) if x ∈ X, {bi} net in B, such that ‖bi‖ → 0 and π(bi) → x ∈ X, then
bi → 0x ∈ B, where 0x denotes the zero of the �ber bx.

Remark 2.14. [25] If we weaken condition (i) to

(i′) B 3 b 7→ ‖b‖ ∈ R+ is upper semi-continuous,

we call B an upper semi-continuous Banach bundle. Moreover, any bundle that
has a Banach bundle structure admits an upper semi-continuous version.

Remark 2.15. Let B be a Banach bundle, then Γ0(B) is a complex, linear
space under pointwise addition, which is closed under multiplication by C0(x)
(cf. [11, II.13.14]). Moreover, if we equip Γ0(B) with the supremumsnorm, it is
even a Banach space, called the C0 cross-sectional Banach space.

Example 2.16. [11] Let A be a Banach space, X a Hausdor� topological space,
put B = A × X and π(a, x) = x and equip each �ber Bx = π−1(x) with the
Banach space structure derived from A via the bijection a 7→ (a, x). Then
B = (B, π) is a Banach bundle, called the trivial Banach bundle with constant
�ber A. Note that in this case, Γ0(B) = C0(X,A).

Proposition 2.17. [11, Proposition II.13.15] Let B be a Banach bundle,
suppose that for each b in B, ε > 0, there exists an γ ∈ Γ(B), such that
‖γ(π(b))− b‖ < ε. Then B has enough continuous cross-sections.

Proposition 2.18. [10] Let B = (b, π) be a Banach bundle over X, suppose
that (bi)i∈I is a net in B, such that π(bi) → π(b) in X. Suppose that for each
ε > 0, we can �nd a net (ai)i∈I , indexed by the same I, and an element a in B,
such that

(i) ai → a in B

(ii) π(ai) = π(bi) for all i

(iii) ‖b− a‖ < ε

(iv) ‖bi − ai‖ < ε for all large enough i

then bi → b in B

17



Proof. Since we could replace (bi)i∈I by any subnet of itself, it is enough to
show that some subnet of (bi)i∈I converges to b.
Since π is open, we can pass to a subnet, and �nd for each i an element ci of B,
such that π(ci) = π(bi) and ci → b. Now, given ε > 0, choose (ai)i∈I and a as
in the hypothesis. Since ci → b, we have by 2.13 (ii) ci − ai → b− a, hence by
2.13 (i) ‖ci−ai‖ → ‖b−a‖ < ε, so ‖ci−ai‖ < ε for large i. Combining this with
assumption (iv), we get ‖ci − bi‖ < 2ε for large enough i. By the arbitrariness
of ε, this shows that ‖ci − bi‖ → 0, hence by 2.13 (iv) ci − bi → 0π(b). Since
ci → b, it follows from this and 2.13 (ii) that bi → b

Proposition 2.19. [10] Let A be an untopologized set, X a Hausdor� topo-
logical space, and π : A → X a surjection, such that for each x in X, the set
Ax = π−1(x) is a Banach space (with Banach space structure ·, +, ‖ · ‖). Let Γ
be a complex vector space of cross-sections for (A, π), such that

(i) for each ξ in Γ, the function x 7→ ‖ξ(x)‖ is continuous on X, and

(ii) for each x in X, {ξ(x) : ξ ∈ Γ} is dense in Ax.

Then there is a unique topology for A, making (A, π) a Banach bundle such that
all elements of Γ are continuous cross-sections for (A, π).

Proof. To prove the existence, let S be the family of all subsets of A of the form

W (f, u, ε) = {s ∈ A : π(s) ∈ U, ‖s− f(π(s))‖ < ε},

where f ∈ Γ, U is an open subset of X and ε > 0.
The computations to show, that the given topology indeed has the required
properties, are easy, but lengthy and will therefore be omitted.
For the uniqueness: given such a topology on A and a net (ai)i∈I of elements
in A. By Proposition 2.18, ai → a i�

(i) π(ai)→ π(a) in X,

(ii) for each ξ in Γ, ‖ai − ξ(π(ai))‖ → ‖π(a)− ξ(π(a))‖

thus the required topology of A, if it exists, is unique.

Remark 2.20. Proposition 2.18 and 2.19 still hold if we work with upper semi-
continuous Banach bundles. The proves are generally identical and may be
found in [25, Theorem C.20, Theorem C.25]. Even though they are stated for
C∗-bundles (which we will de�ne later), they use none of the exclusive C∗-
properties and can be copied for Banach bundles without any changes.

De�nition 2.21. [12] A Banach algebraic bundle over a topological group
G is a Banach bundle B = (B, π) over G, together with a binary operation ·
satisfying

(i) π(b · c) = π(b)π(c)

(ii) for each pair g, h ∈ G the product · is bilinear on Bg ×Bh to Bgh

(iii) the product · on B is associative

(iv) ‖b · c‖ ≤ ‖b‖‖c‖
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(v) the map · is continuous on B ×B to B

B is called saturated, if Bg ·Bh is dense in Bgh for all g, h in G.

Remark 2.22. Condition (i) is equivalent to

(i′) Bg ·Bh ⊂ Bgh
Remark 2.23. Note that, contrary to the Banach space case, condition (iv) does
not imply condition (v).

Lemma 2.24. [12] Let Γ be a family of continuous cross-sections of B such
that {Γ(g) : γ ∈ Γ} is dense in Bg for every g in G. Then condition (v) is
equivalent to

(v′) for each pair of elements β, γ in Γ, the map (g, h) 7→ β(g)γ(h) is contin-
uous on G×G to B.

Proof. Evidently, (v)⇒(v′).
For the converse, assume (i) � (iv) and (v′), and let bi → b and ci → c in B. We
have to show, that bici → bc. To do this, let ε > 0 and let β, γ in Γ, such that

‖β(π(b))− b‖ < ε(4‖c‖)−1

‖γ(π(c))− c‖ < ε(4‖β(π(b))‖)−1
(2.1)

by (v′)

β(π(bi))γ(π(ci))→ β(π(b))γ(π(c)). (2.2)

by (i) and 2.17 there is a continuous cross-section α of B, such that

α(π(bc)) = β(π(b))γ(π(c))

from this and (2.2) we obtain

‖β(π(bi))γ(π(ci)− α(π(bici))‖ → 0

now (2.1) implies that, for large i,

‖β(π(bi))− bi‖ < ε(4‖ci‖)−1

‖γ(π(ci))− ci‖ < ε(4‖β(π(bi))‖)−1

so, for large enough i:

‖bici − α(π(bici)) ≤ ‖bici − β(π(bi))γ(π(ci))‖
+ ‖β(π(bi))γ(π(ci))− α(π(bici))‖
≤ ‖bi − β(π(bi))‖‖ci‖

+ ‖β(π(bi))‖‖ci − γ(π(ci))‖
+ ‖β(π(bi))γ(π(ci))− α(π(bici))‖

≤ 1

4
ε+

1

4
ε+

1

2
ε = ε

(2.3)

by a similar equation
‖bc− α(π(bc))‖ < ε. (2.4)

Hence, by (2.3) and (2.4), the continuity of α and the arbitrariness of ε, it
follows from Proposition 2.18, that bici → bc.
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Let B = (B,G) be a Banach algebraic bundle. Consider a map λ : B → B
and an element g ∈ G. λ is of left order g, if λ(Bh) ⊂ Bgh (analogously, one
de�nes µ of right order g).
λ is called quasi linear, if λ is linear on Bh for all h in g.
λ is called bounded, if there is some non-negative constant k in R, such that
‖λ(b)‖ ≤ k‖b‖ for all b in B. The smallest k with that property is called ‖λ‖.

De�nition 2.25. A multiplier of B of order g is a pair (λ, µ), where λ and µ
are continuous bounded quasi linear maps in B of left, respectively right order
g, ful�lling the identities

(i) bλ(c) = µ(b)c

(ii) λ(bc) = λ(b)c

(iii) µ(bc) = bµ(c).

We call λ and µ left- and right action of m := (λ, µ).
We denote by M(B)g the collection of all multipliers of B of order g. Then
M(B) :=

⋃
g∈GM(B)g is nearly a Banach bundle over G with a norm de�ned

by ‖(λ, ν)‖0 = max{‖λ‖, ‖µ‖} (it only lacks a suitable topology). We refer
to M(B) as the multiplier bundle of B, and de�ne the (not necessarily open)

bundle projection π0 by π0−1
(g) := M(B)g. Moreover we de�ne M1(B) :=

{m ∈M(B) : ‖m‖ ≤ 1} and call it the unit ball ofM(B).

Remark 2.26. For any multiplier m = (λ, µ) ∈ M(B) and any b ∈ B we will
write m · b for λ(b), and b ·m for µ(b) respectively.

De�nition 2.27. [12] A Banach *-algebraic bundle over a topological group
G is a Banach algebraic bundle B = (B, π) over G, together with a unary
operation ∗ on B, satisfying

(i) π(b∗) = (π(b))−1 for b ∈ B

(ii) for each g ∈ G, ∗ is conjugate linear on Bg to Bg−1

(iii) (bc)∗ = c∗b∗

(iv) b∗∗ = b

(v) ‖b∗‖ = ‖b‖

(vi) b 7→ b∗ is continuous on B

Remark 2.28. Condition (i) is equivalent to the condition

(i′) (Bg)
∗ ⊂ Bg−1

Remark 2.29. [12] Let Γ be as in Lemma 2.24. Then condition (vi) of the
previous de�nition can be replaced by

(vi′) for each γ in Γ, the function g 7→ (γ(g))∗ is continuous on G to B.
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Example 2.30. [12] Let G be a topological group, de�ne π : C ⊗ G → G via
π : (x, g) 7→ g, then B = (C ⊗ G, π) with multiplication and involution de�ned
via

(x, g) · (x′, g′) = (xx′, gg′)

(x, g)∗ = (x̄, g−1)

is a Banach ∗-algebraic bundle, called the group bundle of G.

Example 2.31. [12] Fix a topological groupG with neutral element eG, a Banach
∗-algebra A and a homomorphism τ from G into the isometric ∗-automorphisms
of A.
Assume that τ is strongly continuous. That is, the map g 7→ τg(a) is continuous
on G→ A for all a in A.
By Lemma 2.1, (a, x) 7→ τx(a) is continuous.
Let (B, π) be the trivial Banach bundle over G, whose constant �ber is the
Banach space underlying A. That is B = A×G, π(a, x) = x. De�ne

(a, x) · (b, y) = (aτx(b), xy)

(a, x)∗ = (τx−1(a∗), x−1)

then B = (B, π) is a Banach ∗-algebraic bundle over G, called the τ -semidirect
product of A and G.

De�nition 2.32. [12] A Fell bundle (called C∗-algebraic bundle by Fell himself
in [12]) over a topological group G is a Banach ∗-algebraic bundle A = (A, π)
over G, such that

(i) ||b∗b|| = ||b||2 ∀b ∈ B

(ii) b∗b ≥ 0 in AeG , ∀b ∈ B, where eG denotes the neutral element of G.

Remark 2.33. Note that for any Fell bundle A = (a, π), the Fiber AeG is a
C∗-algebra. This follows directly from condition (i) and (ii) of De�nition 2.32
condition (i)�(vi) of De�nition 2.27, condition (i)�(v) of De�nition 2.21, and
condition (ii)�(iv) of De�nition 2.13.

Example 2.34. [12] Let G be a topological group, A be a C∗-algebra, then the
τ -semidirect product of A and G is a Fell bundle.

Lemma 2.35. [2] Every upper semi-continuous Fell bundle is a continuous
Fell bundle.

Proof. The continuity of the norm follows simply from the observation, that we
can write it as a composition of continuous maps

a 7→ (a, a∗) 7→ aa∗ 7→ ‖aa∗‖ 1
2 = ‖a‖

where the last map is the norm of the C∗-algebra AeG , which is obviously
continuous.

Remark 2.36. LetB be a Fell bundle,m be a multiplier ofB de�ne a conjugation
onM(B) by
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(i) m∗ · a = (a∗ ·m)∗

(ii) a ·m∗ = (m · a∗)∗.

This turns M(A) merely into a Fell bundle. We will refer to M(A) as the
multiplier Fell bundle of A.

