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Abstract

A 2-category generalizes the concept of a category by adding 2-morphisms be-
tween arrows. The easiest example would be the category of small categories,
with functors between categories as the usual morphisms, and natural equiv-
alences between functors as 2-morphisms. One can weaken the notion of a
2-category to a weak 2-category. That is, the unit and associativity laws for
concatenation of arrows are only required to hold up to 2-morphisms.

An example for a weak 2-category is the correspondence 2-category Corr(2),
which consist of C*-algebras as objects, C*-correspondences as morphisms and
C*-correspondence isomorphisms as 2-morphisms. Since invertible C*-corres-
pondences are imprimitivity bimodules, isomorphisms in €ort(2) becomes Morita
equivalences.

Given an arbitrary weak 2-category, one can define weak actions of groups, 2-
groups, groupoids or 2-groupoids on objects in the given category as 2-functors.
That is, given one of the former mentioned structures, every property of the
action is already encoded in the definition of the 2-functor. An interesting fact
about the correspondence 2-category is, that a group action « of a locally com-
pact group G on a C*-algebra A in Corr(2) is equivalent to a saturated Fell
bundle 2, such that A is isomorphic to the unit fiber A;.

Using the equivalence between crossed modules and 2-groups and the fact, that
crossed modules correspond in some way to quotient groups, one can generalize
this equivalence to 2-groups by defining a Fell bundle over a 2-group in a way,
that it is isomorphic two a pull-back bundle. Again, finding the right notion of
continuity for 2-group actions in €orr(2) yields that this equivalence preserves
continuity.

Moreover, the results on discrete group actions can be easily extended two r-
discrete groupoids. And since there exist quotients and crossed modules over
groupoids, one can generalize the construction for discrete 2-groups to find a no-
tion of Fell bundles over- and weak actions of r-discrete 2-groupoids in Corr(2).
These can be showed to be still equivalent.
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Chapter 1

The €Corr(2) 2-Category

In this chapter, we are going to construct the 2-category €orr(2). We are starting
with a quick introduction of the basic theory of imprimitivity bimodules, mostly
based on the work of Raeburn, Williams and Echterhoff ( [8], [20]). Further-
more, we will define C*-correspondences, and establish the connection between
the latter and imprimitivity bimodules. Finally we will introduce the notion of
a (weak) 2-category, discuss how to define actions of groups and groupoids as
2-functors between categories and use the previous results to define the corre-
spondence 2-category Corr(2).

1.1 Imprimitivity modules

Definition 1.1. Let A be a C*-algebra, a (right) Hilbert A-module €4 is a right
A-module with a scalar multiplication

Aza) = (Az)a = x(Aa) Ve € Ea,a€ A,LNeC
and a map
(,y:EaxEs— A

satisfying the following conditions

(i) (z,ay + Bz) = a(z,y) + Bz, 2)

(i) (z,ya) = (z,y)a

(i) (y,2) = (z, )"

(iv) (x,z) >0 if(x,2)=0=2=0
for all z,y,2 € E4, o, 8 € C and a € A, which is complete with respect to the

scalar valued norm ||z|| = ||(z, )| 2.
A Hilbert module is called full, if (€4,€4) is dense in A.

Example 1.2. Let A be a C*-algebra. Then we can define an Hilbert module
A4, where the right action is implemented by right multiplication, and the inner
product is given by (a,b) 4 := a™.

From the existence of an approximate unit, it follows that A4 is even a full
Hilbert A-module.



Definition 1.3. Let £4 be a Hilbert A-module, z,y € £4. We define a compact
operator on £4 by

Opy:Ea— A
z = a(y, z)

and denote the set of compact operators by

K(E4) :=span{fy, : x,y € Ea}
Remark 1.4. Let A be a C*-algebra, then IC(A4) = A. Again this can be shown
easily by using the approximate unit of A.

Lemma 1.5. [20] Let A be a C*-algebra, E4 be an Hilbert A-module. Then
Ea is a full left Hilbert K(Ea)-module with respect to the natural left action
T-x=T(x) and the inner product i ,\(x,y) := Oz,

Proof. The proof is just some easy calculations and may be found in [20]. O

Definition 1.6. Let A, B be C*-algebras. We call A and B strongly Morita
equivalent if there is a full Hilbert A-module €4, such that B & K(&4).
We will denote the equivalence by A ~,; B.

Definition 1.7. Let A, B be C*-algebras. An A — B-imprimitivity module X
is an A — B-bimodule, which has to bilinear mappings
Al) 4B X AXp — A
(-,)B: 4XB X 4Xp — B
such that 4Xp is a full left Hilbert A-module and a full right Hilbert B-module
satisfying the following conditions
(1) A<£C,y>Z = I<y7 Z>B
(i) (a-z,y)p = (z,a” - y)p and A(z - b,y) = a{z,y - b7)
for all x, y, z € aXp

Remark 1.8. For the sake of convenience, we will omit the indices provided that
it is clear about what kind of module we are talking.

Proposition 1.9. [20] Every full Hilbert B-module is a K(Eg)— B-imprimitivity
bimodule with ic(s,x,y) := Or.y.

Conversely, if AXp is an A — B-imprimitivity bimodule, then there is an iso-
morphism ¢: A — K(aXB) such that ¢(A(x,y)) = kp)T, y)-

Proof. [20] Suppose Ep is a full Hilbert B-module, Lemma 1.5 says that x(¢,€B
is a full left Hilbert K(Ep). The first identity of condition (ii) of Definition 1.7
follows directly from the fact, that K(Eg) acts by adjointable operators. For
the second, let b € B, z,y, z € £, and compute:

ke -b,y)(2) = (€-b) (Y, 2)p =2 - (Y- b7, 2)B = K(ep)2,y - b)(2)

The associativity condition is the definition of x(g,\(x,y) = 0,4, thus we have
proved the first assumption.



Now suppose X is an A— B-imprimitivity bimodule. Since A acts by adjointable
operators, the map ¢: A — L(X), defined by ¢(a)(x) := a - = is a homomor-
phism of C*-algebras, and hence has closed range. The associativity condition
of Definition 1.7 implies that ¢(a(z,y)) = k(x)z,y) for all z,y € X, so #(A)
must be precisely C(X). Suppose ¢(a) = 0 for some a in A. Since (X, X') spans
a dense ideal, we can approximate a by an element of the form a ), a(xi, v:).
But if ¢(a) = 0, then

an~ GZA<$iayi> = ZA(G'l“nyﬁ =0

i
Thus ¢ is an isomorphism. O

Definition 1.10. Let X, Y be A — B-imprimitivity bimodules. An A — B-
imprimitivity bimodule isomorphism is a bimodule isomorphism ¢: X — ) that
preserves inner products. That is (p(z), ¢(y)) = (z,y) for both inner products
and all z, y € X.

Definition 1.11. [8] Let X be an A — B-imprimitivity bimodule. A multiplier
of X is a pair m = (ma,mp), where ma: A — X is A-linear, mp: B — X is
B-linear, and

ma(a)-b=a-mp(b) VYa € A,b € B.
We write M(X) for the set of multipliers of X.

As usual, we define a - m := my(a) and m - b := mp(b). Further, there is
an injective embedding of X into M(X) viaz — (za: a = a-z,z5: b— x-b).
M(X) is an A-B-bimodule, and we refer to it as the multiplier bimodule of X.
In case X = pA4. The multiplier bimodule over X is equal to the multiplier
algebra M(A).

Proposition 1.12. [8] Let X be an A— B-imprimitivity bimodule. Then M(X)
is an A — B bimodule, satisfying the following conditions:

(i) A- M(X)C X and M(X)-BC X

(ii) If M is any other A— B bimodule which contains X and satisfies (i), then
there exists a unique bimodule homomorphism M — M(X) which is the
identity on X.

Moreover, any A — B-bimodule which contains X and satisfies conditions (i)
and (i) is isomorphic (as an A — B bimodule) to M(X).

Proof. Cf. [8, Proposition 1.2] O

Definition 1.13. Let X be an A — B-imprimitivity bimodule. We denote by
L(B, X) the set of all B-linear operators T: B — X which are adjointable, i.e.,
for which there is a B-linear map T*: X — B, such that

(T(b),z)p =b"T*(x) VbeB,zecX

Similarly, we define the set L(A, X



Lemma 1.14. Let m € M(X). Then mp € L(B, X), with m¥;(x) given by the
unique element of B satisfying

ma(az,a)) = 2+ (My(@))" Ve X (L.1)
Similarly, ma € La(A, X), with m*%(x) characterized by

(ma(x))" -z =mp((z,2)p) VzedX (1.2)
Moreover, m¥(a-x) = (ma(a*),z)p and m*(x - b) = s(x,mp(b*)).
Proof. Cf. [8, Lemma 1.3] O

Definition 1.15. [20] Let X be an A — B-imprimitivity bimodule, Y a B — C-
imprimitivity bimodule. Let X ® ) be the algebraic tensor product. Consider
the subspace N :=span{(z - b@y—z®b-y):x € X,y € Y, b € B} and define

Xop)Y:=(X0Y)/N

Define some pre-inner products on X ©p Y by

(z1®@By1, 12 @B Y2)c = ((T2,71)B " Y1,Y2)C
alz1 ®p Y1, 22 @B Y2) = a{z1,x2 - BY2, Y1)

The completion X ®p Y of X ®p Y with respect to the inner pre-products is
called the internal tensor product of X and ).

Remark 1.16. The inner product defined on X ® g Y are not arbitrary. In fact,
they are uniquely determined by the condition that X ® g ) becomes an A — C-
imprimitivity bimodule. For further details, see [20]

Remark 1.17. To check that a linear map ¢: X — ) is an isomorphism, it
suffices to show that it preserves inner products and that its image is dense in
V.

To see this, note that since ¢ preserves inner products, hence it is isometric
and therefore has closed range. Thus from density of the image we can deduce
surjectivity. Also for x, y € H, b € B we have

(p(x),0(y-b))p = (r,y-b)p = (z,y)B b
= (p(2), ¢(y)) - b= (p(x), p(y) - b)

Hence ¢ commutes with the B-action and is therefore a right B-module isomor-
phism. An analogue calculation shows that ¢ is also a left A-module isomor-
phism.