2.3 An Equivalence to Fell Bundles

Remark 2.37. [9] Let G be a discrete group, then all continuity assumptions
for Fell bundles can be dropped and we get the following simpli�ed de�nition
by Exel: a Fell bundle over G is a collection B = (Bg)g∈G of closed subspaces of
a C∗-algebra B, indexed by elements of G, satisfying B∗g = Bg−1 , BgBh ⊂ Bgh

Let G be a discrete group with neutral element eG, as in De�nition 1.42 we
can treat G as a category G. To de�ne a weak group action of G in Corr(2) on
a C∗-algebra A, consider the functor \ : G→ Corr(2), de�ned by

\ : G(0) → Corr(2)(0) \ : G(1) → Corr(2)(1)

? 7→ A g 7→ αg

for any g, h in G. This yields some C∗-correspondences αg, αh and a C∗-
correspondence isomorphism ω(g, h), such that

\(gf)
ω(g,h)⇐==== \(g) ◦ \(f) = αf ⊗ αg

ω(g,f)
====⇒ αgf ,

as well as a bigon u : 1A ⇒ αeG . Further

\(g) ◦ \(g−1) = αg−1 ⊗ αg
ω(g,g−1)
=====⇒ αgg−1 = αeG

u−1

==⇒ 1A (2.5)

that is, any C∗-correspondence αg is invertible, and so by Theorem 1.33 an
A−A-imprimitivity bimodule. This proves the following lemma

Lemma 2.38. A weak group action in Corr(2) of a discrete group G on a C∗-
algebra A is given by

(i) A−A-imprimitivity modules αg for all g ∈ G

(ii) invertible bigons ω(g, h) : αh⊗A αg ⇒ αgh for any pair of elements g, h in
G.

(iii) an invertible bigon u : AAA = 1A ⇒ αeG ,

such that α and ω satisfy (1.9) and (1.10).

Theorem 2.39. [2] A group action by C∗-correspondences of a discrete group
G on a C∗-algebra A is equivalent to a saturated Fell bundle A over G, together
with a C∗-algebra isomorphism ϕ : AeG

∼−→ A.

Proof. Let A be a saturated Fell bundle over a discrete group G, ϕ : AeG → A
an isomorphism of C∗-algebras. The multiplication · : Ag × Ah → Agh turns
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any �ber Ag into an AeG − AeG -bimodule. Moreover, by de�ning some inner
products

〈a, b〉AeG := a∗b

AeG
〈a, b〉 := ab∗,

these become Hilbert AeG−AeG-bimodules, and since A is saturated, even AeG−
AeG -imprimitivity bimodules. Using the isomorphism ϕ, we can view any �ber
Ag as an A−A-imprimitivity bimodule, hence an invertible C∗-correspondence
from A to A. These will be our arrows αg by de�ning αg := Ag−1 for all g in G.
The bigon u : 1A ⇒ αeG is implemented by the C∗-algebra isomorphism

ϕ−1 : 1A = A→ AeG = αeG ,

which is an isomorphism of C∗-correspondences as well. De�ne a multiplica-
tionmap mult : Ag × Ah → Ag · Ah ⊂ Agh. The associativity in the Fell bundle
yields

mult(a1 · ag · a2, ah · a3) = a1 ·m(ag, a2 · ah) · a3

for all a1, a2, a3 ∈ A, ag ∈ Ag, ah ∈ Ah. Hence mult induces an A−A-bimodule
isomorphism Ag ⊗A Ah → Agh, which is isometric with respect to the inner
products, and even unitary since A is saturated. We let

ω(g, h) : αh ⊗A αg = Ah−1 ⊗A Ag−1 → Ah−1g−1 = αgh

be this isomorphism. It is easy to see, that the diagrams (1.9) and (1.10) com-
mute, hence (A,α, ω, u) de�nes a weak group action in Corr(2).

For the converse, consider a group action (G,α, ω, u) of a discrete group
G on a C∗-algebra A in Corr(2). That is, αg : A → A are invertible C∗-
correspondences (hence A−A-imprimitivity bimodules), and u : 1A ⇒ αeG and
ω(g, h) : αh ⊗A αg ⇒ αgh are unitary bimodule homomorphisms.
To construct a Fell bundle, de�ne the �bers by Ag := αg−1 and use ϕ = u−1 to
identify A ∼= AeG = αeG as an imprimitivity bimodule and, in particular, as a
Banach space.
To de�ne a multiplication on our Fell bundle, consider the unitary intertwiner
ω(h, g) and de�ne

mult(g, h) : Ag ×Ah → Agh

(Ag, Ah) 7→ ω(h, g)(Ag ⊗A Ah)

mult(g, h) inherits bilinearity from ω(g, h) and is associative by diagramm (1.10)
of De�nition 1.42.
In particular, mult(eG, eG) =: mult provides a multiplication on AeG , which
turns AeG into an algebra. Considering diagram (1.9) of De�nition 1.42, we get
mult(a, b) = u−1(a)b for all a, b ∈ AeG . Applying u−1 to this equation, consid-
ering that it is an A − A-bimodule homomorphism, we get u−1(mult(a, b)) =
u−1(a)u−1(b). Hence ϕ = u−1 : AeG = αeG → A is an algebra homomorphism
for our multiplication on AeG .
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Therefore A := (Ag)g∈G as constructed above is a Banach algebraic bundle. To
construct an involution on A, consider the map

vg := u−1 ◦ ω(g−1, g) : αg ⊗A αg−1

ω(g−1,g)
=====⇒ αg−1g = αeG

u−1

==⇒ A

and recall the construction of v̂ in Proposition 1.20 to see, that this yields an
A−A-imprimitivity bimodule isomorphism v̂g : Ag → A∗g−1 via

v̂g : Ag
∼−→ A⊗A Ag

ϕ−1
A ⊗idAg−−−−−−→ (A∗g−1 ⊗A Ag−1)⊗A Ag

∼−→ A∗g−1 ⊗A (Ag−1 ⊗A Ag)
IdA∗

g−1
⊗Avg

−−−−−−−−→ A∗g−1 ⊗A A
∼−→ A∗g−1 .

Since A∗g−1 equals Ag−1 as a set, we may view v̂g as a map from Ag to Ag−1 .

This de�nes an involution on A by a∗ := v̂g(a). Notice that the map A→ A∗ is
conjugate linear by construction.
To check that (a∗)∗ = a, use Lemma 1.21 and apply X = αg, Y = αg−1 , v = vg
and w = vg−1 . The coherence laws for a weak group actions imply that the
following diagram commutes:

αg ⊗A αg−1 ⊗A αg
ω(g−1,g)⊗AIdαg+3

Idαg ⊗Aω(g,g−1)

��

αg−1g ⊗A αg

u−1⊗AIdαg

~�
ω(g,g−1g)

��
αg ⊗A αgg−1

ω(gg−1,g) +3

Idαg ⊗Au
−1

08 αg

Where vg equals going clockwise, and vg−1 equals going counterclockwise. Hence,
condition (1.3) of Lemma 1.21 is ful�lled, and therefore v̂g and v̂g−1 are inverse
to each other. This yields (a∗)∗ = a for all a in Ag = αg−1 . Furthermore, let
ag ∈ Ag, ag−1 ∈ Ag−1 such that ag = v̂g−1(ag−1). Then by Remark 1.22:

‖ag‖2 = ‖〈ag, ag〉‖ = ‖〈v̂g−1(ag−1), ag〉‖
= ‖w(ag−1 ⊗ ag)‖ = ‖ag−1 ⊗ ag‖ = ‖ag−1 · ag‖.

Hence, ‖a‖2 = ‖〈a, a〉‖ = ‖a∗·a‖. The only thing left to show that our involution
anticommutes with our multiplication to see that AeG is indeed a C∗-algebra.
Consider g, h in G and observe that the isomorphism

αg−1 ⊗A αh−1 ⊗A αgh
ω(h−1,g−1)⊗AIdαgh
=============⇒ α(gh)−1 ⊗A αgh

ω(gh,(gh)−1)
========⇒ α1

u−1

==⇒ A

induces the isomorphism Ag ⊗ Ah → A(gh)−1 , that is ag ⊗ ah 7→ (agah)∗. On
the other hand, we have the isomorphism

αg−1 ⊗A αh−1 ⊗A αgh
Idα

g−1
⊗A Idα

h−1
⊗Aω(g,h)−1

====================⇒ αg−1 ⊗A αh−1 ⊗ αh ⊗a αg
Idα

g−1
⊗Aω(h,h−1)⊗AIdαg

==================⇒ αg−1 ⊗A α1 ⊗A αg
Idα

g−1
⊗Au⊗AIdαg

=============⇒ αg−1 ⊗A αg
ω(g,g−1)
=====⇒ αeG

u
=⇒ A
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which induces the isomorphism Ag⊗AAh → Ah−1g−1 by ag⊗A ah 7→ a∗ha
∗
g. Due

to the coherence laws for weak group actions both isomorphisms agree, hence
(agah)∗ = a∗ha

∗
g. Thus Aeg is indeed a C∗-algebra, which turns (Ag)g∈G into a

Fell bundle. Moreover (Ag)g∈G is saturated, because u and ω are unitary.

2.4 Continuity of Weak Group Actions

De�nition 2.40. [18] Let X be a locally compact Hausdor� space, {Bx}x∈X
a family of C∗-algebras. An upper semi-continuous C∗-bundle B over X is
a triple (X, {Bx}x∈X ,Γ0(B)), where Γ0(B) ⊂

∏
x∈X Bx is a family of cross-

sections, such that the following conditions are satis�ed:

(i) Γ0(B) is a C∗-algebra under pointwise operations and supremum norm

(ii) for each x ∈ X, Bx = {γ(x) : γ ∈ Γ0(B)},

(iii) for each γ ∈ Γ0(B) and each ε > 0, {x : ‖γ(x)‖ ≥ ε} is compact,

(iv) Γ0(B) is closed under multiplication by C0(X), that is, for each g ∈ C0(X)
and f ∈ Γ0(B), the section gf de�ned by gf(x) := g(x)f(x), is in Γ0(B).

A continuous C∗-bundle B over x is an upper semi-continuous C∗-bundle, such
that for each γ ∈ Γ0(B), (x 7→ ‖γ(x)‖) ∈ C0(X).

Remark 2.41. Note that condition (iii) is equivalent to the set of conditions

(i′) the map x 7→ ‖γ(x)‖ is upper-semicontinuous

(ii′) Γ0(B) ⊂ C0(X,B)

Remark 2.42. There are several ways to de�ne a C∗-bundle. In [11], Fell de�nes
a C∗-bundleB (called C∗-algebra bundle by himself) as a Banach bundle, where
each �ber Bx is a C

∗-algebra. As pointed out by Nilsen in [18], this is equivalent
to De�nition 2.40. The necessary steps for the proof can be found in [11] and [12].
In [15], Kirchberg de�nes a C∗-bundle as a triple A = (X,πx : A → Ax, A),
where A is a C∗-algebra, and for each x ∈ X, Ax is a C∗-algebra and πx is a
surjective ∗-homomorphism, such that

(i) ‖a‖ = supx∈X ‖ax‖, where ax = πx(a) for each x

(ii) for f ∈ C0(X), a ∈ A, there is an element fa ∈ A, such that (fa)x =
f(x)ax for each x ∈ X.

It is easy to see that by identifying A with Γ0(B) and πx with evx, this de�nition
is equivalent to De�nition 2.40 by Nilsen.
We will always use the most comfortable view of an upper semi-continuous
bundle.

De�nition 2.43. [25] Let A be a C∗-algebra and X be a locally compact
Hausdor� space. Then A is called C0(X)-algebra if there is a ∗-homomorphism
ΦA from C0(X) into the center ZM(A) of the multiplier algebraM(A), which
is nondegenerate in the sense, that

ΦA(C0(x)) ·A := span{ΦA(f)a : f ∈ C0(X), a ∈ A}

is dense in A.
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Lemma 2.44. [18, Corollary 2.2] Let A be a C0(X)-algebra. De�ne the ideals
Ix := {f ∈ C0(X) : f(x) = 0} and Jx := IxA. Then, for any a in A,

(i) supx∈X ‖a+ Jx‖ = ‖a‖

(ii) for any ε > 0, {x : ‖a+ Jx‖ ≥ ε} is compact,

(iii) x 7→ ‖a+ Jx‖ is upper semi-continuous.

Theorem 2.45. [18] Let A be a C0(X)-algebra. Ix := {f ∈ C0(X) : f(x) = 0}
and Jx := IxA as in the previous lemma. Then there exists a unique upper
semi-continuous C∗-bundle B over X, such that

(i) the �bers Bx = A/Jx

(ii) there is an isomorphism φ : A→ Γ0(B), satisfying φ(a)(x) = a+ Jx.

Proof. Let B =
⊔
x∈X A/Jx, and let

S = {f : X → B : f(x) ∈ A/Jx and x 7→ ‖f(x)‖ is bounded}

S is a C∗-algebra under pointwise operations and supremum norm. De�ne
φ : A→ S by the formula given in (ii), and let Γ0(B) := Imφ.
We have to show, that the triple (X, (A/Jx)x∈X ,Γ0(B)) is an upper semi-
continuous bundle, hence ful�lls condition (i)�(iv) of De�nition 2.40.
Condition (i) is obviously satis�ed, since φ is a C∗-homomorphism. Condition
(ii) follows from the equality

{γ(x) : γ ∈ Γ0(B)} = {a+ Jx : a ∈ A} = A/Jx.

To check condition (iii), recall that ΦA is a non-degenerate injection, so by
Lemma 2.44, for x ∈ X and ε > 0, {x : ‖a+ Jx‖ ≥ ε} is compact.
To prove condition (iv), suppose φ(a) ∈ Γ0(B), and g ∈ C0(x). Further, let
(eλ)λ∈Λ be an approximate identity in C0(X). Then, for a �xed x, (g− g(x)eλ)
converges strictly in M(C0(X)). Hence (ΦA(g − g(x)eλ)a) converges in norm,
and the limit is in Jx, because each ΦA(g − g(x)eλ) is in Ix. That is, (ΦA(g −
g(x)eλ)a) converges to zero in A/Jx. Hence

φ(ΦA(g)a)(x) = ΦA(g)a+ Jx = g(x)a+ Jx

= g(x)(a+ Jx) = g(x)(φ(a)(x)) = (gφ)(a)(x).

Thus (X, (A/Jx)x∈X ,Γ0(B)) is an upper semi-continuous C∗-bundle.
Finally, φ is an isomorphism since it is surjective by de�nition, and by

‖φ(a)‖ = supx∈X ‖φ(a)(x)‖ = supx∈X ‖a+ Jx‖ = ‖a‖

it is also injective.

Example 2.46 ( [25], [22]). Let D be a C∗-algebra, then A := C0(X,D) is a
C0(X)-algebra in a natural way:

ΦA(f)(a)(x) := f(x)a(x)

where f ∈ C0(X), a ∈ A.
Moreover, the associated C∗-bundle is isomorphic to the trivial bundle (D ×
X,π).
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Proof. Since A ∼= C0(X)⊗D, we can de�ne a map

ΦA : C0(X)→ C0(X)⊗D
f 7→ f ⊗ 1M(D).

Since C0(X) is commutative, Im ΦA ⊆ ZM(C0(X)⊗D), and obviously Im(ΦA)·
C0(X,D) is dense in C0(X,D). Hence, A is a C0(X)-algebra.
Further, for some x ∈ X, the evaluation evx : C0(X,D) → D, f 7→ f(x) is a
surjective ∗-homomorphism. So there exists an isomorphism φx, such that

A
evx //

A(x)

��

D

Ax

φx

>>

commutes. Hence there is an isomorphism of C∗-bundles ((φx)x∈X , Id : X → X)
between (

⊔
x∈X Ax, ρ : Ax 3 a 7→ x) and (D ×X,π : (d, x) 7→ x).

De�nition 2.47. Let X be a locally compact Hausdor� space, A be a C∗-
algebra. A Hilbert A-module bundle is a Banach bundle E = (E, π), where any
�ber Ex is a Hilbert A-module, such that

(i) Re : a 7→ e · a, is continuous on A to E for all e ∈ E

(ii) the map

〈·, ·〉 : E ×X E → A

(e, f) 7→〈e, f〉Eπ(e)

is continuous for all (e, f) ∈ E ×X E.

De�nition 2.48. Let A be a commutative C∗-algebra, an A-moduleM is called
central, if it is an A−A bimodule, satisfying a ·m = m ·a for all m ∈M , a ∈ A.

Remark 2.49. Let A be a C0(X)-algebra, then for any f ∈ C0(X), a ∈ A we get

(ΦA(f)a)∗ = a∗ΦA(f)∗

and since A is an essential ideal inM(A),

ΦA(f)a = aΦA(f).

hence, A is a non-degenerate central C0(X)-module with an action de�ned by
f · a := ΦA(f)a.

De�nition 2.50. Let A, B be C0(X)-algebras, a C∗-correspondence X from A
to B is called C0(X)-linear, if X is central as a C0(X)-module.

Theorem 2.51. Let X be a locally compact Hausdor� space, E be a Hilbert
C0(X,A)-module. Then there exists a unique upper semi-continuous Hilbert
A-module bundle E, such that

(i) the �bers Ex = E/Jx, where Jx = EIx with Ix := {f ∈ C0(X,A) : f(x) =
0}.
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(ii) there is an Hilbert C0(X,A)-module isomorphism ϕ : E → Γ0(E) satisfying
ϕ(e)(x) = e+ E/EIx with e ∈ E, x ∈ X.

Proof. Analoguosly to Theorem 2.45 de�ne E :=
⊔
x∈X E/EIx, S := {f : X →

E : f(x) ∈ E/EIx}, ϕ as in condition (ii) and Γ0(E) := Imϕ, and show that this
yields an upper semi-continuous Hilbert A-module bundle.
Since Ix is a closed ideal in C0(X,A), Jx is closed in E , hence (Ex)x∈X is a family
of Banach spaces. Moreover, any Ex is a C0(X,A)/C0(X,A)Ix module. By
Example 2.46, C0(X,A)/C0(X,A)Ix ∼= A, with the projection ρx : C0(X,A)→
C0(X,A)/C0(X,A)Ix de�ned via ρx(f) := f(x). Further, observe that

〈e+EIx, h+EIx〉 = 〈e, h〉+〈e, EIx〉+〈EIx, h〉+〈EIx, EIx〉 = 〈e, h〉+C0(X,A)Ix,

Where the last equality comes from the fact, that 〈E , E〉Ix is dense in C0(X,A)Ix
(cf. [16, page 5]). Thus the original inner product on E restricts to an inner prod-
uct into C0(X,A)/C0(X,A)Ix ∼= A, making any �ber Ex a Hilbert A-module.
Obviously, Γ0(E) is a complex linear space under pointwise operations. Fur-
thermore, let πx : E → E/Jx be the canonical projection, then Γ0(E) is a right
C0(X,A)-module, since

φ(e·f)(x) = πx(e·f) = πx(e)·ρx(f) = πx(e)·f(x) = φ(e)(x)·f(x) = (φ(e)·f)(x)

for all e ∈ E , f ∈ C0(X,A).
Moreover, de�ne a C0(X,A) valued inner product on Γ0(E) by 〈φ(e), φ(h)〉 :=
x 7→ 〈e, h〉+AIx. Observe that

‖φ(e)‖2 = ‖〈φ(e), φ(e)〉‖∞ = sup
x∈X
‖〈e, e〉+AIx‖ = ‖〈e, e〉‖ = ‖e‖2.

Thus φ is an isometry, hence a Hilbert C0(X,A)-module isomorphism.
Moreover, the equality

Γ0(E) := {γ(x) : γ ∈ Γ0(E)} = {φ(e)(x) : e ∈ E}
= {e+ EIx : e ∈ E} = E/EIx (2.6)

shows, that Γ0(E) = Ex.
Note that

x 7→ ‖γ(x)‖ = ‖〈γ(x), γ(x)〉Ex‖ = ‖〈φ(e)(x), φ(e)(x)〉Ex‖ = ‖〈e, e〉+AIx‖

Hence, x 7→ ‖γ(x)‖ equals x 7→ ‖〈e, e〉 + AIx‖ for some �xed e in E, so
{x : ‖γ(x)‖ ≥ ε} is compact for all ε > 0 by Lemma 2.44.
Now since (Ex)x∈X is a family of Hibert A-modules, and in particular Banach
spaces, and Γ0(E) is a set of sections, by equation 2.6, we can use Proposi-
tion 2.19 to �nd a topology on E, which gives us a Banach bundle E with bundle
space E and a space of continuous sections Γ0(E). Note that by the compact-
ness of {x : ‖γ(x)‖ ≥ ε}, all elements of Γ0(E) vanish at in�nity. Moreover,
since φ(e) is continuous in X (because ϕ(e) ∈ Γ0(E)) and E (since φ(·)(x) is a
quotient map), the maps Re and 〈·, ·〉 are continuous, since they are expressed
in terms of φ and the original right action and inner product of E .

Theorem 2.52. Let B be an upper semi-continuous Hilbert A-module bun-
dle over some locally compact Hausdor� space X. Then there is an Hilbert
C0(X,A)-module E, such that B is equal to the bundle E as constructed in
Theorem 2.51.
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Proof. Let B = (B, π) be a Hilbert A-module bundle. Then Γ0(B) is a Hilbert
C0(X,A)-module via the canonical C∗-algebra action

(γ · f)(x) := γ(x) · f(x)

where γ ∈ Γ0(B), f ∈ C0(X,A), and x ∈ X and the inner product given by

〈·, ·〉 : (γ, η) 7→ (x 7→ 〈γ(x), η(x)〉Bx)

Now let Ix ⊂ C0(X,A) be the closed, two-sided ideal of functions vanishing at
x, and Jx = Γ0(B)Ix. Let further evx be the evaluation map from Γ0(B) to

Bx. evx is a projection, hence the induced map evx : Γ0(B)/ ker evx
∼=−→ Bx is

an isomorphism. We claim, that ker evx = Jx, which proves the assumption.
The inclusion Jx ⊂ ker(evx) is clear, for the converse, assume γ ∈ ker(evx).
Let ε > 0 be given, then there exists a compact subset K ⊂ X, such that
supx∈X\K ‖γ(x)‖ < ε. Let (eλ)λ∈Λ be an approximate identity in A, then there
exists a λ0 ∈ Λ, such that ‖γ(x)− γ(x)eλ0

‖ < ε for all x ∈ K (cf. [16, page 5]).
We choose a function f ∈ C0(X,A), such that f(K) = {eλ0

}, f(x) = 0, and
‖f‖ = 1. Then

‖γ − γf‖ = sup
x∈X
‖γ(x)− γ(x)f(x)‖

< sup
x∈X\K

‖γ(x)− γ(x)f(x)‖+ ε

≤ sup
x∈X\K

2‖γ(x)‖+ ε

< 3ε

that is, γ ∈ Jx.

Now we are able to de�ne continuity for weak group actions by C∗-corres-
pondences, following an idea from [2]. Given a topological group G, a weak ac-
tion by C∗-correspondences is a family of C∗-correspondences (αg)g∈G from A
to A. In particular, (αg)g∈G is a family of Hilbert A-modules and, since any αg
is invertible, a family of A−A-imprimitivity bimodules, hence in particular left
Hilbert A-modules. Moreover, using the Rie�el Correspondence (Theorem 1.23)
and taking into account, that obviously Ind-αg Ix = Ix, a natural condition for
continuity is to say, that the action (αg)g∈G is (upper semi-)continuous, if there
is a C0(G,A) − C0(G,A) imprimitivity bimodule α, such that (G, (αg)g∈G, α)
is an (upper semi-)continuous Hilbert A-module bundle, as well as an (upper
semi-)continuous left Hilbert A-module bundle. That is, a bundle of A − A-
imprimitivity bimodules.
Note that, since C0(G,A) is a C0(X)-algebra, α is C0(X)-linear as a C∗-
correspondence.
Moreover, we need to impose some continuity conditions on the intertwiner
ω(g, h). Considering Lemma 2.24 we say that ω(g, h) : αh ⊗A αg → αgh is con-
tinuous, if the map (g, h) 7→ γ(g)η(h) is continuous for all γ, η in α.
Now let µ : G×G→ G be the multiplication map, and π1, π2 : G×G→ G the
coordinate projections, the condition that ω(g, h) is continuous for all g, h in G
can be rephrased into the existence of a unitary intertwiner

ω : π∗2α⊗C0(G,A) π
∗
1α⇒ µ∗α

There are no further continuity assumptions for u. Hence we de�ne:
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De�nition 2.53. [2] A continuous action of G on A by correspondences con-
sists of a C0(G)-linear correpondence α from C0(G,A) to itself, and unitary
intertwiners

ω : π∗2α⊗C0(G,A) π
∗
1α⇒ µ∗α

and u : IdA ⇒ αeG that satisfy analogues of (1.9) and (1.10).

The following theorem can be found in [2], even though the proof is merely
sketched, and considers only one direction.

Theorem 2.54. A continuous group action by C∗-correspondences of a locally
compact group G on a C∗-algebra A is equivalent to a saturated Fell bundle A
over G, together with a C∗-isomorphism ϕ : AeG

∼−→ A.

Proof. Let G be a topological group, A = (A, π) be a saturated Fell bundle over
G. De�ne ((αg)g∈G, (ω(g, h))g,h∈G, u) as in Theorem 2.39. We have to show,
that (αg)g∈G admits a continuous A−A-imprimitivity bimodule bundle. This is
quite easy, since the operation + is continuous on A, it is continuous on (αg)g∈G.
The same holds for the maps λ 7→ λa, λ ∈ C, a ∈ A. Moreover, since · and ∗ are
continuous on A, so are 〈a, b〉A = a∗b, A〈a, b〉 = ab∗ and Re. Since i : g 7→ g−1 is
certainly a continuous, open surjection, so is ρ(a) := i◦π(a), hence ((αg)g∈G, ρ)
is a continuous A−A-imprimitivity bimodule bundle. Finally, the continuity of
· in A yields the continuity of (g, h) 7→ γ(g)η(h) for all γ, η in Γ0((αg)g∈G, ρ),
hence the continuity of ω.