Definition 1.18. [20] Let X be an A — B-imprimitivity bimodule. Let X*
denote the conjugate vector space of X'. Then there is an additive bijection
b: X — X* such that b(\x) = M(z). X* is a B — A-imprimitivity bimodule
with module actions

b-b(x) =b(z-b")
b(z) -a=>b(a"-x)



and inner products
s(0(2),0(y)) = (z,9)8
o). b(y)a = alz,y)
forall y, z € X, a € A, b € B. The module X* is called the dual of X

Proposition 1.19. [20] Let X be an A — B-imprimitivity module, and let X'*
be its dual. Then there is an isomorphism ¢p: p(X*®4 X)p — pBp such that
op(b(z) ®ay) = (z,y)p for all x, y € H and an isomorphism ©a: 4(X ®p
X*)a — aAa such that pa(x @pb(y)) = alz,y)

Proof. The map (b(z),y) — (x,y) is bilinear and A-balanced, hence gives a
linear map pp: X* ®4 X — B satisfying pp(b(z) ®a4 y) = (z,y)5. We prove
that ¢p is an isometry by some easy calculations:

(B Zb ) ®A Vi), vB Zb u;) ®A ;) B
—Z i, Yi) B, (U5, Vj)B) B
—Z Yi, i) B(Uj, V) B
—Z yir @i {uj,05)8) 5
—Z Yir alTi, uj) - vj) B
—Z )A " YisVj)B
Zb T ®Ay2,2b uj) @A V) B

An analogue computation shows that ¢4 also preserves the left inner product.
Since an imprimitivity bimodule is full as a left respectively right Hilbert mod-
ule, the image of ¢4 is dense in B, hence ¢4 is an imprimitivity bimodule
isomorphism. O

Proposition 1.20. The inverse of an imprimitivity bimodule is determined
uniquely up to isomorphisms

Proof. Let X be an A—B-imprimitivity bimodule and ) be a B— A-imprimitivity
bimodule such that there is an isomorphism v: X @ Y — A, then we get an
induced isomorphism

Lpgl®BIdy Idy+ @av
R Y

Y > By (X* @4 X)@pY 2L X @, A S X

O

Corollary 1.21. Let X be an A — B-imprimitivity bimodule, ) be a B — A-
imprimitivity bimodule and let v: X @Y — A and w: Y @4 X = B be
imprimitivity bimodule isomorphisms, and assume that

vRaIdy =ldy Qpuw: X g Y @4 X = X. (1.3)



Then w and ¥ are inverse to each other.

Proof. Assume that ) = X* and that v and w are the canonical isomorphisms
4 respectively pp as defined in Proposition 1.19. Notice, that condition (1.3)
is equivalent to

Idy@Av:w®BIdyiy®AX®By‘>y;

since
w®Id

X@pYR4X @pY— 0B XopV—2 A

\M/

wRw

Then calculate

o5 ®@pldyx
—_

X" @ X @p X"
dxx @ava, X 94 A2 Bog X*

g ®pldyx
—_

woi: X* 2B X*

X" @4 X ®@p X
Idx* ®apa X* @4 A X

That is,
Wod:b-b(z) - ar=>bRpbh(x)-a M b(2zp) ®a yp @p b(2) - a
Ao DA, Y @4 (yn, b(2) - @) a
= B{((2),yp) ®B () - a
05 ®@pldy«
- b(25) ®aYp ®Bb(7) -
FEAPA () @a (y,b(x) - @) 4

— B{(2),yB) - -a

So w o ¥ acts as identity. From the former equation system one can deduce
that obviously condition (1.3) holds in case that v and w are the canonical
isomorphisms. On the other hand one can deduce that w o ¢ acts as identity for
any v, w fulfilling (1.3). O

Remark 1.22. Let 21, 20,2 € X,y € Y. Using the condition v® 4Idy = Idy ® pw
from the former corollary, we can calculate

B(0((21,22) - y),b(2)) = B(0(21) - v(22 ®B ¥),b(2))

= B(0(21),b() - v(22 ®B Y)")
B(b(21),b(v(22 ®B Y) ®a 1))

= (21,22 @B w(Yy ®a T))B

= (21, 22) Bw(y @4 )

=w((z1,22)B Y DA T)

Thus, p(0(y),b(x)) = w(y @4 ).



Theorem 1.23 (Rieffel Correspondence). [6] Let A, B be C*-algebras, X be
an A — B-imprimitivity bimodule and I C B be a closed ideal. Define the ideal
induced by I as

X-IndT:={a€ A:aX C XI}

Then there is an inclusion preserving one-to-one correspondence between closed
ideals in B, induced ideals in A and submodules of the form XI. Moreover, for
any closed ideal I in B, we get

(i) X-IndI = 4(XT, XT)
(i) (X-Ind )X = XI
(iii) (X-Ind X, (X-Ind X), = I

1.2 (*-correspondences

Definition 1.24. Let A, B be C*-algebras, a C*-correspondence g4 Xp from
A to B is a full Hilbert B-module Xg, together with a non-degenerate homo-
morphism ¢: A — L(Xp). We call ¢ the left action of A.

Ezample 1.25. Let A, B be C*-algebras, ¢: A — M(B) be a non-degenerate
homomorphism, then the Hilbert B-module Bg becomes a C*-correspondence
#(ABp since M(B) = L(Bg) (cf. [16]).

Remark 1.26. In [5], a right Hilbert A-B bimodule is defined as a full Hilbert B-
module, with a non-degenerate left action by a C*-algebra A. Since {(a - z,y) =
(x,a* -y) for any right Hilbert A — B bimodule, A acts by adjointable operators
and the left action may be expressed by a homomorphism ¢: A — L(Eg) such
that a-z := ¢(a)x. Therefore there is a one-to-one correspondence between C*-
correspondences and right Hilbert bimodules. We will use this correspondence
implicitly on several occasions.

Definition 1.27. Considering the previous remark, an isomorphism of C*-
correspondences is a bimodule isomorphism, which is unitary with respect to
the inner product

Proposition 1.28. [5] Let A, C be C*algebras, and ¢, ¢ be non-degenerate
homomorphisms of A into M(C). Then 4aCc = yafc iff there exists u €
UM(C) such that uwp = ¢u (we say u intertwines 1 and ¢).

Proof. If ui) = ¢u, the map ¢ — wuc is a Hilbert module automorphism of Co
which intertwines the left-actions coming from ¢ and .

Conversely, suppose gaCc = y(afc, so there exists a linear bijection A\: C' —
C, such that

Med) = Me)d, Ae)*A(d) =c¢*d, and A(¢p(a)c) = P(a)A(c)

for each ¢,d € C. Define pu: C — C by u(c) = A=(c*)*. The first two imply
that (p, A) is an invertible multiplier of C', thus there exists an invertible element
u € M(C), such that A\(c) = u - ¢ for all ¢. Since

u—l e = )\—1(0) _ )\_1(6**)** _ M(C*)* — (C* . U)* — u* .c

w is unitary, and by the third property of A, u intertwines ¢ and . O



Definition 1.29. Let 44X and 4 pYc be C*-correspondences, denote by
X ® Y the algebraic tensor product. Consider the subspace N := span{z - b ©®
y—zOYbd)y: € X,y € Y,be B} and define

Xop)Y:=(XOY)/N
Let A and C act on X ®g Y by
a-(xopy):=(¢la)zOpY) (zOBy)-c:=x0p (Y-
Further, define some pre-inner product on X ® ) by

{(z1 ©y1, 22 O ya)o = (Y1, ¥({z1,22) B)Y2)C
The completion X ® Y := X ©p Y is called internal or interior tensor product.

Proposition 1.30. The internal tensor product of two C*-correspondences
oYX and (Yo is a C*-correspondence from A to C.

Proof. The proof, that X ® Y is a Hilbert C*-module, can be found in [16,
Proposition 4.5]. To show, that it is indeed a C*-correspondence, we have to
check that the left action is adjointable and non-degenerate. The first part is
just some easy calculations:

{a-(z1®@y1), 12 @y2))c = ((¢(a)r1) @ Y1, 72 @ Y2))

= (y1,v((¢(a)z1,22) B)Y2) C

= (y1, ¥ ({x1, #(a)*z2) B)Y2)C
= {z1©y1, ((¢(a)"z2) ® y2))o
= (z1®@y1,a" - (22 ® y2)))c

Further, since ¢(A)X is dense in X, ¢(A)(X ©pY) is obviously dense in X ©p Y
and hence ¢p(A)(X)®pY) is dense in X®p)Y. That is, A act non-degenerate. [

Remark 1.31. Let 44 Xp be a C*-correspondence. Then obviously
s(A¥B OB 1 (BB = g(a¥e  and  1q, (44 @4 g(aXB = 94 XB
Lemma 1.32. [20] Let £4 be a Hilbert A-module, define
D,:E4— A L,: A— &y
y = (z,y) a—T-a

then DY = L, and thus D, € L(Ea, A) and L, € L(A,E4).

Further D: x — D, defines an isometric conjugate linear isomorphism 4 —»
K(Ea,Aa) and L: x — L, defines an isometric linear isomorphism Ea —
K(Aa,Ea).

Proof. [20] To prove, that D’ = L,, calculate
(Da(y),a)a = (z,y)aa = (y,x)a = (y,z - a)a = (y, La(a)).

D is obviously conjugate linear, because the inner product is conjugate linear
in its first argument. To see that D is isometric, calculate

1Dzl = sup{[[¢z, y)alla : [lylla <1} = [[zlle,



This yields in particular, that D has closed range. Since Dg.,» = 0, 4, the range
of D contains all finite linear combinations of operators of the form 6, ,. Since
these are dense in K(E4, A), D is surjective.

For the assertions about L, note that L: x — D} and apply the first part. [

Proposition 1.33. [6] Let ,aXB, yB)Ya be C*-Correspondences, such that

(A ¥B @B (YA = aAa  and g5V @4 yaXB = BBB
Then ,ayXB is an A — B-imprimitivity bimodule and Y = X'

Proof. The second statement is clear since it has already been proved in Theo-
rem 1.20. So we only have to show that ,(4)X'p is an imprimitivity bimodule.
By proposition 1.9 that means, ¢ is an isomorphism between A and IC(Xp).
At first, we show that ¢ is faithful. Let WUa: ,4((X ®p V)4 — aAa be the
given isomorphism and L: A — £L(A4), a — (Lg: b+ ab) be the canonical left
action.
Assume p(a)z = 0 for all x € X, then ¢(a)(x ®@py) =0forallz € X,y € Y
and thus p(a)z = 0 for all z € X ®p Y. But since ¥4 (p(a)z) = L¥a(z) =0,
a = 0 because L is faithful (cf. [16]).
To see that ¢(A) = K(Xp), let Up: (Y ®a X) = pBp, and define ®: Y —
L(X,B) by
D(y)z = Vp(y ® )

Then

D(Y(b)y)r = V(p(b)y © 2) = Ly¥(y © ) = Ly¥(y)z

note that £(X, B) becomes a Hilbert £(X)-module with inner product (T, T) =
T\T;.

(@(y1), @(y2))z1, 72) D(y1)" P (y2)w1, 72)

(
(®(y2)x1, P(y1)22) B
= (Yp(ya®@21), (1 ® z2))
(
(

Y2 @ Z1,Y1 ®1'2>
©((y1,Y2)A)T1,72) B

for all z; € X, y; € Y. Hence (P(y1), P(y2)) = ¢((y1,y2)4) and thus ®(¢(b)z -
a) = Ly®(x) - ¢(a) (cf. [5, Remark 1.17 (2)]). Now

X = p(A)X = B BO)X = DY) (Y 54 X)
= 3(V)B = ®((B)Y)" = B(Y)*

and using Lemma 1.32




1.3 2-Categories and related structures

Definition 1.34. A (strict) 2-category € consist of:

(i)
(i)

(iii)

a collection of objects €(©)

a collection of arrows between objects ¢(1) together with a source map
s: €M) - ¢ 4 target map r: €M — ¢ 3 multiplication

O:C(I)SXTC(I) - e
(f.g) = fog

such that for any f,g € €M x,. ¢ s(fog) = s(g) and r(f o g) = r(f),
and for any composable f,g,h € € fo(goh) = (fog)oh, and a
unitarrow 1, € ¢ for all z € ¢, such that, 1, o g = g respectively
foly=fforall f,g € €W satisfying r(g) = = respectively s(f) = .
We define €M) (y, z) := s~ (y) Nr~'(x) to be the collection of arrows with
source y and target x.

a collection of bigons between arrows €2 together with a source map
5. ¢@ — ¢ and a target map r?: ¢? — ¢ an associative hor-
izontal multiplication -: €2 x ¢@ — ¢ and an associative vertical
maltiplication o: €2 x ¢ — ¢®), Such that for any (f1, f2), (91, 92) €
eM, %, ¢ satisfying a(f1) = g1 and b(fa) = go for some bigons a, b

a(f1) o b(f2) = (a-n b)(f1 0 f2),

and for any f,g,h € €(z,y) such that a(f) = g and b(g) = h for some
bigons a, b

b(a(f)) = (bea)(f).
Further, horizontal and vertical multiplication have to respect some co-

herence law, that is: let aj,as,b;,bs be some bigons in €, such that
s (b;) = 7P (a;) for i = 1,2 and ay -, a1 and by -, by are defined. Then

(b1 ‘h bg) o (a1 ‘h CLQ) = (bl [©) al) ‘h (bg [©) ag)

Remark 1.35. For the sake of convenience, it is common practice to omit the o
to denote multiplication of arrows or vertical multiplication of bigons. That is,
f o g becomes fg and a o b becomes ab for some composable arrows f, g € ¢(!)
respectively some vertically composable bigons a,b € ¢(2),

Remark 1.36. A strict 2-category € can be defined through commutative dia-
gramms. Let x,y, z denote objects in €, — arrows and = bigons. Then we get
the multiplication between arrows by:

P N~ D
x ) zZ = X z

The horizontal multiplication will be defined by

f1 f2 fi1f2
zqa\y/ﬂb\x — z/%x.
\/ \/

g1 g2 9192
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and the vertical multiplication becomes

f
f
D T
o T
h

Further, we can represent the interchange law by
f1 f2
VTN EIAN
z g1 Yy g x,
hl hz

in the sense that it does not matter if we first compose vertically, and then
horizontally or the other way round to get the bigon f; o fo = hq o hs.

Definition 1.37. A strict 2-Groupoid is a 2-Category G whose object class is
a set and where all 1- and 2-morphisms are invertible.

A strict 2-group is a 2-groupoid G whose object class is the one-elemental set
denoted by {x}.

Definition 1.38. A weak 2-Category € is similar to a (strict) 2-category, but
weakened in the sense, that the unit and associativity law only hold up to
isomorphisms. That is, for any composable f,g,h € €, there is an invertible
bigon ay ,, € €2 the associator, such that

fol(goh)=L2L (fog)oh

and for any z,y € €©, f € €M) (z,y), there are invertible bigons Iy, 7y, the left
and right unitor, such that

loof2 f& fol,.

Further the associators and unitors have to respect certain coherence laws. That
is, for any composable e, f, g, h € €1 the following diagrams have to commute

((eoflog)oh=—=—==(eof)o(goh) ====co(folgoh)),

u o

(eo(fog))oh eo((fog)oh)

and provided, that f € ¢ (y,2) and g € €M) (x, y):

(fo (1y09).

1 \ / .
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Definition 1.39. [2] Let €, & be two weak 2-categories. A morphism of
2-categories (or weak 2-functor) consists of the following data:

e amap F: ¢(0 - 0

e a Functor F(x,y): €M (z,y) — &M (F(z), F(y)) for each pair of objects
1.7 y7

e a natural bigon w(fi1, f2): F(f1)oF(f2) = F(f10 f2) for each pair (f1, f2)
of composable arrows; where naturality means that the following diagrams
commute for all pairs of bigons n1: f1 = g1, na: fo = g2 between com-
posable arrows:

F(f1)o F(f2) SLCILE N F(fiof2)
F(nl)'hF(”Q)ﬂ/ H/F(nl'hnZ) (1.6)

F(g1) o F(g2) ﬁ F(g1 0 92);

e bigons u,: 1p) = F(1,).
As well as some coherence laws

a’'(F(g1),F(g2),F(g3))

(F(g1) 0 F(g2)) o F(g3) F(g1) o (F(g2) o F(g3))
w(ghgz)'hIdF(g;;)H/ \UIdF(gl) ‘hw(92,93)
F(g1092)F(g3) F(g1)F (g2 0 gs)
‘*’(91092793)\H/ \Uw(gl,gzogs)

F((g1092)093) F(g10(g2093))

F(a(g1,92,93))

(1.7)
w(lg, ,1
F(1,) 0 F(g) 22 F(1, 0 g) F(g)o F(1,) =% F(go1,)
u'h“F(g)ﬂ HF(lg) Idp(g) ‘huﬂ ﬂF(Tg)
Lp@) o F(g) T F(g) Flg) o lrgy) = F(g).
(1.8)

If in addition, the bigons u, and w(g, f) are invertible, we speak of a homomor-
phism of weak 2-categories. If they are all identities, we get a (strict) 2-functor
(this notion is only interesting if both 2-categories are strict).

Definition 1.40. A strict 2-group action of a 2-group G on a C*-algebra A
is a (strict) 2-functor from the 2-group into a (strict) category of C*-algebras,
which maps the object x € G(%) onto A.

Remark 1.41. Due to the strictness condition, there is only one reasonable choice
for the 2-category of C*-algebras. That is the category €*(2), which consists
of C*-algebras as objects, non-degenerate *-homomorphisms A — M(DB) as
arrows, and unitary intertwiner between such *-homomorphisms as bigons. For
further details, cf. e.g. [2]
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Definition 1.42. [2] Let G be a discrete group, € a weak 2-category. We can
view G as a weak 2-category & by defining &(©) := {x}, (1) := @, and any bigon
to be the identity. A weak action of G on an object A in € is a homomorphism
of weak 2-categories from & to €, which maps * to A. By Definition 1.39, we
get

e an arrow ay: A — Aforall ge G

e a bigon u: 14 — oy

e bigons w(gi, g2): ag, g, = Qg g,
and the simplified coherence laws

w(l,9) w(g,1)

Q1 0 =—=> Q1.4 Qg 0] —=> 01 (1.9)
u‘hIdag,H\ Idag ~huﬂ
loay —=qy agol—=ay
and
(g, g, ) gy arg, (rg, 0tgy) (1.10)
w(g17gz)'h1d(¥g3ﬂ ﬂld%1 ‘hw(92,93)
a9192 a93 agl a92g3
w(g192,93 ©(91,9293)

Qgig2g3
where the < denote the unit and associativity bigons from the 2-category €.

Proposition 1.43. There is a weak 2-category Cort(2), which consists of C*-
algebras as object class, C*-correspondences as 1-morphisms and isomorphisms
of C*-correspondences as 2-morphisms. The composition of 1-morphisms is
given by the interior tensor product, that is, for two C*-correspondences 4 yXB,
w(BYC, we define

YoX =X®s).
The vertical multiplication of two 2-morphisms by, by is given by concatenation,
that is

(1.11)

by 0 by := b1bo, (1.12)
and the vertical multiplication of some bigons a1, as is given by
(a2 -p a1) := a1 ®@p as, (1.13)
such that for any x € X, y € Y,
(a1 ®p a2)(z ®p Yy) = a1(z) @p as(y). (1.14)

Proof. Let 4ayXB, ¢(BYc, o(c)2p be C*-correspondences, define the range and
source maps by s(44)¥B) = A, r(44¥¥s) := B. Then our multiplication yields

s(YoX)=s(X@pY)=A=sX)
r(YoX)=r(X®p))=C=r)

13



Further, by Remark 1.31, for any C*-algebra A the C*-correspondence 14, ()44
fulfills the conditions of a unit arrow, hence we define 14 := 14,(4)44 and the

isomorphisms in Remark 1.31 to be the bigons [ 4 and r4. Moreover, r(?) := Ran,
and s := Dom. To show that (X ®5)) ®c Z = X @5 (Y Q¢ Z), we use
the natural isomorphism (X ©p V) ©c Z = X ©p (Y ©¢ Z) and show that it
respects inner products and module actions.

Since ((-,-))p is an inner product, and hence bilinear. It is sufficient to proof
the invariance for some basis vectors z; ® (y; ® z;) € X 5 (Y ®c Z), i = 1, 2.
Hence

(1@ (1 @ 21),22© (2 @ 22)) D = (Y1 @ 21, ¥((21,22) B) (2 © 22))) D
= (21,0((y1, ¥ ((x1,22) B)) ) 22)
= (21,0({21 ® y1, 22 @ 12)) ) D
= (21 ©@ 1) ® 21, (22 ® y2) @ 22) »

Further, we get

0 (oY) ©2)=(a- (oY) @z = ((da))0y) @
~ (p(a)e) ® (Y@ 2) = a- (2 ® (y ®2))

and an analogous computation for the right action. Thus our isomorphism
respects the inner product and module actions, and is therefore an isomorphism
of C*-correspondences, ergo an associator.

The computations to check the diagrams (1.4) and (1.5) of Definition 1.38 are
easy, but lengthy, and will therefore be omitted.

Last thing to check is the interchange law. Let a;,b; € Cort(2)(®), such that
5(2)(b¢) = T(Z)(ai) for i = 1,2 and as -, a1 and by -p, by are defined. Then

((b1+n b2) 0 (a1 -p az)) = ((b2 @ b1) © (a2 ® a1))
= (ba ® b1)(a2 ® ax)
= boag ® bray
= b1ay - baaz

= (by o ay) -p (b 0 as).