For the converse, assume that (A,α, ω, u) is a continuous weak group action
by C∗-correspondences, let A be the Fell bundle constructed in Theorem 2.39.
A is a Banach bundle by construction, and for the continuity of ·, we use again
Lemma 2.24 and the continuity of ω. Moreover, the involution ∗ is continuous,
if the map g 7→ γ(g)∗ is continuous for all γ ∈ Γ0(A). Since γ(g)∗ = γ(g−1),
and the inversemap is continuous on G, this yields the continuity of ∗
Furthermore, since α is assumed to be continuous, so is A

Remark 2.55. By Lemma 2.35, it su�ces for α to be upper semi-continuous, to
yield a continuous Fell bundle.
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Chapter 3

An Extension to 2-Group

Given a continuous surjection between locally compact spaces, one can de�ne
pull backs of Banach bundles. We will introduce this construction and show that
pull backs of quotient maps yield a special class of Fell bundles. Furthermore we
discuss the notion of a crossed module and show the equivalence between crossed
module and quotient groups. Using the fact, that crossed module generalize
quotients of groups, we use our former results to de�ne Fell bundles over crossed
modules, hence 2-groups.
Given that de�nition, we will prove that it yields an equivalence between weak
actions of discrete 2-groups in Corr(2) and saturated Fell bundles over discrete 2-
groups. Furthermore, we use some theory about continuity of multipliers on Fell
bundles to de�ne continuity of weak 2-group actions in Corr(2), and generalize
our former result.

3.1 Pull-back Fell bundles

Proposition 3.1. [11] Let Y , Z be topological spaces and f : Y → Z be a
surjection. f is open i� for any net (zi)i∈I in Z converging to some f(y), there
exists a subnet (z′j)j∈J for some directed set J and a net (yj)j∈J , such that

(i) f(yj) = z′j for all j in J , and

(ii) yj → y in Y .

Proof. Assume that f is open. Let I be the directed set domain of (zi). De�ne
a directed set (J,>) by

J :={(i, U) : i ∈ I, U ⊂ Y : U is a neighborhood of y}
(i, U) > (i′, U ′)⇔ i > i′ and U ⊂ U ′

Now for a J = (i, U) in J , let ij be an element of I such that ij > i and
zij ∈ f(U); such an ij exists, since f is open. Thus for each j = (i, U) in J we
can choose an element yj in U for which f(yj) = zij . The yj and z

′
j := zij then

satisfy properties (i) and (ii).
For the converse: [25] assume that f is a surjection. Suppose that U is open
in Y , such that f(U) is not open in Z. Then there is a net (zi)i∈I such that
zi → f(y) ∈ f(U) with zi 6∈ f(U) for all i ∈ I.
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By assumption, there is a subnet (z′j)j∈J and a net (yj)j∈J converging to y such
that f(yj) = z′j
But yj is eventually in U , hence z′j is eventually in f(U), but z′j = zNj for some
N : J → I. So this is nonsense, and thus f is open.

De�nition 3.2. [12] Let G, H be topological groups, φ : H → G be a continu-
ous surjective homomorphism, andB = (B, π : B → G) be a Banach ∗-algebraic
bundle over G.
Use the pullback D := Bπ ×φ H and the projection ρ(b, h) := h to de�ne
φ∗B := (D, ρ : D → H) and equip the �bers Dh with the Banach space struc-
ture under which the bijection ι : b 7→ (b, h) of Bφ(h) onto Dh is a linear isometry.
Further de�ne a multiplication and a convolution on φ∗B via

(b, h) · (b′, h′) := (bb′, hh′)

(b, h)∗ := (b∗, h−1)

We call φ∗B the Banach ∗-algebraic bundle retraction of B by φ.

Proposition 3.3. φ∗B is a Banach ∗-algebraic bundle

Proof. At �rst, we check that ρ is an continuous open surjection. It's obvious,
that ρ is indeed continuous and surjective. To check, that ρ is open, take a point
(b, h) in D and a net (hi) converging to h in H. Thus φ(hi) → φ(h) = π(b); so
by Proposition 3.1 and the openness of π we can replace (hi) by a subnet (hj)
and �nd a net (bj) in B such that π(bj) = φ(hj) for all j and bj → b. Hence
(bj , hj) ∈ D and (bj , hj) → (b, h). Since ρ(bj , hj) = hj , another application of
3.1 shows that ρ is open. Hence φ∗B is a bundle, and even a Banach bundle,
since it inherits the Banach bundle structure directly from B. To proof, that
φ∗B is a Banach algebraic bundle, we have to check the conditions (i)�(v) of
De�nition 2.21.
Condition (i) is obviously ful�lled. And since λ(b, h) = (λb, h) for λ ∈ C,
(b, h) ∈ D, so is (ii).
The associativity of the multiplication follows from the associativity of the mul-
tiplications in H and B. Hence we get (iii).
Since ι is an isometry, we get

‖(b, h)(b′, h′)‖ = ‖bb′‖ ≤ ‖b‖‖b′‖ = ‖(b, h)‖‖(b′, h′)‖

and thus (iv).
The continuity of · follows directly from the continuity of multiplication in G
and B, hence we have (v).
Finally we have to show, that φ∗B is a ∗-algebraic bundle, hence to check (i) �
(vi) of De�nition 2.27.
First of all,

ρ((b, h)∗) = ρ((b∗, h−1)) = h−1 = ρ((b, h))−1.

Thus we got (i). Secondly,

(λb, h)∗ = ((λb)∗, h−1) = (λb∗, h−1) = λ(b∗, h−1) = λ(b, h)∗
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which proves condition (ii). Further

((b, h)(b′, h′))∗ = (bb′, hh′)∗ = (b′∗b∗, h′−1h−1)

= (b′∗, h′−1)(b∗, h−1) = (b′, h′)∗(b, h)∗

and

(b, h)∗∗ = (b∗, h−1)∗ = (b, h)

Hence (iii) and (iv) are ful�lled. At last,

‖(b, h)∗‖ = ‖b∗‖ = ‖b‖ = ‖(b, h)‖

and ∗ is continuous on D, since ∗ is continuous on B and the inversemap is
continuous on H. Thus, φ∗B is indeed a Banach ∗-algebraic bundle.

Lemma 3.4. Let G be a topological group, N a normal subgroup of G and
q : G→ G/N be the quotient map. Let further B = (B, π) be a Fell bundle over
G/N .
Then the Banach ∗-algebraic retraction q∗B is a Fell bundle over G.

Proof. We have to check the conditions (i) and (ii) of De�nititon 2.32. Since B
is a Fell bundle, these follow directly from the isometric property of ι.

Theorem 3.5. [7] Let G be a discrete group, N a normal subgroup. A Fell
bundle A over G is isomorphic to a pull-back bundle q∗B for some Fell bundle
B over G/N i� there is a homomorphism u : N → UM(A) such that

(i) un ∈M(A)n for all n ∈ N

(ii) asun = usns−1as for all as ∈ As, n ∈ N

Proof. Let B be a Fell bundle over G/N , q∗B = (D, ρ) be its pull-back bundle.
De�ne un := (1M(BeG/N ), n). Then for (b, h), (b′, h′) ∈ D we get

un · (b, h) = (b, nh) and (b, h) · un = (b, hn)

and therefore

((b, h) · un) ◦ (b′, h′) = (bb′, hnh′) = (b, h) ◦ (un · (b′, h′)).

Hence un ∈M(D)n. Further

(b, h) · un = (b, hn) = (b, hnh−1h) = uhnh−1(b, h).

Thus un ful�lls condition (i) and (ii) and un is indeed unitary, because unu
∗
n =

(1M(BeG/N )N , n)(1M(BeG/N )N , n
−1) = (1M(BeG/N )N , eG).

For the converse, assume that we have a Fell bundle A = (A, π : A→ G), and a
map u satisfying (i) and (ii). Let N act on A by a · n := a · un and write [a] for
the N -orbit of a ∈ A. For g ∈ G de�ne

BgN := {[a] : a ∈ Agn for some n ∈ N}
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For each g ∈ G, the orbit map a 7→ [a] takes Ag bijectively onto BgN , and the
resulting Banach space structure on BgN depends only on the coset gN . More
precisely, for a, b ∈ Ag, λ ∈ C and n ∈ N we have

[a+ b] = [aun + bun]

[λa] = [λaun]

Thus, each �ber BgN has a well de�ned Banach space structure, and we get a
Banach bundle B over G/N . De�ne multiplication and involution by

[a][b] = [ab]

[a]∗ = [a∗]

These operations are well de�ned, since for ag ∈ Ag, ah ∈ Ah and n, k ∈ N

[(agun)(ahuk)] = [agahuh−1nhk] = [agah]

[(agun)∗] = [u∗na
∗
g] = [a∗gug−1n−1g] = [a∗g]

and give a Fell bundle structure on B: for example, if ag ∈ Ag, ah ∈ Ah,
then [agah] ∈ BghN , hence BgNBhN ⊂ BgNhN . To check the norm properties,
observe that

‖[ag]∗[ag]‖ = ‖[a∗g][ag]‖ = ‖a∗gag]‖ = ‖a∗gahg‖ = ‖ag‖2 = ‖[ag]‖2

To �nish the proof, we have to check, that φ : A→ q∗B de�ned by

φ(ag) := ([ag], g) for ag ∈ Ag

is a Fell bundle isomorphism: for example

φ(ag)φ(ah) = (ag, g)(ah, h) = ([ag][ah], gh)

= ([agah], gh) = φ(agah)

3.2 Crossed Modules and their actions in Corr(2)

De�nition 3.6. Let G, H be discrete groups, a crossed module is some quadru-
ple (G,H, ∂, γ), such that γ : G→ Aut(H) is a group homomorphism and ∂ is a
equivariant homomorphism ∂ : H → G, with respect to conjugation in G, such
that

(i) ∂(γg(h)) = g∂(h)g−1

(ii) γ∂(h1)(h2) = h1h2h
−1
1

Where we will refer to (ii) as the Pfei�er identity, and call ∂ the boundary map
of C.

Corollary 3.7. Let C = (G,H, ∂, γ) be a crossed module, then ∂(H) is a normal
subgroup of G

34



Proof. The proof is a direct result of property (i). Since ∂ is a group homomor-
phism, ∂(H) is clearly a subgroup. Further, since g∂(h)g−1 = ∂(γg(h)), we get
g∂(h)g−1 ∈ ∂(H) for all h ∈ H, g ∈ G. Hence ∂(H) is normal in G.

Theorem 3.8. A crossed module C = (G,H, ∂, γ) corresponds to a strict 2-goup
G via

G(1) := G

G(2) := G×H

with horizontal and vertical multiplication de�ned by

(g1, h1) ·h (g2, h2) := (g1g2, h1γg1(h2))

(∂(h)g, h′) ◦ (g, h) := (g, h′h)

where (g, h) denotes the bigon h : g 7→ ∂(h)g

Proof. We have to check the �rst and third identity of condition (iii) of De�ni-
tion 1.34 (anything else should be clear).
For the �rst identity, let (g1, h1), (g2, h2) ∈ G(2), g1, g2 ∈ G(1), then

((g1, h1) ·h (g2, h2))(g1 ◦ g2) = (g1g2, h1γg1(h2))(g1g2)

= ∂(h1γg1(h2))g1g2

= ∂(h1)g1∂(h2)g−1
1 g1g2

= ∂(h1)g1∂(h2)g2

= (g1, h1)(g1) ◦ (g2, h2)(g2).

Let (g1, h1), (g2, h2), (∂(h1)g1, h
′
1), (∂(h2)g2, h

′
2) be in G(2). Then

((∂(h1)g1, h
′
1) ·h (∂(h2)g2, h

′
2)) ◦ ((g1, h1) ·h (g2, h2))

=(∂(h1)g1∂(h2)g2, h
′
1γ∂(h1)g1(h′2)) ◦ (g1g2, h1γg1(h2))

=(g1g2, h
′
1γ∂(h1)g1(h′2)h1γg1(h2))

=(g1g2, h
′
1h1γg1(h′2)h−1

1 h1γg1(h2))

=(g1g2, h
′
1h1γg1(h′2)γg1(h2))

=(g1g1, h
′
1h1γg1(h′2h2))

=(g1, h
′
1h1) ·h (g2, h

′
2h2)

=((∂(h1)g1, h
′
1) ◦ (g1, h1)) ·h ((∂(h2)g2, h

′
2) ◦ (g2, h2)).

Conversely, let G be a 2-group, denote by H ⊂ G(2) the set of bigons ema-
nating from the unit element in G(1), and let G := G(1). Note that H is a group
under horizontal multiplication. De�ne

∂ : H → G γg : G→ H

h 7→ r(2)(h) h 7→ ghg−1.