14



Chapter 2

Weak Group Actions in
Corr(2)

We are starting with a short wrap-up of some basic properties of locally compact
groups, with a focus on separation properties. It follows a more substantial
discussion of general bundle theory, concentrating especially on Banach and
Banach x-algebraic bundles and leading to the definition of a Fell bundle. In the
following I will present a result by Buss, Meyer and Zhu, originally stated in [2],
which says that weak group actions of discrete groups in €ort(2) correspond
one-to-one to saturated Fell bundles.

Finally, we will introduce Cy(X)-Algebras, and prove that they are equivalent
to upper semi-continuous C*-bundles. Using this result, it is easy to derive an
equivalence of upper semi-continuous bundles of A-A-imprimitivity bimodules
and a Cy(X,A) — Cp(X, A)-imprimitivity bimodules. We use this to find a
notion of continuity for group actions in €ort(2) and show, that this yields
an equivalence between continuous group actions in €orr(2) and continuous
saturated Fell bundles.

2.1 Topological preliminaries

The following lemma is a slight generalization of [23, Proposition 5.3.4.].

Lemma 2.1. Let X, Y be locally compact spaces, B be a Banach space. Let
f € Co(X,Co(Y, B)) and define g(a,y) = [(x)(y), then g € Co(X x Y, B).

Proof. We have to prove that ¢ is continuous at an arbitrary point (x,y) €

X xY. Given ¢ > 0, there exists a neighborhood U of x, such that the condition
2’ € U implies

€

1f (@) = f(@)lleov,m)) = sup llg(z,y") — g(@’,y)lls < 5.

Yy EY 2

There also exists a neighborhood V' of y, such that ¥’ € V implies || f(z)(y) —
f(x)(y)|Is < 5. Consequently, if (z',y") € U x V, then

lg(z',y") —g(z, )|z < g’ y") — g(z, ¥ )lB + 9z, y') — g(z,y)||B <e.

Hence g is continuous, which proves the assumption. O
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Lemma 2.2. [24, Lemma 1.25] Let X be a locally compact Hausdorff space,
then X is completely regular. That is, for every point x in X, and every closed
subset Y C X such that x € Y, there is a continuous function f: X — [0,1],
such that f(z) =1 and f(Y) =0.

Definition 2.3. A topological group is a group G together with a Hausdorff
topology T, such that (g, h) — gh~? is continuous on G' x G to G.

Remark 2.4. Some authors do not require the topology T to be Hausdorff. But
since we need Hausdorff for many of our results, and since it is common practice
to define topological groups to be Hausdorff, we adopt this convention here.

Lemma 2.5. [2/, Lemma 6.2] Let G be a topological group, H be a subgroup
of G. Then

(i) the quotient map w: G — G/H is open.
(ii) If H is normal, then G/H is a topological group

Lemma 2.6. [13, Theorem 8.4] Let G be a topological group, if G is Ty, then
G is completely reqular

Definition 2.7. [25] A locally compact group is a topological group G, in which
every point has a compact neighbourhood.

Remark 2.8. Since any locally compact group is also a locally compact Hausdorff
space, by Lemma 2.2 any locally compact group is completely regular.

Proposition 2.9. [24, Proposition 6.6, Theorem 6.7] Let G be a locally compact
group, H be a closed normal subgroup of G. Then G/H is a locally compact

group

2.2 Banach- and Banach algebraic Bundle The-
ory

Definition 2.10. [11] Let X be a topological Hausdorff space. A bundle over
X is a pair (B, ), where B is a topological Hausdorff space and 7: B — X is
a continuous, open surjection. We denote the pair (B, 7) by B and call X the
base space, B the bundle space, and m the bundle projection. For every x in X,
71 (x) is called fiber over x and will be denoted by B,.

Definition 2.11. [11] Let 8 = (B, w) be a bundle, a map f: X — A which
satisfies f(x) € A, for all x € X (ie., f € [[,cx Ae) is called a cross-section.
By I'(®B) C [],cx Az we denote the the set of continuous cross-sections, and by
T'o(B) C T'(B) be the subset of continuous cross-sections vanishing at infinity.
Moreover, if for all b in B, there exists a cross-section 7, such that (7w (b)) = b,
we say that B has enough continuous cross-sections.

Remark 2.12. In his early work (e.g. [10]), Fell used the term cross-sectional
function for non-continuous cross-section, and the term cross-section exclusively
in the continuous case. Moreover, in many papers cross-sections are simply
referred to as sections, and non-continuous cross-sections in this context are
often defined as selections (e.g. [4]).
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Definition 2.13. [11] A Banach bundle B over a Hausdorff topological space
X is a bundle (B, 7) together with a binary operation +, a norm, and a scalar
multiplication such that every fiber B, is a Banach space and the following
conditions hold:

(i) B> b~ |b|| € Ry is continuous,
(ii) the operation
+:BxxB—DB
is continuous,

(iii) for every A € C, b € B, the map b +— Ab is continuous,

(iv) if x € X, {b;} net in B, such that ||b;|] — 0 and 7(b;) = = € X, then
b; — 0, € B, where 0, denotes the zero of the fiber b,.

Remark 2.14. [25] If we weaken condition (i) to
(i) B> b~ |b]| € Ry is upper semi-continuous,
we call B an upper semi-continuous Banach bundle. Moreover, any bundle that

has a Banach bundle structure admits an upper semi-continuous version.

Remark 2.15. Let B be a Banach bundle, then I'g(*B8) is a complex, linear
space under pointwise addition, which is closed under multiplication by Cy(x)
(cf. [11, 11.13.14]). Moreover, if we equip I'g(8) with the supremumsnorm, it is
even a Banach space, called the Cy cross-sectional Banach space.

Ezample 2.16. [11] Let A be a Banach space, X a Hausdorff topological space,
put B = A x X and 7(a,r) = z and equip each fiber B, = 7~ !(z) with the
Banach space structure derived from A via the bijection a — (a,z). Then
B = (B, ) is a Banach bundle, called the trivial Banach bundle with constant
fiber A. Note that in this case, I'g(B) = Cp(X, A).

Proposition 2.17. [11, Proposition I1.13.15] Let B be a Banach bundle,
suppose that for each b in B, ¢ > 0, there exists an v € T'(*B), such that
[lv(w (b)) — b|| < e. Then B has enough continuous cross-sections.

Proposition 2.18. [10] Let B = (b, ) be a Banach bundle over X, suppose
that (b;)icr is a net in B, such that w(b;) — 7(b) in X. Suppose that for each
e >0, we can find a net (a;)icr, indexed by the same I, and an element a in B,
such that

(i) a; — a in B
(ii) w(a;) = w(b;) for all i
(iii) ||b—a| <e
() ||b; — a;|| < € for all large enough i

then b; — b in B
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Proof. Since we could replace (b;);c; by any subnet of itself, it is enough to
show that some subnet of (b;);c; converges to b.

Since 7 is open, we can pass to a subnet, and find for each 7 an element ¢; of B,
such that w(¢;) = w(b;) and ¢; — b. Now, given € > 0, choose (a;);cr and a as
in the hypothesis. Since ¢; — b, we have by 2.13 (ii) ¢; — a; — b — a, hence by
2.13 (i) ||e; —ai]| = ||[b—al| < €, 80 ||¢; —ai|| < € for large i. Combining this with
assumption (iv), we get ||c; — b;|| < 2¢ for large enough i. By the arbitrariness
of €, this shows that |[c; — b;|| — 0, hence by 2.13 (iv) ¢; — b; — O (). Since
¢; — b, it follows from this and 2.13 (ii) that b; — b O

Proposition 2.19. [10] Let A be an untopologized set, X a Hausdorff topo-
logical space, and w: A — X a surjection, such that for each x in X, the set
A, = 7~ Y(x) is a Banach space (with Banach space structure -, +, || -||). Let T’
be a complex vector space of cross-sections for (A, ), such that

(i) for each & in T, the function x — ||{(x)|| is continuous on X, and
(ii) for each x in X, {{(x) : £ € '} is dense in A,.

Then there is a unique topology for A, making (A, ) a Banach bundle such that
all elements of T' are continuous cross-sections for (A, ).

Proof. To prove the existence, let S be the family of all subsets of A of the form
W(f,ue)={seA:x(s) € Ulls — f(n(s))ll <&},

where f € I', U is an open subset of X and £ > 0.

The computations to show, that the given topology indeed has the required
properties, are easy, but lengthy and will therefore be omitted.

For the uniqueness: given such a topology on A and a net (a;);c; of elements
in A. By Proposition 2.18, a; — a iff

(i) m(a;) = 7(a) in X,
(i) for each &in T, [|a; — &(7(as))|| = [|lm(a) — &(m(a))]
thus the required topology of A, if it exists, is unique. O

Remark 2.20. Proposition 2.18 and 2.19 still hold if we work with upper semi-
continuous Banach bundles. The proves are generally identical and may be
found in [25, Theorem C.20, Theorem C.25]. Even though they are stated for
C*-bundles (which we will define later), they use none of the exclusive C*-
properties and can be copied for Banach bundles without any changes.

Definition 2.21. [12] A Banach algebraic bundle over a topological group
G is a Banach bundle B = (B, ) over G, together with a binary operation -
satisfying

(i) 7(b-c) =7()m(c)

(ii) for each pair g,h € G the product - is bilinear on By x By, to By,
(iii) the product - on B is associative

v)

(iv) [[o-cll < [[bllfle]
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(v) the map - is continuous on B x B to B
B is called saturated, if B, - By, is dense in By, for all g, h in G.
Remark 2.22. Condition (i) is equivalent to

(i) By B C Bgn

Remark 2.23. Note that, contrary to the Banach space case, condition (iv) does
not imply condition (v).

Lemma 2.24. [12] Let T be a family of continuous cross-sections of B such
that {I'(g) : v € T'} is dense in By for every g in G. Then condition (v) is
equivalent to

(V') for each pair of elements B, v in T, the map (g, h) — B(g)v(h) is contin-
wous on G X G to B.

Proof. Evidently, (v)=(v').
For the converse, assume (i) — (iv) and (v'), and let b; — b and ¢; — ¢ in B. We
have to show, that b;c; — be. To do this, let € > 0 and let 3, v in I, such that

18 (b)) = bll < e(4flel) ™"

. (2.1)
(7 (e)) — el < e(4]|B(m (b))
by (v')
B (bi))y (7 (ci)) = Bm(b))y(m(c)). (2.2)
by (i) and 2.17 there is a continuous cross-section « of 9B, such that
a(m(be)) = B(m(b))y(m(c))
from this and (2.2) we obtain
1B(m(bi))y(w(ci) — e (bici))|| — O
now (2.1) implies that, for large 1,
18(m (i) — bill < e(4fleil) ™
ly(m(ci)) = cill < (@]l B (B:))ID ™
so, for large enough i:
1bici — a(m(bici)) < [|bici — B(m(bs))y(m(ci))l
+ 1B (bi))y(m(ci)) — almw(bici)) |
< Ibi = B () [l
+ 18 ®))llei = (e (23)
+ 1B(w (b)) v (7 (ci)) — alm(bici))]
<oyl loo.
— 4 4 2
by a similar equation
lbc — a(m(be))|| < e. (2.4)
Hence, by (2.3) and (2.4), the continuity of o and the arbitrariness of ¢, it
follows from Proposition 2.18, that b;c; — be. O
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Let 8 = (B, G) be a Banach algebraic bundle. Consider a map A\: B — B
and an element g € G. X is of left order g, if \(Bj,) C By, (analogously, one
defines p of right order g).

A is called quasi linear, if A is linear on By, for all h in g.
A is called bounded, if there is some non-negative constant k in R, such that
[IA(D)]| < Kk||b|| for all b in B. The smallest k with that property is called [|A]].

Definition 2.25. A multiplier of B of order g is a pair (A, u), where A and p
are continuous bounded quasi linear maps in B of left, respectively right order
g, fulfilling the identities

() BA(E) = u(b)e
(i) A(be) = A(b)c

(ili) p(be) = bu(c).

We call A and p left- and right action of m := (\, p).

We denote by M(B), the collection of all multipliers of B of order g. Then
M(B) :=,cq M(B), is nearly a Banach bundle over G with a norm defined
by [[(A,v)]lo = max{||All, |||} (it only lacks a suitable topology). We refer
to M(B) as the multiplier bundle of B, and define the (not necessarily open)
bundle projection 70 by 7% (g) := M(B),. Moreover we define M*(B) :=
{m € M(B) : ||m|| <1} and call it the unit ball of M(B).

Remark 2.26. For any multiplier m = (A, u) € M(B) and any b € B we will
write m - b for A\(b), and b-m for u(b) respectively.

Definition 2.27. [12] A Banach *-algebraic bundle over a topological group
G is a Banach algebraic bundle 8 = (B, ) over G, together with a unary
operation x on B, satisfying

(i) 7(b*) = (w(b)) L forbe B

(ii) for each g € G, * is conjugate linear on B, to By-1

(i) (bc)* = c*b*
(iv) b** =
(v) o™ = [jel

)
)
)
)
)
i)

(vi) b~ b* is continuous on B
Remark 2.28. Condition (i) is equivalent to the condition
(i") (Bg)* C By

Remark 2.29. [12] Let T be as in Lemma 2.24. Then condition (vi) of the
previous definition can be replaced by

(vi') for each ~y in T, the function g — (y(g))* is continuous on G to B.
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Ezample 2.30. [12] Let G be a topological group, define 7: C ® G — G via
m: (z,g9) — g, then B = (C ® G, ) with multiplication and involution defined
via

(z,9)-(2',9") = (z2, 99")
(z,9)" = (T, ")

is a Banach x-algebraic bundle, called the group bundle of G.

Ezample 2.31. [12] Fix a topological group G with neutral element e¢, a Banach
x-algebra A and a homomorphism 7 from G into the isometric x-automorphisms
of A.

Assume that 7 is strongly continuous. That is, the map g — 74(a) is continuous
on G — A for all a in A.

By Lemma 2.1, (a,x) — 7,(a) is continuous.

Let (B, m) be the trivial Banach bundle over G, whose constant fiber is the
Banach space underlying A. That is B = A x G, 7(a,z) = x. Define

(a,2) - (b,y) = (a7x(b), zy)
(a7$)* = (Tzfl(a*)vas_l)

then B = (B, w) is a Banach *-algebraic bundle over G, called the 7-semidirect
product of A and G.

Definition 2.32. [12] A Fell bundle (called C*-algebraic bundle by Fell himself
in [12]) over a topological group G is a Banach *-algebraic bundle 2 = (A, )
over G, such that

(@) [[b"d]| = [[bl|* Vb € B

(ii) b*b > 0in A.,, Vb € B, where e denotes the neutral element of G.

Remark 2.33. Note that for any Fell bundle 2l = (a,7), the Fiber A.. is a
C*-algebra. This follows directly from condition (i) and (ii) of Definition 2.32
condition (i)—(vi) of Definition 2.27, condition (i)-(v) of Definition 2.21, and
condition (ii)—(iv) of Definition 2.13.

Ezample 2.34. [12] Let G be a topological group, A be a C*-algebra, then the
T-semidirect product of A and G is a Fell bundle.

Lemma 2.35. [2] Every upper semi-continuous Fell bundle is a continuous
Fell bundle.

Proof. The continuity of the norm follows simply from the observation, that we
can write it as a composition of continuous maps

a— (a,a*) — aa* — ||aa*\|% = ||a|

where the last map is the norm of the C*-algebra A.,, which is obviously
continuous. O

Remark 2.36. Let B be a Fell bundle, m be a multiplier of 95 define a conjugation
on M(B) by
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(i) m*-a=(a*

(i) a-m* = (m-a*)*.

This turns M(2() merely into a Fell bundle. We will refer to M(2) as the
multiplier Fell bundle of 2.

2.3 An Equivalence to Fell Bundles

Remark 2.37. [9] Let G be a discrete group, then all continuity assumptions
for Fell bundles can be dropped and we get the following simplified definition
by Exel: a Fell bundle over G is a collection B = (By)4ecq of closed subspaces of
a C*-algebra B, indexed by elements of G, satistying B = By-1, ByBj, C By,

Let G be a discrete group with neutral element eg, as in Definition 1.42 we
can treat G as a category &. To define a weak group action of G in €ort(2) on
a C*-algebra A, consider the functor fj: & — Corr(2), defined by

7: 8O - gore(2)® g: M — Core(2)W
*—= A g ay

for any g, h in G. This yields some C*-correspondences oy, o and a C*-
correspondence isomorphism w(g, k), such that

w(g,h) w(g,f
19) E22L 4(g) 0 1(f) = oy ® oy 222 oy,
as well as a bigon u: 14 = ... Further

- w(g, ! u"?t
1(g) 0 8(g7") = g1 @ g =EE= gy = 0, == 14 (2.5)

that is, any C*-correspondence ay is invertible, and so by Theorem 1.33 an
A — A-imprimitivity bimodule. This proves the following lemma

Lemma 2.38. A weak group action in Core(2) of a discrete group G on a C*-
algebra A is given by

(i) A — A-imprimitivity modules oy for all g € G

(it) invertible bigons w(g, h): an ®a g = oy, for any pair of elements g, h in
G.

(#i3) an invertible bigon u: aAa =14 = Qe
such that a and w satisfy (1.9) and (1.10).

Theorem 2.39. [2] A group action by C*-correspondences of a discrete group
G on a C*-algebra A is equivalent to a saturated Fell bundle 2 over G, together
with a C*-algebra isomorphism p: A.. — A.

Proof. Let 2 be a saturated Fell bundle over a discrete group G, ¢: A., = A
an isomorphism of C*-algebras. The multiplication -: A, x A, — Ay, turns
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any fiber A, into an A., — Ac.-bimodule. Moreover, by defining some inner
products

(a,b)a,  :=a"b

eG
a..(a,b) == ab”,

these become Hilbert A, —A.,-bimodules, and since 2 is saturated, even A, —
A.-imprimitivity bimodules. Using the isomorphism ¢, we can view any fiber
Ay as an A — A-imprimitivity bimodule, hence an invertible C*-correspondence
from A to A. These will be our arrows oy by defining oy := A,-1 for all g in G.
The bigon u: 14 = ., is implemented by the C*-algebra isomorphism

go_lz la=A—= A, = Qeqs

which is an isomorphism of C*-correspondences as well. Define a multiplica-
tionmap mult: A, x A, — Ay - A, C Agp. The associativity in the Fell bundle
yields

mult(ai - a4 - az,an - a3) = a1 - m(ag, a2 - ap) - a3

for all a1, a2,a3 € A, ag € Ay, ap, € Ap. Hence mult induces an A — A-bimodule
isomorphism Ay ® 4 A, — Agp, which is isometric with respect to the inner
products, and even unitary since 2 is saturated. We let

w(g,h): ap ®a Qg = Ap-1 @4 Ag—l — Ah—lg—l = Qgp

be this isomorphism. It is easy to see, that the diagrams (1.9) and (1.10) com-
mute, hence (A4, a,w,u) defines a weak group action in Corr(2).

For the converse, consider a group action (G,a,w,u) of a discrete group
G on a C*-algebra A in Corr(2). That is, ay: A — A are invertible C*-
correspondences (hence A — A-imprimitivity bimodules), and u: 14 = a.. and
w(g,h): ap ®a ag = agp are unitary bimodule homomorphisms.
To construct a Fell bundle, define the fibers by Ay := a,-1 and use ¢ = u~ ! to
identify A = A, = a., as an imprimitivity bimodule and, in particular, as a
Banach space.
To define a multiplication on our Fell bundle, consider the unitary intertwiner
w(h, g) and define

mult(g, h): Ag x Ap = Agn
(Ag, An) = w(h, g)(Ag ©a Ap)

mult(g, k) inherits bilinearity from w(g, h) and is associative by diagramm (1.10)
of Definition 1.42.

In particular, mult(eg,eq) =: mult provides a multiplication on A., which
turns A, into an algebra. Considering diagram (1.9) of Definition 1.42, we get
mult(a,b) = u=!(a)b for all a,b € A.,. Applying u~! to this equation, consid-
ering that it is an A — A-bimodule homomorphism, we get u~!(mult(a,b)) =
u~t(a)u=t(b). Hence ¢ = u=t: A., = ae, — A is an algebra homomorphism
for our multiplication on A..
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Therefore 2 := (Ay)4ec as constructed above is a Banach algebraic bundle. To
construct an involution on I, consider the map

1 o
. -1 -1 . w(g” g u
Vgi=uow(g T, 9): g ®a g1 :;agflgzaeG:>A

and recall the construction of v in Proposition 1.20 to see, that this yields an
A — A-imprimitivity bimodule isomorphism 9,: A, — A;_l via

. N 03 '®id N
’UgZAg—>A®AAg 4 e (Ag*1 ®AAg*1)®AAg
N IdA*71 Ravg N
S AT @4 (A @4 Ag) — T A @a A AT

Since Az_l equals A,-1 as a set, we may view 9y as a map from A, to A, -1.
This defines an involution on 2 by a* := 04(a). Notice that the map A — A* is
conjugate linear by construction.