Then
∂(γg(h)) = r(2)(ghg−1) = gr(2)(h)g−1 = g∂(h)g−1

35



and
γ∂(h1)(h2) = r(2)(h1)h2r

(2)(h1)−1 = h1h2h
−1
1

Hence, C = (G,H, ∂, γ) is a crossed module

By Corollary 3.7, for any crossed module C = (G,H, ∂, γ), ∂(H) is a normal
subgroup of G, further by the previous theorem any crossed module may be
seen as a 2-group. Since (g, h) : g 7→ ∂(h)g, we get the equality G/∂(H) =
G(1)/G(2). Hence a crossed module may be seen as a pull-back of the quotient
group G/∂(H). To de�ne a Fell bundle over a crossed module, and hence a
2-group we may want our Fell bundle to be isomorphic to the pull-back bundle
q∗B of some Fell bundle B over G/∂(H), where q denotes the quotient map
q : G→ G/∂(H). Using Theorem 3.5 this leads to the following de�nition:

De�nition 3.9. Let C = (G,H, ∂, γ) be a crossed module over some discrete
groups G, H. A Fell Bundle over C is an ordinary Fell bundle A = {Ag}g∈G
over G together with a group homomorphism u : H → UM(A) such that

(i) uh ∈ UM(A)∂(h) for all h ∈ H

(ii) a · uh = uγg(h) · a for all a ∈ Ag, h ∈ H.

such that s(2)(bi) = r(2)(ai) for i = 1, 2 and a2 ·h a1 and b1 ·h b2 are de�ned
Let C = (G,H, ∂, γ) be a crossed module over some discrete groups G, H. By
Theorem 3.8, C can be seen as a 2-group G. Then the action of C in Corr(2) on
a C∗-algebra A can be described by a functor \ : G→ Corr(2) via

\ : G(0) → Corr(0) \ : G(1) → Corr(1) \ : G(2) → Corr(2)

? 7→ A g 7→ αg (g, h) 7→ ν(g,h)

For the de�nition of the αg, one can apply the same results as in Lemma 2.38.
To describe the ν(g,h), use the properties of \ again:

ν(g,h) ·h ν(g′,h′) = \((g, h)) ·h \((g′, h′)) = \((g, h) ·h (g′, h′))

= \(gg′, hγg(h
′)) = ν(gg′,hγg(h′))

Further:
ν(g,h)(αg) = \((g, h)(g)) = \(∂(h)g) = α∂(h)g

and

ν(g,h) ◦ ν(∂(h)g,h′) = \((g, h) ◦ (∂(h)g, h′)) = \((g, h′h)) = ν(g,h′h)

Moreover,

ν(∂(h)g,h−1) ◦ ν(g,h) = ν(g,1) : αg → αg

ν(g1,γg−1
1

(h−1)) ·h ν(g2,h) = ν(g1g2,eG) : αg1g2 → αg1g2

This proves the following lemma:

Lemma 3.10. A weak action of a crossed module C = (G,H, ∂, γ) over some
discrete groups G, H is given by

(i) A−A-imprimitivity modules αg for all g ∈ G

36



(ii) invertible bigons ω(g, h) : αh⊗Aαg ⇒ αgh for any pair of elements g, h ∈ G

(iii) an invertible bigon u : AAA = 1A ⇒ αeG

(iv) invertible bigons ν(g,h) : αg ⇒ α∂(h)g for all (g, h) in G×H

such that α and ω satisfy (1.9) and (1.10). And ν satis�es

ν(g,h) ·h ν(g′,h′) = ν(gg′,hγg(h′))

and
ν(g,h) ◦ ν(∂(h)g,h′) = ν(g,h′h)

for any g, g′ in G, h, h′ in H.

Corollary 3.11. Let (α, ν, ω, u) be a weak action of a crossed module C =
(G,H, ∂, γ). De�ne vh := ν(1,h) and v

∗
h := vh−1 , then

(i) vh ∈ UM(A)

(ii) every ν(g,h) can be expressed in terms of vh and ω

(iii) α∂(h)(a) = vhav
∗
h

(iv) αg(vh)α1
∼= vγg(h)α1

Proof. Since vh is an unitary equivalence of imprimitivity bimodules, we have
vh ∈ L(α1) = L(AAA) = M(A). And since vh is unitary by de�nition, vh ∈
UM(A), hence (i). Moreover, ν(g,h) = ω(∂(h), g) ◦ (Id⊗Advh) ◦ ω∗(1, g), which
proves (ii).
Further, since vhα1 = α∂(h), and vh intertwines the actions on αg, we get
α∂(h)(a) = vhαeG(a)v∗h = vhav

∗
h.

Finally, we have

αg(vh)α1 = αguhαg−1α1
∼= αgvhα1αg−1

∼= αgα∂(h)αg−1
∼= αg∂(h)g−1 = vγg(h)α1.

Example 3.12. Let (τ, v) be a strict group action of C = (G,H, ∂, γ) on a C∗-
algebra A. That is, τ is an ordinary group action τ : G → *-Aut and v is a
group homomorphism v : H → UM(A) satisfying

(i) τ∂(h)(a) = vhav
∗
h

(ii) τg(vh) = vγg(h)

Now consider the τ -semidirect product bundle A = A×τ G and de�ne uh by

uh · (a, g) := (av∗h, ∂(h)g)

(a, g) · uh := (av∗γg(h), g∂(h))

Then (A, u) becomes a Fell bundle over C.
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Proof. It is obvious that uh by construction is a map of order ∂(h). It remains
to check, that uh is indeed a unitary multiplier. This can be done by simple
calculations:

(a1, g1)((a2, g2) · uh) = (a1, g1)
(
a2vγg2 (h), g2∂(h)

)
=

(
a1τg1

(
a2v
∗
γg2 (h)

)
, g1g2∂(h)

)
=

(
a1τg1(a2)v∗γg1g2 (h), g1g2∂(h)

)
= (a1τg1(a2), g1g2) · uh
= ((a1, g1)(a2, g2)) · uh

So uh ∈M(A)∂(h). Further we show that uh is unitary.

uh · u∗h · (a, g) = uh · ((a, g)∗ · uh)∗

= uh ·
((
τg−1(a∗), g−1

)
· uh

)∗
= uh ·

(
τg−1(a∗)v∗γg−1 (h), g

−1∂(h)
)∗

= uh ·
(
τ∂(h)−1g

((
τg−1(a∗)v∗γg−1 (h)

)∗)
, ∂(h)−1g

)
= uh ·

(
τ∂(h)−1g

(
vγg−1 (h)τg−1(a)

)
, ∂(h)−1g

)
= uh ·

(
τ∂(h)−1g

(
vγg−1 (h)τg−1(a)

)
, ∂(h)−1g

)
= uh ·

(
τ∂(h)−1g

(
τg−1(vh)τg−1(a)

)
, ∂(h)−1g

)
= uh ·

(
τ∂(h)−1(vha), ∂(h)−1g

)
=

(
τ∂(h)−1(vha)v∗h, g

)
= ((v∗h (vha) vh) vh∗, g)

= (a, g)

The calculations for u∗h ·uh ·(a, g) are quite similar, and will be therefore omitted
at this place.

De�nition 3.13. We will refer to (A, u) as constructed in 3.12 as the (τ, v)-
semidirect product of A and C.

Theorem 3.14. Let C be a crossed module, an action of C on a C∗-algebra A
in the category Corr(2) is equivalent to a saturated Fell bundle (A, u) together
with an isomorphism of C∗-algebras A1

∼= A

Proof. Let C = (G,H, ∂, γ) act on a C∗-algebra A by (α, ν) we use the construc-
tion from Theorem 2.39 to construct a Fell bundle over the underlying 1-group.
To get a Fell bundle over a 2-group, we need to construct some multipliers
uh ∈ UM(A)∂(h). Therefore, let ν(g,h) : αg → α∂(h)g be the bigons induced by
(g, h) ∈ G×H and de�ne uh := (λh, µh) by

λh := ν(g−1,γg−1 (h−1)) : Ag = αg−1 → αg−1∂(h)−1 = A∂(h)g

µh := ν(g−1,h−1) : Ag = αg−1 → α∂(h)−1g−1 = Ag∂(h)
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It is obvious, that λh, µh are indeed of left- respectively right order ∂(h). Fur-
ther, to show that aλh(b) = µh(a)b for a ∈ Ag1 , b ∈ Ag2 , calculate

aλh(b)

=ω(g−1
2 ∂(h)−1, g−1

1 )(a⊗ ν(g−1
2 ,γ

g
−1
2

(h−1))(b))

=ω(g−1
2 ∂(h)−1, g−1

1 )(ν(∂(h)−1g−1
1 ,h) ◦ ν(g−1

1 ,h−1)(a)⊗ ν(g−1
2 ,γ

g
−1
2

(h−1))(b))

=ν(g−1
2 ,γ

g
−1
2

(h−1)) ·h ν(∂(h)−1g−1
1 ,h)ω(g−1

2 , ∂(h)−1g−1
1 )(ν(g−1

1 ,h−1)(a)⊗ b)

=ν(g−1
1 ∂(h)−1g−1

2 ,γ
g
−1
2

(h−1)g−1
2 (h))ω(g−1

2 , ∂(h)−1g−1
1 )(µh(a)⊗ b)

=ν((g1∂(h))−1g−1
2 ,γ

g
−1
2

(e))(µh(a)b)

=µh(a)b.

Moreover, for a ∈ Ag1 , b ∈ Ag2 :

µ(ab) = ν(g−1
2 g−1

1 ,h−1) ◦ ω(g−1
2 , g−1

1 )(a⊗A b)

= ν(g−1
2 ,h−1) ·h ν(g−1

1 ,eG) ◦ ω(g−1
2 , g−1

1 )(a⊗A b)

= ω(∂(h)−1g−1
2 , g−1

1 )(ν(g−1
1 ,eG)(a)⊗A ν(g−1

2 ,h−1)(b))

= aµ(b).

A similar calculation shows λ(ab) = λ(a)b. In a �nal step,

λγg(h)(a) = ν(g−1,γ−1
g (γg(h)−1))(a)

= ν(g−1,γ−1
g (γg(h−1)))(a) = ν(g−1,h−1)(a) = µh(a)

for all a ∈ Ag, and all g ∈ G. Hence uh ∈ UM(A)∂(h) for all h in H.

Conversely, given a Fell Bundle A over a crossed module C = (G,H, ∂, γ),
construct a group action as in Theorem 2.39. The only thing left is to de�ne
some bigons ν(g,h).
To accomplish this, use the multipliers uh to de�ne ν(g,h) := µh−1 , hence

ν(g,h) : αg = Ag−1

µh−1−−−→ Ag−1∂(h)−1 = α∂(h)g.

We have to check, that this constructions produces the right horizontal and ver-
tical multiplication, as de�ned in Theorem 3.8. For the vertical multiplication,
that is

(ν(∂(h)g,h′) ◦ ν(g,h))(αg)

=(Ag−1 · uh−1) · uh′−1

=Ag−1 · uh−1h′−1

=ν(g,h′h)(αg)
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For the horizontal multiplication consider

ν(g1,h1) ·h ν(g2,h2)(αg1 ◦ αg2) =ν(g1,h2)(αg1) ◦ ν(g2,h2)(αg2)

=Ag−1
2
· uh−1

2
Ag−1

1
· uh−1

1

=Ag−1
2
Ag−1

1
· uγg1 (h−1

2 ) · uh−1
1

=A(g1g2)−1 · u(h1γg1 (h2))−1

=ν(g1g2,h1γg1 (h2)(αg1g2)

Since uh is unitary by de�nition, this yields the right bigons ν(g,h).

3.3 Continuity of weak 2-Group Actions

Let A be a Fell bundle, we equip the multiplier Fell bundle M(A) with the
strong topology. That is, for any net (uλ)λ∈Λ we say

uλ → u⇔ uλ · a→ u · a and a · uλ → a · u in A for all a ∈ A

Lemma 3.15. [10] Let G be a locally compact group, A be a Fell bundle over G,
then the maps (u, a) 7→ ua and (u, a) 7→ au onM1(A)×A to A are continuous.

Proof. At �rst we show, that if γ ∈ Γ0(A), then

(u, g) 7→ u(γ(g)) (3.1)

is continuous onM1(A)×G to A. Let ui → u inM1(A), gi → g in G. We may
assume that gi and g all lie in a compact subset K ⊂ G. Let ε > 0, (eλ)λ∈Λ be
an approximate unit in A. We �x some index λ0 in Λ, such that

‖eλ0γ(k)− γ(k)‖ < ε for all k in K (3.2)

To show that uiγ(gi)→ uγ(g), we use Proposition 2.18. De�ne

ai := (uieλ0
)γ(gi) and a := (ueλ0

)γ(g).

Then ai → a, since uieλ0
→ ueλ0

in A, and multiplication in A is jointly
continuous. Hence our (ai) ful�lls condition (i) of Proposition 2.18. Moreover,
equation (3.2) and the fact, that ‖ui‖0 ≤ 1 and ‖u‖0 ≤ 1 yield condition (iii)
and (iv), and of course (ii) is ful�lled by construction. Hence (3.1) is continuous.
Now suppose that ui → u inM1(A), and ai → a in A. Choose γ ∈ Γ0(A), such
that γ(π(a)) = a. Then uiγ(π(ai))→ ua by the �rst part of the proof, and

‖uiai − uiγ(π(ai))‖ ≤ ‖ai − γ(π(ai))‖ → 0.

Hence uiai → ua, which proofs the assumption. The proof for the map (u, a) 7→
au works the same way.