To check that (a*)* = a, use Lemma 1.21 and apply X = ay, Y = a,-1, v = v,
and w = v,-1. The coherence laws for a weak group actions imply that the

g
following diagram commutes:

w(g™h9)®alda,
Qg XA Qg-1 Xa Qg ——=> Oy-1y XA Qg

1 _ \ 1
Iday, ®aw(g,97 ) w(g,97 9) \/u ®alda,
) /

Qg

w(gg™'.g

V

Ida, ®au"?t

Qg Q4 Qgg-

Where v, equals going clockwise, and v,-1 equals going counterclockwise. Hence,
condition (1.3) of Lemma 1.21 is fulfilled, and therefore v, and ©0,-1 are inverse
to each other. This yields (a*)* = a for all a in A; = a,-1. Furthermore, let
ag € Ag, ag-1 € Ay-1 such that ay = 04-1(az-1). Then by Remark 1.22:

lagl® = [{ag, ag) || = [{t4-1(ag-1), ag)|
= |lw(ag-1 ® ag)[| = [lag-1 @ ag|| = [lag-1 - ag]-
Hence, ||a||? = ||{a, a)|| = ||a*-a||. The only thing left to show that our involution

anticommutes with our multiplication to see that A., is indeed a C*-algebra.
Consider g, h in G and observe that the isomorphism

wh g ®alda , w(gh,(gh)~* u”?
Olg—l ®a Qap-1 ®a Qgh 9 a(gh)—l XA Qgh :& o] — A

induces the isomorphism A, ® Ay — A(gp)-1, that is ay ® ap — (agarn)*. On
the other hand, we have the isomorphism

o _, ®alda, ) ®aw(g,h)™"
Qg-1 ®4 ap-1 ®4 Qgp Qg-1 Q4 ap-1 Q ap Qg Qg

Ido _, ®aw(h,h™ )@ alday

Qg-1 @4 01 ®a Qg
ldo _; ®au®alda,

Qg-1 Q4 Qg

Qeg,
= A
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which induces the isomorphism Ay ®4 Ap — Ap-14-1 by ag®aap ajay. Due
to the coherence laws for weak group actions both isomorphisms agree, hence
(agan)* = aja;. Thus A, is indeed a C*-algebra, which turns (Ay)gec into a
Fell bundle. Moreover (A,)geq is saturated, because v and w are unitary. [J

2.4 Continuity of Weak Group Actions

Definition 2.40. [18] Let X be a locally compact Hausdorff space, { B, }.cx
a family of C*-algebras. An wupper semi-continuous C*-bundle B over X is
a triple (X, {Bs}sex,To(B)), where I'o(B) C [],cx B: is a family of cross-
sections, such that the following conditions are satisfied:

(i) Tp(*B) is a C*-algebra under pointwise operations and supremum norm
(ii) for each x € X, B, = {y(z) : v € To(B)},
(iii) for each v € I'y(*B) and each € > 0, {z : ||y(x)| > €} is compact,

)

(iv) To(B) is closed under multiplication by Co(X), that is, for each g € Cy(X)
and f € T'o(2B), the section gf defined by gf(x) := g(z)f(x), is in Ty(B).

A continuous C*-bundle B over x is an upper semi-continuous C*-bundle, such
that for each v € T'y(*B), (z — ||[v(2)|]) € Co(X).

Remark 2.41. Note that condition (iii) is equivalent to the set of conditions
(i) the map x — ||v(z)| is upper-semicontinuous
(ii') To(B) C Co(X, B)

Remark 2.42. There are several ways to define a C*-bundle. In [11], Fell defines
a C*-bundle B (called C*-algebra bundle by himself) as a Banach bundle, where
each fiber B, is a C*-algebra. As pointed out by Nilsen in [18], this is equivalent
to Definition 2.40. The necessary steps for the proof can be found in [11] and [12].
In [15], Kirchberg defines a C*-bundle as a triple 2l = (X, 7m,: A — A, A),
where A is a C*-algebra, and for each z € X, A, is a C*-algebra and 7, is a
surjective x-homomorphism, such that

(i) |la|l = sup,ex |laz||, where a, = m,(a) for each x

(ii) for f € Co(X), a € A, there is an element fa € A, such that (fa), =
f(z)a, for each = € X.

It is easy to see that by identifying A with I'o(8) and 7, with ev,, this definition
is equivalent to Definition 2.40 by Nilsen.

We will always use the most comfortable view of an upper semi-continuous
bundle.

Definition 2.43. [25] Let A be a C*-algebra and X be a locally compact
Hausdorff space. Then A is called Cy(X)-algebra if there is a *-homomorphism
® 4 from Cp(X) into the center ZM(A) of the multiplier algebra M(A), which
is nondegenerate in the sense, that

D4 (Co(x)) - A:=span{P4(f)a: f € Co(X),a € A}

is dense in A.
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Lemma 2.44. [18, Corollary 2.2] Let A be a Cy(X)-algebra. Define the ideals
I. . ={f € CyX): f(z) =0} and J, :== I, A. Then, for any a in A,

(i) sup,ex lla+ Jo|| = |la]

(ii) for any e >0, {z : |la + Jy|| > €} is compact,
(i1i) x — |la + Jy|| is upper semi-continuous.

Theorem 2.45. [18] Let A be a Cy(X)-algebra. I, :={f € Co(X) : f(z) =0}
and J, = I, A as in the previous lemma. Then there exists a unique upper
semi-continuous C*-bundle B over X, such that

(i) the fibers By = A/J,
(ii) there is an isomorphism ¢: A — T'o(B), satisfying ¢(a)(z) = a + J;.
Proof. Let B = | |,y A/Jz, and let
S={f: X—>B:f(x)e A/J, and = — | f(x)]| is bounded}

S is a C*-algebra under pointwise operations and supremum norm. Define
¢ : A — S by the formula given in (ii), and let T'o(B) := Im ¢.

We have to show, that the triple (X, (A4/J:)zex,T0(®B)) is an upper semi-
continuous bundle, hence fulfills condition (i)—(iv) of Definition 2.40.
Condition (i) is obviously satisfied, since ¢ is a C*-homomorphism. Condition
(ii) follows from the equality

{y(@):veTo(B)}={a+J:ac At =A/J,.

To check condition (iii), recall that ®4 is a non-degenerate injection, so by
Lemma 2.44, for x € X and € > 0, {z : ||ja + J,|| > €} is compact.

To prove condition (iv), suppose ¢(a) € T'o(B), and g € Co(x). Further, let
(ex)rea be an approximate identity in Co(X). Then, for a fixed z, (g — g(z)ey)
converges strictly in M(Cy(X)). Hence (®4(g — g(x)ex)a) converges in norm,
and the limit is in J,, because each ®4(g — g(x)ey) is in I,. That is, (®a(g —
g(x)ey)a) converges to zero in A/J,. Hence

¢(Pa(g)a)(z) = Pa(g)a+ Jo = g(z)a+ Ju
=g(z)(a+ Jz) = g(z)(d(a)(z)) = (94)(a)(x).

Thus (X, (A/Jz)zex, To(B)) is an upper semi-continuous C*-bundle.
Finally, ¢ is an isomorphism since it is surjective by definition, and by

[¢(a)[l = sup,ex |9(a)(@)]| = supex lla+ Jo|| = [all
it is also injective. O

Ezample 2.46 ( [25], [22]). Let D be a C*-algebra, then A := Cy(X, D) is a
Co(X)-algebra in a natural way:

Pa(f)(a)(z) := f(x)a(x)

where f € Cy(X), a € A.
Moreover, the associated C*-bundle is isomorphic to the trivial bundle (D x
X,m).
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Proof. Since A = Cy(X) ® D, we can define a map
Da: Cop(X) = Co(X)® D

Since Cy(X) is commutative, In® 4 C ZM(Cy(X)®D), and obviously Im(® 4)-
Co(X, D) is dense in Cy(X, D). Hence, A is a Cy(X)-algebra.

Further, for some x € X, the evaluation ev,: Co(X,D) — D, f — f(z) is a
surjective x-homomorphism. So there exists an isomorphism ¢,, such that

A2 D
Fé

Az

( >i =

Ay

commutes. Hence there is an isomorphism of C*-bundles ((¢,)zex,Id: X — X)
between (| |, .y Az, p: Az D ar> z) and (D x X, 7: (d,7) = ). O

Definition 2.47. Let X be a locally compact Hausdorff space, A be a C*-
algebra. A Hilbert A-module bundle is a Banach bundle ¢ = (E, 7), where any
fiber E, is a Hilbert A-module, such that

(i) Re: a— e-a,is continuous on A to F for all e € E
(ii) the map
() ExxE— A
(e, f) ={e, f) e,
is continuous for all (e, f) € E xx E.

Definition 2.48. Let A be a commutative C*-algebra, an A-module M is called
central, if it is an A — A bimodule, satisfying a-m = m-a for all m € M, a € A.

Remark 2.49. Let A be a Cy(X)-algebra, then for any f € Cy(X), a € A we get

(®a(f)a)" = a"@a(f)"
and since A is an essential ideal in M(A),

Pa(fla=a®a(f).

hence, A is a non-degenerate central Cy(X)-module with an action defined by
fra:=®4(f)a.

Definition 2.50. Let A, B be Cy(X)-algebras, a C*-correspondence X from A
to B is called Co(X)-linear, if X is central as a Cy(X)-module.

Theorem 2.51. Let X be a locally compact Hausdorff space, £ be a Hilbert
Co(X, A)-module. Then there exists a unique upper semi-continuous Hilbert
A-module bundle &, such that

(i) the fibers E; = E/Jy, where J, = EI, with I, := {f € Co(X,A) : f(z) =
0}.
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(ii) there is an Hilbert Co(X, A)-module isomorphism p: € — I'o(€) satisfying
ple)(x)=e+E/EL, withee &, z € X.

Proof. Analoguosly to Theorem 2.45 define E := | | . E/E1,, S :=={f: X —
E: f(x) € £/EL}, ¢ as in condition (ii) and I'o(€) := Im ¢, and show that this
yields an upper semi-continuous Hilbert A-module bundle.

Since I, is a closed ideal in Cy(X, A), J; is closed in &, hence (E,).c x is a family
of Banach spaces. Moreover, any F, is a Co(X, A)/Co(X, A)I, module. By
Example 2.46, Cy(X, A)/Co(X, A)I, = A, with the projection p,: Co(X,A) —
Co(X,A)/Co(X, A)I, defined via p(f) := f(x). Further, observe that

(e+EL,, h+EL) = (e, h)+ (e, EL,) + (ELy, h) +(E1,, ELL) = (e, h)+Co(X, A) I,

Where the last equality comes from the fact, that (£, )1, is dense in Co(X, A) I,
(cf. [16, page 5]). Thus the original inner product on £ restricts to an inner prod-
uct into Co(X, A)/Co(X, A)I, = A, making any fiber E, a Hilbert A-module.
Obviously, T'o(€) is a complex linear space under pointwise operations. Fur-
thermore, let 7, : &€ — £/J, be the canonical projection, then I'y(€) is a right
Co(X, A)-module, since

ple-f)(x) = male-f) = ma(e) - pa(f) = ma(e) - f(x) = ple)(2)- f(2) = (d(e)-f)(x)

forallee &, f e Cy(X,A).
Moreover, define a Cy(X, A) valued inner product on I'o(&) by (¢(e), #(h)) =
x + (e, hy + Al,. Observe that

lo(e)lI* = [{e(e), ()l = sup [[{e, e) + AL || = l{e, 7] = lelf?.

Thus ¢ is an isometry, hence a Hilbert Cy(X, A)-module isomorphism.
Moreover, the equality

Lo(€) :={y(z) : v € To(€)} = {d(e)(z) : e € £}
={e+&l,:ec&}=E/EL, (2.6)

shows, that T'g(€&) = E,.
Note that

z = [y (@)l = [{(v(2), v(@)) .|| = [(¢(e)(2), dle) () .|| = l[(e, €) + AL ||

Hence, = — ||v(z)| equals = — ||(e,e) + AIL.| for some fixed e in E, so
{z: ||v(x)|| > €} is compact for all ¢ > 0 by Lemma 2.44.

Now since (E,).cx is a family of Hibert A-modules, and in particular Banach
spaces, and I'g(€) is a set of sections, by equation 2.6, we can use Proposi-
tion 2.19 to find a topology on F, which gives us a Banach bundle & with bundle
space E and a space of continuous sections I'g(&). Note that by the compact-
ness of {x : [|[y(x)|| > €}, all elements of T'g(&) vanish at infinity. Moreover,
since ¢(e) is continuous in X (because ¢(e) € I'o(€)) and E (since ¢(-)(x) is a
quotient map), the maps R, and (-,-) are continuous, since they are expressed
in terms of ¢ and the original right action and inner product of €. O

Theorem 2.52. Let B be an upper semi-continuous Hilbert A-module bun-
dle over some locally compact Hausdorff space X. Then there is an Hilbert
Co(X, A)-module &, such that B is equal to the bundle € as constructed in
Theorem 2.51.
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Proof. Let B = (B, ) be a Hilbert A-module bundle. Then I'y(B) is a Hilbert
Co(X, A)-module via the canonical C*-algebra action

(v @) =~(x) - f(z)
where v € To(B), f € Co(X, A), and = € X and the inner product given by

(s () = (2= (v(2),0(2)) B.)

Now let I, C Co(X, A) be the closed, two-sided ideal of functions vanishing at
z, and J, = [o(B)I,. Let further ev, be the evaluation map from I'y(B) to
B,. ev, is a projection, hence the induced map v, : T'o(B)/ kerev,, = B, is
an isomorphism. We claim, that kerev, = J,, which proves the assumption.
The inclusion J, C ker(ev,) is clear, for the converse, assume v € ker(evy).
Let ¢ > 0 be given, then there exists a compact subset K C X, such that
supgex\k [[7(2)[| <e. Let (ex)rea be an approximate identity in A, then there
exists a Ag € A, such that ||y(z) —v(x)ex, || < € for all x € K (cf. |16, page 5]).
We choose a function f € Cy(X, A), such that f(K) = {en,}, f(z) = 0, and
[I7]l = 1. Then

v =f1 = sup |lv(z) = y(x)f ()]
reX

< sup |ly(z) —y(2)f(z)|| +¢
ze€X\K

< sup 2fly(x)] +¢
zeX\K

< 3e
that is, v € J,. O

Now we are able to define continuity for weak group actions by C*-corres-
pondences, following an idea from [2]. Given a topological group G, a weak ac-
tion by C*-correspondences is a family of C*-correspondences (og)gecc from A
to A. In particular, (og)gec is a family of Hilbert A-modules and, since any «
is invertible, a family of A — A-imprimitivity bimodules, hence in particular left
Hilbert A-modules. Moreover, using the Rieffel Correspondence (Theorem 1.23)
and taking into account, that obviously Ind-a, I, = I, a natural condition for
continuity is to say, that the action (ay)4ec is (upper semi-)continuous, if there
is a Cy(G,A) — Co(G, A) imprimitivity bimodule «, such that (G, (ag)geq, @)
is an (upper semi-)continuous Hilbert A-module bundle, as well as an (upper
semi-)continuous left Hilbert A-module bundle. That is, a bundle of A — A-
imprimitivity bimodules.

Note that, since Cy(G,A) is a Co(X)-algebra, a is Co(X)-linear as a C*-
correspondence.

Moreover, we need to impose some continuity conditions on the intertwiner
w(g, h). Considering Lemma 2.24 we say that w(g,h): ap ®4 ag — agp, is con-
tinuous, if the map (g, h) — v(g)n(h) is continuous for all v,  in «.

Now let p: G x G — G be the multiplication map, and 71,7 : G X G = G the
coordinate projections, the condition that w(g, h) is continuous for all g, h in G
can be rephrased into the existence of a unitary intertwiner

. * * *
Wi M Qcy(G,A) T1O = [b &

There are no further continuity assumptions for u. Hence we define:
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Definition 2.53. [2] A continuous action of G on A by correspondences con-
sists of a Cy(G)-linear correpondence a from Cy(G, A) to itself, and unitary
intertwiners

W: Ty @y (a,A) T = i a

and u: Idg = ae, that satisfy analogues of (1.9) and (1.10).

The following theorem can be found in [2], even though the proof is merely
sketched, and considers only one direction.

Theorem 2.54. A continuous group action by C*-correspondences of a locally
compact group G on a C*-algebra A is equivalent to a saturated Fell bundle 2
over G, together with a C*-isomorphism p: Ao, — A.

Proof. Let G be a topological group, 2 = (A, 7) be a saturated Fell bundle over
G. Define ((ay)gea, (w(g,h))gneq,u) as in Theorem 2.39. We have to show,
that (og)gec admits a continuous A — A-imprimitivity bimodule bundle. This is
quite easy, since the operation + is continuous on 2, it is continuous on (ag)gec-
The same holds for the maps A — Aa, A € C, a € A. Moreover, since - and * are
continuous on A, so are (a,b) a4 = a*b, ala,b) = ab* and R,. Since i: g+ g~ !is
certainly a continuous, open surjection, so is p(a) := iom(a), hence ((ay)gea, p)
is a continuous A — A-imprimitivity bimodule bundle. Finally, the continuity of
- in A yields the continuity of (g, h) — v(g)n(h) for all v, n in To((ag)gea, p),
hence the continuity of w.

For the converse, assume that (A, a,w,u) is a continuous weak group action
by C*-correspondences, let 2 be the Fell bundle constructed in Theorem 2.39.
2l is a Banach bundle by construction, and for the continuity of -, we use again
Lemma 2.24 and the continuity of w. Moreover, the involution * is continuous,
if the map g — 7(g)* is continuous for all v € T'o(A). Since v(g)* = v(g~ 1),
and the inversemap is continuous on G, this yields the continuity of *
Furthermore, since « is assumed to be continuous, so is 2l [

Remark 2.55. By Lemma, 2.35, it suffices for a to be upper semi-continuous, to
yield a continuous Fell bundle.
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Chapter 3

An Extension to 2-Group

Given a continuous surjection between locally compact spaces, one can define
pull backs of Banach bundles. We will introduce this construction and show that
pull backs of quotient maps yield a special class of Fell bundles. Furthermore we
discuss the notion of a crossed module and show the equivalence between crossed
module and quotient groups. Using the fact, that crossed module generalize
quotients of groups, we use our former results to define Fell bundles over crossed
modules, hence 2-groups.

Given that definition, we will prove that it yields an equivalence between weak
actions of discrete 2-groups in Corr(2) and saturated Fell bundles over discrete 2-
groups. Furthermore, we use some theory about continuity of multipliers on Fell
bundles to define continuity of weak 2-group actions in €orr(2), and generalize
our former result.

3.1 Pull-back Fell bundles

Proposition 3.1. [11] Let Y, Z be topological spaces and f:Y — Z be a
surjection. f is open iff for any net (z;);c; in Z converging to some f(y), there
evists a subnet (2})jes for some directed set J and a net (y;)jes, such that

(i) f(yj) = 2} for all j in J, and
(i) y; >y inY.

Proof. Assume that f is open. Let I be the directed set domain of (z;). Define
a directed set (J,>) by

J:={(i,U):i€ I,U CY :U is a neighborhood of y}
(i,U0)> (@' \U')ei>iand U CU’

Now for a J = (4,U) in J, let i; be an element of I such that i; > ¢ and
2, € f(U); such an i; exists, since f is open. Thus for each j = (i,U) in J we
can choose an element y; in U for which f(y;) = 2;,. The y; and 2 := 2;, then
satisfy properties (i) and (ii).

For the converse: [25] assume that f is a surjection. Suppose that U is open
in Y, such that f(U) is not open in Z. Then there is a net (z;);c; such that
zi = fy) € f(U) with z; € f(U) for all i € I.
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By assumption, there is a subnet (2);c; and a net (y;);es converging to y such
that f(y;) = zé

But y; is eventually in U, hence 2/ is eventually in f(U), but 2} = 2y, for some
N: J — I. So this is nonsense, and thus f is open. O

Definition 3.2. [12] Let G, H be topological groups, ¢: H — G be a continu-
ous surjective homomorphism, and %6 = (B, n: B — G) be a Banach x-algebraic
bundle over G.

Use the pullback D := B x4 H and the projection p(b,h) := h to define
¢*B := (D, p: D — H) and equip the fibers Dy, with the Banach space struc-
ture under which the bijection ¢: b — (b, h) of Bg(y) onto Dy, is a linear isometry.
Further define a multiplication and a convolution on ¢*%5 via

(b,h) - (b, 1) == (bY', h')
(b,h)" = (b, A7)

We call ¢*B the Banach *-algebraic bundle retraction of B by ¢.
Proposition 3.3. ¢*B is a Banach *-algebraic bundle

Proof. At first, we check that p is an continuous open surjection. It’s obvious,
that p is indeed continuous and surjective. To check, that p is open, take a point
(b,h) in D and a net (h;) converging to h in H. Thus ¢(h;) — ¢(h) = w(b); so
by Proposition 3.1 and the openness of m we can replace (h;) by a subnet (h;)
and find a net (b;) in B such that 7(b;) = ¢(h;) for all j and b; — b. Hence
(bj,hj) € D and (b;, h;) — (b, h). Since p(b;, h;) = h;, another application of
3.1 shows that p is open. Hence ¢*8 is a bundle, and even a Banach bundle,
since it inherits the Banach bundle structure directly from 9B. To proof, that
¢*B is a Banach algebraic bundle, we have to check the conditions (i)—(v) of
Definition 2.21.