Corollary 3.16. Let G be a locally compact group, A be a Fell bundle over G,
and M(A) be the multiplier bundle over A equipped with the strong topology.
Then UM(A) is a topological group.
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Proof. Let u ∈ M(A), and (eλ)λ∈Λ be an approximate unit of A. Then for
each a ∈ A, we have (ueλ)a = u(eλa) → ua and a(ueλ) = (au)eλ → au, hence
ueλ → u strongly inM(A). That is, A is strongly dense inM(A). So there is
a continuous extension of the maps in Lemma 3.15 to M1(A) ×M(A), which
restricted to UM(A)× UM(A) yields a continuous multiplication on UM(A).
Moreover, for some net ui → u in UM(A), we have u∗i a = (a∗ui)

∗ → (a∗u)∗ =
u∗a for all a in A. Doing the same calculations for au∗, we see that the involution
on M(A) is strongly continuous, and since u∗ = u−1 for unitaries, so is the
inversion on UM(A). Thus UM(A) is a topological group with respect to the
strong topology.

Corollary 3.17. UM(A) is strongly closed inM1(A).

Proof. Let ui → u in M1(A), such that ui ∈ UM(A) for all i, then by the
continuity of the involution and multiplication onM1(A), we have 1 = uiu

∗
i →

uu∗, and hence u∗ = u−1.

De�nition 3.18. Let G be a locally compact group, A be a Fell bundle over G,
we de�ne the uniform-on-compacta topology on Γ(A) by saying, that a net γi
converges to γ, if and only if for each compact subset K in G, supg∈K ‖γi(g)−
γ(g)‖ → 0

Now let G be a locally compact group, A be a Fell bundle over G, andK ⊂ G
be compact, then we de�ne a semi-norm pK on Γ(B) by

pK(γ) := sup
g∈K
‖γ(g)‖

The collection of all these seminorms generates the uniform-on-compacta topol-
ogy for Γ(B).
Moreover, we want to de�ne an action ofM(B) on Γ(B). Let u ∈M(A)g, and
γ ∈ Γ(A), de�ne:

(uγ)(h) := u(γ(g−1h)

(γu)(h) := (γ(hg−1))u

Clearly uγ and γu are in Γ0(A), and (uv)γ = u(vγ) and γ(uv) = (γu)v for
v ∈M(B). Further it is easy to verify, that

pK(uγ) ≤ ‖u‖0pg−1K(γ)

pK(γu) ≤ ‖u‖0pKg−1(γ)

Proposition 3.19. [10] Let (ui) be a net inM1(A), u an element ofM1(A). It
is a necessary and su�cient for ui → u strongly that the following two conditions
hold:

(i) Let π0(ui)→ π0(u) in G.

(ii) uiγ → uγ and γui → γu uniformly-on-compacta for all γ in Γ0(B).

Proof. Assume that ui → u strongly, that is uia→ ua and aui → au for all a in
A. Since (uia) can be seen as a net in A converging to ua, it is necessary that
π(uia) → π(ua), which proves the necessity of (i). Let γ ∈ Γ0(B), let K ⊂ G
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be compact, and let ε > 0. By Lemma 3.15, the map (v, g) 7→ vγ(π0(v)−1g) is
continuous onM1(A)×G to B. So

(v, g) 7→ ‖vγ(π0(v)−1g)− uγ(π0(u)−1g)‖

is continuous on M1(A) × G and vanishes for v = u. Consequently, by the
compactness of K, there is a strong neighborhood U of u inM1(A), such that
‖vγ(π0(v)−1g) − uγ(π0(u)−1g)‖ ≤ ε for all v in U and g in K. But this says
pK(vγ − uγ) < ε for all v in U . Since K and ε are arbitrary, this implies
uiγ → uγ uniformly on compacta. Similarly γui → γu, so (ii) holds.
Conversely, assume (i) and (ii), and let a be an arbitrary element of A. Choose
γ ∈ Γ0(A), so that γ(π(a)) = a. Let gi := π(uia), g = π(ua). By (i), gi →
g. Since uiγ → uγ uniformly on compacta and gi → g, we have uiγ(gi) →
uγ(g). But (uiγ)(g) = uiγ(π0(ui)

−1gi) = uiγ(π(a)) = uia, and (uγ)(g) =
uγ(π0(u)−1g) = uγ(π(a)) = ua. So uia → ua in A. Similarly aui → au. So
ui → u strongly.

Proposition 3.20. [10] Let g be in G, and (ui) be a net of elements of UM(B),
such that π0(ui) → g. Suppose further that there exist functions M and L on
Γ(A) to Γ(A) such that uiγ → L(γ) and γui → M(γ). Then there exists a
multiplier u in UM(A), such that π0(u) = g and uγ = L(γ) and γu = M(f)
for all γ ∈ Γ0(A).

Proof. Let h ∈ G, η ∈ Γ0(A) and η(h) = 0h, then

‖L(η)(gh)‖ = lim
i
‖(uiη)(π0(ui)h)‖ = lim

i
‖uiη(h)‖ ≤ ‖η(h)‖ = 0.

Hence, L(η)(gh) depends only on η(h). Note further, that L and M are neces-
sarily linear, therefore we can de�ne a quasi-linear map λ : A→ A of left order
g as follows:

λ(η(h)) := L(η)(gh) (3.3)

Note that by the preceding argument,

λ(a) = lim
i
uia (3.4)

for all a in A. In particular
‖λ(a)‖ ≤ ‖a‖ (3.5)

To show that λ is continuous, suppose ai → a = γ(h) in A, where γ ∈ Γ0(A).
Then, if hi = π(ai), we have by (3.5)

‖λ(ai)− λ(γ(hi))‖ ≤ ‖ai − γ(hi)‖ → 0

Also, hi → h, so

λ(γ(hi)) = L(γ(ghi))→ L(f)(gh) = λ(a).

Hence λ is continuous. Similarly, we de�ne a continuous bounded quasi linear
function µ : B → B of right order g, such that

µ(γ(h)) = M(f)(hg) (3.6)

µ(a) = lim
i
aui (3.7)

‖µ(a)‖ ≤ ‖a‖ (3.8)
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Finally, if a, b ∈ A, we have by (3.4) and (3.7)

µ(a)b = lim
i
a(uib) = aλ(b)

Thus, u := (λ, µ) ∈ M(A). By (3.5) and (3.8) u ∈ M1(A). Moreover, by
(3.3) and (3.6) we have uγ = L(γ) and γu = M(γ) for all γ ∈ Γ(A), and by
Corollary 3.17 u is unitary.

De�nition 3.21. Let C = (G,H, ∂, γ) be a crossed module, we say C is a topo-
logical crossed module, if G and H are topological groups, ∂ is a continuous
group homomorphism and γ is strongly continuous.

De�nition 3.22. Let C = (G,H, ∂, γ) be a topological crossed module. A Fell
bundle over C is continuous, if the underlying Fell bundle over G is continuous,
and if the map u : H → UM(A) is a continuous group homomorphism with
respect to the strong topology on UM(A).

Now we are ready to de�ne continuity for a weak action (A,α, ω, u, ν) of a
topological crossed module on a C∗-algebra in Corr(2). Considering the previous
discussion, we say that ν(g,h) is continuous, if the map (h, g) 7→ ν(g,h)(η(∂(h)−1g))
is continuous for all η ∈ α. On the one hand, this expresses the close relation of
ν to multipliers, on the other hand it ensures that ν(π(ai),hi)(ai) → ν(π(a),h)(a)
for hi → h in H, and ai → a in A. Hence we de�ne:

De�nition 3.23. Let (A,α, ω, u, ν) be a weak group action of a topological
crossed module C = (G,H, ∂, γ) in the category Corr(2). We say (A,α, ω, u, ν)
acts continuously on A, if (A,α, ω, u) is a continuous action by G, and if the
map

(h, g) 7→ ν(g,h)(η(∂(h)−1g)) := (ν(g,h)η)(h)

is continuous from H ×G to αg for all η ∈ α.

Theorem 3.24. Let C be a topological crossed module, a continuous action of C
on a C∗-algebra A in the category Corr(2) is equivalent to a continuous saturated
Fell bundle (A, u) together with an isomorphism of C∗-algebras A1

∼= A

Proof. Let (A,α, ω, u, ν) be a weak action of a crossed module C = (G,H, ∂, γ),
apply 3.14 to construct a Fell bundle A over C, moreover use Theorem 2.54 to
show, that the underlying Fell bundle over G is continuous. All we have to check
is the continuity of the map h 7→ uh
Recall that for uh = (λh, µh) we have µh := ν(g−1,h−1). Moreover, for any
section η ∈ Γ0(B), let ηi := η ◦ i be the corresponding cross-section in α, where
i denotes the inversion on G. Now by Theorem 3.20 µhi → µ if there exists
a continuous function M : Γ0(B) → Γ0(B) such that µhi(η) → M(η). Then
µ(η) = M(η). Let hi → h in H, using the continuity of ν(g,h), we have

µhi(η)(g) = µhi(η(g∂(hi)
−1))

= ν(g−1,h−1
i )(η

i(∂(hi)g
−1)

→ ν(g−1,h−1)(η
i(∂(h)g−1)

= µh(η(g∂(h)−1))

= µh(η)(g)
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Thus we have M(η) = µh(η), and therefore

µ(η(g)) = M(η)(g∂(h)) = µh(η(g∂(h)∂(h)−1) = µh(η(g)),

hence µ = µh and therefore µhi → µh. The proof for λh works similarly.

Conversely, let C = (G,H, ∂, γ) be a topological crossed module, A = (A, π)
a saturated continuous Fell bundle over C. De�ne a crossed module action
(A,α, ω, u, ν) as in Theorem 3.14. By Theorem 2.54, α and ω are continuous.
Recall that ν(g,h) = µh−1 . Since h 7→ uh is continuous, and µhi(ai)→ µh(a) by
Lemma 3.15, we have

ν(gi,hi)(γ
i)(gi) = (µh−1

i
γ)(g−1

i )

= µh−1
i

(γ(g−1
i ∂(hi)

−1))

→ µh−1(γ(g−1∂(h)−1))

= ν(g,h)(γ
i(∂(h)−1g))

= ν(g,h)(γ
i)(g)

which proves the assumption.

44



Chapter 4

An Extension to Groupoids

We are aiming on to extend our results in Section 2 to groupoids. Hence, we
are starting with a brief discussion of locally compact, and especially r-discrete
groupoids. Then we de�ne actions of r-discrete groupoids in Corr(2) and Fell
bundles over groupoids and generalize the results of Section 2 to the case of
r-discrete groupoids.

4.1 Properties of r-discrete Groupoids

De�nition 4.1. [21] A topological groupoid consists of a groupoid G and a
topology T compatible with groupoid structure, that is

(i) the inversion x 7→ x−1 is continuous and

(ii) the multiplication (g, h) 7→ gh is continuous with respect to the product
topology on G(1) × G(1).

Remark 4.2. [21] For any topological groupoid, the following statements hold:

(i) s, r are continuous

(ii) the inverse map i is a homeomorphism

(iii) G(0) is closed in G(1) via the embedding ι : x 7→ 1x.

(iv) if G(0) is Hausdor�, G(1)
s×r G(1) is closed in G(1) × G(1)

De�nition 4.3. [21] Let G be a locally compact groupoid. A left Haar system
for G consists of measures {λx, x ∈ G(0)} on G, such that

(i) suppλx = Gx

(ii) (continuity) for any f ∈ Cc(G)}, the map x 7→
∫
fdλx is continuous and

has compact support

(iii) (left invariance) for any x ∈ G(1), f ∈ CC(G) holds
∫
f(xy)dλs(x)(y) =∫

f(y)dλr(x)(y)

De�nition 4.4. [19] A locally compact groupoid is a topological groupoid G
satisfying
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(i) G(0) is locally compact Hausdor� in the relative topology inherited from
G

(ii) there is a countable family A of compact Hausdor� subsets of G, such that
the family {Å : A ∈ A} of interiors of members of A form a basis of the
topology of G

(iii) every Gx is locally compact Hausdor� in the relative topology inherited
from G

(iv) G inherits a left Haar system {λx}

Remark 4.5. [19] De�nition 4.4 yields the following statements:

• by (i), every singleton subset of G(0) is closed in G(0). Thus by continuity
of r and s, each Gx, Gx is closed in G.

• by (iii), every singleton subset of G is closed, and the topology of G has a
countable basis. Further G(0), Gx, and Gx have a countable bases.

Proposition 4.6. [19] Let G be a locally compact groupoid. Then r and s are
open maps from G to G(0).

Proof. Let U be an open subset of G. By De�nition 4.4, U is a union of open
Hausdor� subsets of G, an thus Hausdor� too. Let g ∈ U , f ∈ CC(U) with
f ≥ 0 and f(g) > 0. De�ne f0 on G(0) by f0(x) :=

∫
fdλx. By De�nition 4.3

f0 ∈ CC(G(0)) and f0(r(g)) > 0. Since f0 vanishes outside r(U), the open
subset {x ∈ G(0) : f(x) > 0} = f−1((0,∞)) is contained in r(U). So r(U) is a
union of open subset and therefore open in G(0). Since s(U) = r(U−1), s(U) is
also open in G(0).

De�nition 4.7. [19] Let G be a locally compact groupoid, let Gop be the
family of open Hausdor� subsets U ⊂ G, such that the restrictions r|U , s|U are

homeomorphisms onto open subsets of G(0). G is called r-discrete, if Gop is a
basis for the topology of G.

Remark 4.8. There are several equivalent de�nitions of r-discrete groupoids.
Renault de�nes a locally compact groupoid to be r-discrete, if G(0) is open in
G(1) (cf. [21]). It is easy to see, that this is a direct result of our de�nition, since
G(0) =

⋃
A∈Gop r(A) is open in G by Proposition 4.6. The converse is shown in

by Renault in [21, Proposition 2.8].

Lemma 4.9. [21] Let G be an r-discrete groupoid

(i) For any x ∈ G(0), Gx and Gx are discrete spaces.

(ii) If a Haar system exists, it is essentially the counting measure

Proof. (i) [19]Let g ∈ Gx, then there is an U ⊂ Gop, such that g ∈ U . Since
r is injective on U , the singleton {g} = Gx

⋂
U is open in Gx

(ii) [21] Let {λx} be a left Haar system. Since Gx is discrete and λx has
support Gx, every point in Gx has positive λx-measure. Let f = λ(χG(0)),
where χG(0) is the characteristic function of G(0). It is continuous and
positive. Replacing λx by f(x)−1λx, we may assume that λx({g}) = 1 for
any x. Then by invariance, λy({h}) = 1 for any h ∈ Ghg .
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Considering the previous lemma, we may regard an r-discrete groupoids
as the groupoid analogue to discrete groups. Especially any countable discrete
group G, viewed as a groupoid G with an one elemental object space is r-discrete.

4.2 Weak Groupoid Actions in Corr(2)

Let G be an r-discrete groupoid, A = (A, π : A → G(0)) be a C∗-bundle in the
category Corr(2). We can de�ne an action of G on A as usual as a homomorphism
of 2-categories \ : G → Corr(2), such that

\ : G(0) → Corr(2)(0) \ : G(1) → Corr(2)(1)

x 7→ Ax g 7→ αg

where Ax denotes the �ber over x and αg is an As(g) − Ar(g)-imprimitivity
bimodule.
Further for any (g, f) ∈ G(1)

s(g)×r(f)G(1), there exists an As(f)−Ar(g)-imprimiti-
vity bimodule isomorphism ω(g, f), such that

\(gf)
ω(g,f)⇐==== \(g) ◦ \(f) = αf ⊗ αg

ω(g,f)
====⇒ αgf

and bigons ux : 1Ax ⇒ α1x for all x ∈ G(0), such that for y ∈ G(0), and all g ∈ Gyx
we get

\(1x) = \(gg−1)
ω(g,g−1)⇐===== αg−1 ⊗ αg

ω(g,g−1)
=====⇒ α1x

ux=⇒ 1Ax

Moreover, our ω(g, f) and 1x have to satisfy some coherence laws similar to (1.9)
and (1.10). The only di�erence is that we have to pay some extra attention to
composability. This proves the following lemma:

Lemma 4.10. A weak groupoid action in Corr(2) of an r-discrete groupoid G
on a C∗-algebra A is given by

(i) As(g) −Ar(g)-imprimitivity bimodules αg for all g ∈ G(1),

(ii) invertible bigons ω(g, h) : αh⊗Ar(h)αg ⇒ αgh for all (g,h) in G(1)
s(g)×r(h)

G(1), and

(iii) invertible bigons ux : 1Ax ⇒ α1x ,

such that any ω(g, h), ux ful�lls some analogues to the coherence laws (1.9) and
(1.10), with some extra attention to composability.

De�nition 4.11. [17] Let G be a second countable, locally compact Hausdor�
groupoid. A Fell bundle over G is a second countable Banach bundle B =
(B, π : B → G), such that

(i) For any x ∈ G(0), Bx is a C∗-algebra and for every g ∈ G(1), Bg is an
invertible correspondence from Br(g) to Bs(g).

(ii) For every (g, h) ∈ G(2), where G(2) denotes the set of pairs of composable
morphisms in G(1), exists an unitary equivalence Ugh between Bg⊗Bs(g)Bh
and Bgh which induces an associative, bilinear product

m : B(2) → B

(b1, b2) 7→ U
π(b1)
π(b2) (b1 ⊗ b2)
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Where B(2) := {(b1, b2) ∈ B ×B : (π (b1) , π (b2)) ∈ G(2)}.

(iii) There exists an involution on B, such that

a) π(b∗) = π(b)−1

b) b 7→ b∗ is conjugate linear

c) (m (b1, b2))
∗

= m (b∗2, b
∗
1)

d) for b1, b2 ∈ Bg holds

m (b∗1, b2) = 〈b1, b2〉Bs(g)
m (b1, b

∗
2) = Br(g)〈b1, b2〉

where we tacitly use the isomorphism B1x
∼= Bx

(iv) The mappings m and the involution are continuous

A Fell bundle is called saturated, if Bg is full as a Br(g) Hilbert module as well
as a Bs(g) Hilbert module.

Example 4.12. [17] Let G be a groupoid, A = (A, π : A → G(0)) a C∗-bundle
over G(0). Assume that G acts on A by a homomorphism α : G → Aut(A).
Assume that α is continuous in the sense, that α̃ : s∗A → r∗A is continuous,
where

s∗A := {(a, g) : a ∈ As(g)}
r∗A := {(a, g) : a ∈ Ar(g)}

are the pull-back bundles and where α̃(a, g) = (αg(a), g)
When we set B := s∗A with ρ(a, g) = g, we obtain a Fell bundle over G, where
the product and involution are given by

(a1, g1) · (a2, g2) := (αg−1
2

(a1)a2, g1g2)

(a, g)∗ := (αg(a
∗), g−1)

The obtained Fell bundle B is called the crossed product of A by G and denoted
by B = Aoα G.

Theorem 4.13. Let G be an r-discrete groupoid. A weak groupoid action of
G by correspondences on a C∗-bundle A = (A, π : A → G(0)) is equivalent to a
saturated Fell bundle B = (B, ρ : B → G) over G with isomorphisms ϕx : B1x

∼−→
Ax for all x ∈ G(0).

Proof. Starting with a groupoid action (A, α, ω, u), we have to generalize the
proof of Theorem 2.39 and check condition (i) to (iv) of De�nition 4.11.
First of all, for any g ∈ G(1), we identify Bg ∈ B with αg−1 . Since αg is an

As(g) − Ar(g)-imprimitivity bimodule for all g ∈ G(1), Bg is an Ar(g) − As(g)-
imprimitivity bimodule for all g ∈ G(1). Further, for any x ∈ G(0), identify
Bx ∈ B with Ax and implement the isomorphisms ϕx, using the identity bigons
ux, by ϕx = u−1

x : B1x = α1x → 1Ax = Ax for all x in G(0). That way B covers
all properties from Theorem 4.11, condition (i).
For (ii), the ω(g, f) yield a unitary equivalences Ufg (cf. [16], Theorem 3.5: any
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surjective, A-linear isometry between two Hilbert-modules EA, FA is an unitary
equivalence) by

Bg ⊗Bf = αg−1 ⊗ αf−1

ω(f−1,g−1)
=======⇒ αf−1g−1 = Bgf ,

where the associativity of the multiplication m : (b1, b2) → U
π(b1)
π(b2) is given by

the coherencelaw (1.10).
To check condition a)�d) of (iii), recall the de�nition of v̂g and de�ne again
∗ : x 7→ v̂g(x). Since v̂g : Bg → Bg−1 , the identity a) is obvious. b) follows
directly from the de�nition of the dual and c) has been already shown by proving
Theorem 2.39.
In order to show d), we use Remark 1.22. For b1, b2 ∈ Bg, vg = u−1

r(g) ◦ω(g−1, g)

and wg = vg−1 = u−1
s(g) ◦ ω(g, g−1), we get

m(b∗1, b2) = ω(g, g−1)(b∗1 ⊗ b2) = us(g) ◦ wg(b∗1 ⊗ b2)

= us(g)(〈v̂g−1(b∗1), b2〉s(g)) = ur(g)(〈b1, b2〉s(g)).

The second equation follows from c) and property (iii) of De�nition 1.1.
To check (iv), recall from Lemma 4.9 that for any x ∈ G(0), Gx and Gx are
discrete. Now G(1)

s×r G(1) =
⊔
x∈G(0) Gx × Gx, thus G(1)

s×r G(1) is r-discrete

over G(0), and therefore m is continuous. Moreover, since the inversion i is
a homeomorphism, the continuity of the involution can be shown in terms of
cross-sections as in Theorem 3.24.

Now let B = (B, ρ : B → G) be a groupoid Fell bundle. Since for any
x ∈ G(0), Bx is a C∗-algebra, this yields a C∗-bundle

A = (A := B ∩ π−1(G(0)), π|A : A→ G(0)).

De�ne αg := Bg−1 , this is by de�nition a Bs(g) − Br(g)-imprimitivity bimodule
and hence an As(g) − Ar(g)-imprimitivity bimodule. Let 1x be the identity in
Gxx , this yields a Bx − Bx-imprimitivity bimodule B1x which is isomorphic to

BxBxBx . We can use ϕx to de�ne a unit bigon

ux : 1Ax = Ax
ϕ−1
x−−→ B1x = α1x

For the bigons ω(g, h), let (g, h) ∈ Gs×r G and de�ne

ω(g, h) : αh ⊗ αg = Bh−1 ⊗Bg−1

Uh
−1

g−1

−−−→ Bh−1g−1 = αgh

By de�nition of m and U , this makes ω(g, h) a bilinear, associative, unitary
equivalence, and thus a bigon in Corr(2).
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Chapter 5

An Extension to 2-Groupoids

Analogously to Chapter 3, we start with the construction of a quotient groupoid,
and show that pull backs of Fell bundles by a quotient map yield a special class
of a Fell bundle. Moreover, we de�ne a crossed module of r-discrete groupoids
and show that these yield 2-groupoids. Then we combine our results of all
previous sections to show, that weak actions of r-discrete 2-groupoids in Corr(2)
are equivalent to saturated Fell bundles.

5.1 Quotientgroupoids and their Pull-Back Bun-

dles

De�nition 5.1. [1] Let G be a groupoid, G is called totally disconnected, if
Gyx = ∅ for all x, y in G(0), such that x 6= y.
G is called discrete, if G is totally disconnected, and Gxx = {1x} for all x in G(0)

A subgroupoid H of G is called wide, if H(0) = G(0).

Remark 5.2. Please note, that in some papers a totally disconnected groupoid
is meant to be a topological groupoid with (topologically) totally disconnected
objectspace. This is not the case in this thesis.

De�nition 5.3. [1] Let G, H be groupoids, θ : G → H a groupoidmap. De�ne
ker(θ) to be the wide subgroupoid of G, whose morphism are

ker(θ)(1) := {g ∈ G(1) : θ(g) = 1x for some x ∈ H(0)}.

We call ker(θ) the kernel of G.
Further, for any subgroupoid X of G, we say θ annihilates X , if θ(X ) is a discrete
subgroupoid of H.

De�nition 5.4 ( [14]). Let G be a groupoid. Two elements x, y ∈ G(0) are
called connected, if Gyx 6= ∅. A subgroupoid H is called connected, if all elements
in H(0) are connected. And a subgroupoid H is called component of G, if it is a
maximal connected subgroupoid.

De�nition 5.5 ( [14]). Let G be a groupoid, a subgroupoid H is called normal,
i�

(i) H contains all identity elements of G
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(ii) h ∈ Hxx, g ∈ Gyx implies ghg−1 ∈ Hyy .
Let G be a groupoid, H be a normal subgroupoid of G. The components of

H de�ne a partition on G(0). We write [x] for the equivalence class containing

x ∈ G(0) and G/H(0)
for the set of equivalence classes.

H also de�nes an equivalence relation on G(1) as follows: g ≡ g′(modH) i�
g = h1g

′h2 for some h1, h2 ∈ H(1) (we denote the set of equivalence classes
by G(1)/H. Two equivalent arrows of G must have there sources in the same
component of H, and similarly for their targets. So to each class [g] of arrows

can be assigned a unique source and target in G/H(0)
. We de�ne a multiplication

on G/H(1)
as follows: let [g], [f ] ∈ G/H(1)

, the product [g][f ] is de�ned i� there
exists g1 ∈ [g], f1 ∈ [f ], such that g1f1 is de�ned in G. Then [g][f ] := [g1f1].

Proposition 5.6. [14] This multiplication is associative and well de�ned

Proof. Let g1, f1, [g], [f ] be as above and g2 ∈ [g], f2 ∈ [f ] such that g2f2 is
de�ned in G. Then

g2 = hg1g1hg2 and f2 = hf1f1hf2

, where hg1, hg2, hf1, hf2 ∈ H, and

g2f2 = hg1g1hg2hf1f1hf2

in G. Since g1f1 is de�ned in G, hg2hf1 lies in a isotropygroup of H, so

v = f−1
1 hg2hf1f1

is de�ned and lies in H. Hence

g2f2 = hg1g1f1vhf2 ≡ g1f1(modH).

Now for [g] : [y] 7→ [z], [f ] : [w] 7→ [x] in G/H, the product [g][f ] is de�ned i�
there is an h ∈ H, such that ghf is de�ned in G, that is, i� [x] = [y], and then we
have [g][f ] = [ghf ] : [w] 7→ [z]. Moreover, if ([e][f ])[g] is de�ned, then eh1fh2g
is de�ned for some h1, h2 ∈ H

Hence, G/H is a category whose identities are the components of H. More-
over, we can de�ne a map π : G → G/H, g 7→ [g], x 7→ [x] for all x in G(0), g in
G(1). This map is surjective, hence G/H is a groupoid, since G is a groupoid.

De�nition 5.7. [14] We call G/H the quotient of G overH, and π the associated
quotient map.

Lemma 5.8. Let G be a groupoid, N be a normal, totally disconnected sub-

groupoid of G. Then for all g in G(1) holds [g] = N r(g)
r(g) g.

Proof. By de�nition, g′ ∈ [g] i� g = n1g
′n2 for some n1 ∈ N r(g)

r(g′), n2 ∈ N s(g′)
s(g) .

Since N is totally disconnected, we have r(g′) = r(g) and s(g′) = s(g). Further,

the normality of N implies N r(g)
r(g) g = gN s(g)

s(g) . So for n′2 ∈ N
r(g)
r(g) , we get

g = n1g
′n2

⇔ gn−1
2 = n1g

′

⇔ n′2g = n1g
′

⇔ n−1
1 n′2g = g′

⇔ g′ ∈ N r(g)
r(g) g.
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De�nition 5.9. Let B = (B, π) be a Fell bundle over an r-discrete groupoid G,
and g ∈ G(1). A multiplier of order g is a pair of bimodule morphismsm = (λ, µ)
ful�lling

(i) λ(Bf ) = Bgf for all f ∈ Gs(g) and µ(Bf ) = Bfg for all f ∈ Gr(g).

(ii) b1 ⊗r(g) λ(b2) ∼= µ(b1) ⊗s(g) b2 for all b1 ∈ Bf1 , b2 ∈ Bf2 with f1 ∈ Gr(g)
and f2 ∈ Gs(g).

(iii) λ(b1 ⊗ b2) ∼= λ(b1)⊗ b2 and µ(b1 ⊗ b2) ∼= b1 ⊗ µ(b2).

We denote the set of multipliers of order g byM(B)g and the set of multipliers
on B byM(B).

Remark 5.10. Let B = (B, π) be a Fell bundle, m = (λ, µ) ∈M(B)g, g ∈ G(1).
Note that the further theorem implies

(i) λ(Bs(g)) = Bg and µ(Br(g)) = Bg.

(ii) b1 ·λ(b2) = µ(b1) · b2 with b1 ∈ Br(g), b2 ∈ Bs(g), and · denoting the action
of Bs(g) respectively Br(g) on the imprimitivity bimodule Bg.

(iii) λ(b1b2) = λ(b1) · b2 and µ(b′1b
′
2) = b′1 · µ(b′2) for b1, b2 ∈ Bs(g) and b′1, b′2 ∈

Br(g),

by using the equivalence Bx = B1x for all x in G(0).

Remark 5.11. Let 1x ∈ G. Then M(B)1x
∼= M(Bx), where the latter denotes

the usual multiplier C∗-algebra of Bx. Further for g ∈ Gxx ,M(B1x)g =M(Bg),
where the latter denotes the set of multipliers on the imprimitivity bimodule Ag.
Finally, for G(0) = {?}, let A be the Fell bundle over the group G(1) such that
A ∼= B, then M(B) ∼= M(A), where the latter denotes the multiplier bundle
on A.
Hence our de�nition generalizes any former de�nition of multipliers.

Remark 5.12. As usual, for any multiplier m = (λ, µ), we write m · a to denote
λ(a), and a ·m for µ(a).
Further we de�ne the usual conjugation by m∗ · a := (a∗ · m)∗ and a · m∗ :=
(m · a∗)∗.

Theorem 5.13. Let G be an r-discrete groupoid, N be a normal, totally dis-
connected subgroupoid of G. A Fell bundle A over G is isomorphic to a pull
back bundle q∗B for some Fell bundle B over G/N , i� there is a continuous
homomorphism u : N (1) → UM(A), such that

(i) un ∈M(A)n for all n ∈ N (1)

(ii) agun = ugng−1ag for all ag ∈ Ag, n ∈ N (1)

Proof. Let B be a Fell bundle over G/N , q∗B the corresponding pull-back bun-
dle. Now let n ∈ N x

x . As in Theorem 3.5 we can de�ne un := (1M(B)1x
, n)

to be our unitary multipliers. Since N x
x is a group, we can do the same cal-

culations as before, with some extra attention to composability, to show that
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un ∈ UM(q∗B).

Conversely, by Lemma 5.8, [g] = N x
x g for all g ∈ Gx. Hence the construction

of Theorem 3.5 works generally identical in our new setting.

Proposition 5.14. [1] Let G be a groupoid, N be a normal, totally disconnected
subgroupoid of G and q : G → G/N the quotient map. Then q annihilates N .

5.2 Crossed Modules over Groupoids

De�nition 5.15. [3] A continuous action γ of a topological groupoid G on a
bundle H = (h, π) of topological groups is a map γ : G → Aut(h) such that γg
for g ∈ Gyx is a group isomorphism from Hx to Hy.

De�nition 5.16. [3] A crossed module over a topological groupoid G and a
group bundle H is a quadruple (G,H, ∂, γ), where H = (hx)x∈G(0) is a bundle
of topological groups over the object space G(0), ∂ : H → G is a continuous
homomorphism, and γ : G → Aut(H) is a continuous action, such that

∂(γg(h)) = g∂(h)g−1 ∀(g, h) ∈ Gs×π H (5.1)

γ∂(h)(k) = hkh−1 ∀(h, k) ∈ H ×G(0) H (5.2)

Remark 5.17. Please note, that condition (i) of the former de�nition implies,
that the boundary map ∂ has to act as the identity on the objectspace G(0).
Hence the image ∂(H) is a subgroupoid of G, having the same identities as G.

Theorem 5.18. A crossed module C = (G,H, ∂, γ) yields a strict-2-groupoid GC
via

G(0)
C = G(0)

G(1)
C = G(1)

G(2)
C = G(1)

r×π H

with a horizontal multiplication de�ned by

(g1, h1) ·h (g2, h2) = (g1g2, h1γg1(h2))

where (g1, g2) ∈ G(1)
s×r G(1), h1 ∈ Hr(g1), and h2 ∈ Hr(g2) and a vertical

multiplication de�ned by

(∂(h)g, h′) ◦ (g, h) := (g, h′h)

where g ∈ G(1), h, h′ ∈ Hr(g), and (g, h) denotes the bigon g 7→ ∂(h)g

Proof. The calculations to check the coherence laws are identical to the ones
done in the proof of Theorem 3.8, so we skip those here. What is left to check
is, that the multiplications are actually de�ned.
For the horizontal multiplication, (g1, g2) ∈ G(1)

s×r G(1), hence g1g2 is de-

�ned and an element of Gr(g1)
s(g2) . Further, since h2 ∈ Hr(g2) = Hs(g1), and

γg1 : Hs(g1)
∼−→ Hr(g1), γg1(h2) ∈ Hr(g1). Since h1 ∈ Hr(g1), h1γg1(h2) is de�ned
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and in Hr(g1). Hence (g1g2, h1γg1h2) ∈ Gr×π H = G(1)
C . Thus the horizontal

multiplication is de�ned and closed.
For the vertical multiplication, note that from condition (1) of De�nition 5.16

one can deduce, that for h ∈ Hx, ∂(h) ∈ Gxx . Hence ∂(h)g ∈ Gr(g)s(g) . And since

(∂hg, h′) ∈ Gr×π H, h′ ∈ Hr(g). Thus h′h is de�ned and an element of Hr(g).

Further we get (g, h), (∂(h)g, h′), (g, h′h) ∈ Gr(g)s(g) × Hr(g). So ◦ makes perfect

sense as a vertical multiplication.

Corollary 5.19. By the former Theorem, we can de�ne a weak action of a
crossed module C over a groupoid G and a bundle H on a C∗-bundle A over G(0)

in the Corr(2)-category as a (weak) 2-morphism \ : GC → Corr(2), such that

\ : G(0)
C → Corr(2)(0) \ : G(1)

C → Corr(2)(1) \ : G(2)
C → Corr(2)(2)

x 7→ Ax g 7→ αg (g, h) 7→ ν(g,h).

Where αg are invertible C∗-correspondences from As(g) to Ar(g) and ν(g,h) are
C∗-correspondence isomorphisms, such that ν(g,h) : αg → α∂(h)g, which inherit
the vertical and horizontal multiplication from GC.
Futher, the functor yields some invertible bigons ω(g1, g2) : αg1αg2 = αg2 ⊗s(g2)

αg1 ⇒ αg1g2 and ux : 1Ax = AxAxAx ⇒ α1, which satisfy some analogues to 1.9
and 1.10.

5.3 Weak actions of 2-Groupoids in Corr(2)

Let C = (G,H, ∂, γ) be a crossed module, and assume G to be r-discrete and the
�bers Hx to be discrete groups. Analogously to the group case, condition (i) of
De�nition 5.16 implies that ∂(H) is a normal subgroupoid of G. Condition (i)
of De�nition 5.5 is ful�lled by Remark 5.17. To check condition (ii), let h ∈ Hx

(and hence ∂(h) ∈ ∂(H)xx), g ∈ Gyx . Now since γg : Hx
∼−→ Hy, we get

g∂(h)g−1 = ∂(γg(h)) ∈ ∂(Hy) ⊂ ∂(H)y

Hence, the quotient G/∂(H) is a groupoid.
Since H is a totally disconnected groupoid, so is ∂(H). Hence the quotient
map q : G → G/∂(H) acts as identity on G(0). Further, by Lemma 5.8, the 2-
morphisms of the 2-groupoid description of C are consistent with the equivalence
classes of G/∂(H). Hence, equivalently to the group case, the crossed module C
models the quotient G/∂(H).
Using Theorem 5.13, this leads to the following de�nition of a Fell bundle over
C:

De�nition 5.20. Let C = (G,H, ∂, γ) be a crossed module over an r-discrete
groupoid G and a group bundle H = (H,π : H → G(0)) with discrete �bers.
A Fell bundle over C is an ordinary Fell bundle B over G together with homo-
morphisms u : H → UM(B), such that

(i) uh ∈ UM(B)∂(h) for all h ∈ H

(ii) b · uh ∼= uγg(h) · a for all b ∈ Bg, h ∈ H.
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Theorem 5.21. A weak action by C∗-correspondences of a crossed module C
over some r-discrete groupoid G and a discrete group bundle H on a C∗-algebra
bundle A is equivalent to a Fell bundle B over C, together with an isomorphism
ϕ : B1x → Ax.

Proof. The construction should generalize Theorem 3.14 as well as Theorem
4.13. As a starting point, we use the construction of Theorem 4.13 and proof
the equivalence of the corresponding 2-morphisms and unitary multipliers as in
Theorem 3.14.
Starting with a Fell Bundle B over some crossed module C = (G,H, ∂, γ), we
apply the construction of Theorem 4.13 such that for all g, f ∈ G we get some
arrows αg := Bg−1 and some bigons ω(g, h) : αgαf ⇒ αgf . And for all x ∈ G(0),
we get some bigons ux : 1Ax ⇒ α1.
Analogously to the construction of Theorem 3.14, we de�ne our bigons ν(g,h)

via

ν(g,h) : αg → α∂(h)g

a 7→ a · uh

The same calculations as before lead to the result, that these de�ne indeed some
bigons satisfying the necessary conditions.
Conversely, given a weak action of a crossed module C, applying the construction
of Theorem 4.13 to construct a Fell bundle over the groupoid G and using the
de�nition made in the proof of Theorem 3.14 to get some unitary multipliers
will lead to the right results.
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Chapter 6

Outlook

There are several possibilities on how to continue this work. Most obviously,
one might try to topologize the results of Chapter 4 and 5. Since an (upper
semi-)continuous Hilbert A-module bundle is equivalent to a Hilbert C0(X,A)-
Module, where C0(X,A) is exactly the cross-section algebra over the trivial
bundle A × X. One might assume, that an (upper semi-)continuous Hilbert
Module bundle E, consisting of a family of Hilbert Ax-modules and a C∗ bundle
A, such that any Ex is an Hilbert Ax module is equivalent to a Hilbert module
over the cross-sectional algebra over A. Provided this construction works, one
may de�ne continuity of groupoid actions analogously to continuity of group
actions.
More algebraically, one might try to extend the work to actions of 2-categories
or inverse semi-groups. That is, weaken the invertibility of arrows and bigons
or to generalize the construction of the cross-sectional algebra to Fell bundles
over 2-groups and 2-groupoids and analyze its properties.
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