Condition (i) is obviously fulfilled. And since A(b,h) = (A\b,h) for A € C,
(b,h) € D, so is (ii).

The associativity of the multiplication follows from the associativity of the mul-
tiplications in H and 8. Hence we get (iii).

Since ¢ is an isometry, we get

16, ), )| = 10/ < (1[I = N1 (B, A, 2|

and thus (iv).

The continuity of - follows directly from the continuity of multiplication in G
and B, hence we have (v).

Finally we have to show, that ¢*% is a *-algebraic bundle, hence to check (i) —
(vi) of Definition 2.27.

First of all,

p((b, 1)) = p((0", 1)) = ™" = p((b, )"
Thus we got (i). Secondly,

(Ab, R)* = ((AD)*,h™Y) = (\b*, A1) = A(b*,h™Y) = (b, h)*
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which proves condition (ii). Further
((b,h) (¥, B))* = (b, hh')* = (V*b*, W'~ "h™1)
= B R = (0, R)* (b, h)*
and
(b,h)" = (0", h™1)" = (b, D)
Hence (iii) and (iv) are fulfilled. At last,
16, )| = [16%[F = [bll = {16, R

and # is continuous on D, since * is continuous on B and the inversemap is
continuous on H. Thus, ¢*5 is indeed a Banach x-algebraic bundle. O

Lemma 3.4. Let G be a topological group, N a normal subgroup of G and
q: G — G/N be the quotient map. Let further B = (B, 7) be a Fell bundle over
G/N.

Then the Banach x-algebraic retraction ¢*B is a Fell bundle over G.

Proof. We have to check the conditions (i) and (ii) of Definititon 2.32. Since B
is a Fell bundle, these follow directly from the isometric property of ¢. O

Theorem 3.5. [7] Let G be a discrete group, N a normal subgroup. A Fell
bundle A over G is isomorphic to a pull-back bundle ¢*B for some Fell bundle
B over G/N iff there is a homomorphism u: N — UM(2L) such that

(i) u, € M(A), for allm e N
(11) astn = Ugns-1as for all as € Ag,n € N

Proof. Let B be a Fell bundle over G/N, ¢*% = (D, p) be its pull-back bundle.
Define u,, := (1y(B, ., ),n). Then for (b, h), (b',h’') € D we get

ca/N
Uy, - (b,h) = (b,nh) and (b, h)-u, = (b, hn)
and therefore
((b,h) - up) o (b',h') = (b, hnh') = (b, h) o (u, - (b, h')).
Hence u,, € M(D),,. Further
(b,h) - up = (b,hn) = (b, Anh™ h) = uppp-1(b, h).

Thus wu,, fulfills condition (i) and (ii) and w,, is indeed unitary, because u,u} =
(AM(Beg)n M AM (B n 77 H) = (MM(Beg, )0 €6)-

For the converse, assume that we have a Fell bundle 2 = (A,7: A — G), and a
map u satisfying (i) and (ii). Let N act on A by a-n :=a - u, and write [a] for
the N-orbit of a € A. For g € G define

B,y :={la] : a € Ay, for some n € N}
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For each g € G, the orbit map a + [a] takes Ay bijectively onto By, and the
resulting Banach space structure on B,y depends only on the coset g/N. More
precisely, for a,b € Ay, A € C and n € N we have

[a+ 0] = [au, + bu,]
[Aa] = [Aauy,)

Thus, each fiber By has a well defined Banach space structure, and we get a
Banach bundle % over G/N. Define multiplication and involution by

[a][b] = [ab]
[a]* = [a"]
These operations are well defined, since for a, € Ay, an, € A, and n,k € N

[agan]
= lag]

and give a Fell bundle structure on B: for example, if ay € Ay, an € Ay,
then [agan] € Bgnn, hence BynyBry C Bgnnn. To check the norm properties,
observe that

[(agun)(anur)] = [aganun-1nn]

[(agun)™) = [upag] = lagug-1n-1,]

llag)*laglll = Illagllagll = lagaglll = lagangll = llagll* = [llag]l®
To finish the proof, we have to check, that ¢: A — ¢*B defined by
Pag) = ([ag]. 9) for ag € Ay

is a Fell bundle isomorphism: for example

Plag)d(an) = (ag, g)(an, h) = ([agl[ar], gh)
= (lagan], gh) = ¢(agan)

O

3.2 Crossed Modules and their actions in Cort(2)

Definition 3.6. Let GG, H be discrete groups, a crossed module is some quadru-
ple (G, H,d,), such that v: G — Aut(H) is a group homomorphism and 0 is a
equivariant homomorphism 0: H — G, with respect to conjugation in G, such
that

(1) d(vy(h)) = g0(h)g~"
(i) Yo(ny)(h2) = hihahi!

Where we will refer to (ii) as the Pfeiffer identity, and call 0 the boundary map
of C.

Corollary 3.7. LetC = (G, H, 0,7) be a crossed module, then O(H) is a normal
subgroup of G
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Proof. The proof is a direct result of property (i). Since 0 is a group homomor-
phism, 9(H) is clearly a subgroup. Further, since gd(h)g~! = d(v,(h)), we get
go(h)g~' € d(H) for all h € H, g € G. Hence d(H) is normal in G. O

Theorem 3.8. A crossed module C = (G, H,D,~) corresponds to a strict 2-goup
6 via

) .= ¢
6@ =G xH
with horizontal and vertical multiplication defined by

(91, h1) -n (92, h2) := (9192, h1Yg, (h2))
(0(h)g, ') o (g,h) := (g,h'h)

where (g, h) denotes the bigon h: g — 9(h)g

Proof. We have to check the first and third identity of condition (iii) of Defini-
tion 1.34 (anything else should be clear).
For the first identity, let (g1, k1), (g2, ho) € @) g1, g0 € 1) then

((g1,h1) *n (92, h2)) (g1 © 92) = (9192, h17g, (h2))(9192)
hi7g, (h2))g192

a(

9(h1)g10(h2)gr " 9192
a( 2)

=(g

h1)g10(h2)g2
1,h1)(91) © (92, h2)(g2)-

Let (g1, 1), (g2, h2), (O(h1)g1, 1), (8(ha)ga, hb) be in &), Then

((0(h1)g1,h7) n (B(h2)ga, h3)) © ((g1, 1) - (g2, h2))
(0(h1)g10(h2) g2, My Ya(h,)g, (h2)) © (9192, P17vg, (h2))
(9192, h1’Ya (h1)g1 (hz)hﬂgl (h2))

(9192, W1 h1vg, (h5)hy  hayg, (ha))

(9192, hyhayg, (R)7g, (h2))
(
(
(

9191, Wy hivg, (hha))
g1, hiha) - (g2, hoha)
(0(h1)g1,hy) © (91, h1)) -n ((O(h2)ga, hy) © (g2, ha)).

Conversely, let & be a 2-group, denote by H € &) the set of bigons ema-
nating from the unit element in &), and let G := &). Note that H is a group
under horizontal multiplication. Define

0:H—CG Vg: G— H
h— r®(h) h— ghg™!

Then
9(vy(h)) = 1P (ghg™) = gr@(h)g~" = gd(h)g~"*
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and
Yoy (h2) = 1@ (k) hor® (h1) ™! = hyhohi!

Hence, C = (G, H,0,) is a crossed module O

By Corollary 3.7, for any crossed module C = (G, H, d,), 0(H) is a normal
subgroup of G, further by the previous theorem any crossed module may be
seen as a 2-group. Since (g,h): g — 9(h)g, we get the equality G/I(H) =
G /G?) . Hence a crossed module may be seen as a pull-back of the quotient
group G/9(H). To define a Fell bundle over a crossed module, and hence a
2-group we may want our Fell bundle to be isomorphic to the pull-back bundle
q*B of some Fell bundle B over G/J(H), where ¢ denotes the quotient map
q: G — G/O(H). Using Theorem 3.5 this leads to the following definition:

Definition 3.9. Let C = (G, H,d,~) be a crossed module over some discrete
groups G, H. A Fell Bundle over C is an ordinary Fell bundle A = {A;},cq
over G together with a group homomorphism u: H — UM (A) such that

(i) up € UM(A)B(h) for all he H
(ii) a-up = uqy,ny-aforalaec Ay, he H.

such that 52 (b;) = r®(a;) for i = 1,2 and as -, a1 and by -j, by are defined
Let C = (G, H,d,7) be a crossed module over some discrete groups G, H. By
Theorem 3.8, C can be seen as a 2-group &. Then the action of C in Corr(2) on
a C*-algebra A can be described by a functor f: & — Corr(2) via

e 60 Corr®) e Core) ) Corr(?
* = A g ag (9, h) = vgn)

For the definition of the a4, one can apply the same results as in Lemma 2.38.
To describe the v, ), use the properties of f again:

Vig.h) h Vghry = 8((g, 1) -n (g, 1) = b((g, ) -n (¢, 1))
= 1(g9’, hyg(h')) = V(gg! ,hvy (1))

Further:
Vig.ny(ag) = 1((g, 1) (9)) = 5(A(h)g) = aamyg

and
Vig.n) © Vamyg.n) = 1((g,h) 0 (B(h)g,h")) = 1((g,h'h)) = vignn)
Moreover,
V(@(h)g,h=1) O V(g,h) = V(g,1)* Qg 7 Qg
Ylgrv, =1 (A1) "h Vlg2,h) = Vigrgziea) - Vg = Qgigs
This proves the following lemma:

Lemma 3.10. A weak action of a crossed module C = (G, H,0,v) over some
discrete groups G, H is given by

(i) A — A-imprimitivity modules oy for all g € G
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(it) invertible bigons w(g, h): ar®acy = ogp for any pair of elements g, h € G
(#1i) an invertible bigon u: aAa =14 = Qe
(iv) invertible bigons v(y 1) : g = apn)g for all (g,h) in G x H

such that a and w satisfy (1.9) and (1.10). And v satisfies

V(g,h) "h V(g',h') = V(gg’,hyy(h))

and
V(g,h) © ¥(a(h)g,h') = V(g,h'h)

for any g,¢' in G, h,h' in H.

Corollary 3.11. Let (a,v,w,u) be a weak action of a crossed module C =
(G,H,0,v). Define v, := v 1) and v}, := vy-1, then

(i) v, € UM(A)

(ii) every vy )y can be expressed in terms of vy and w
(iii) apmny(a) = vpavy,
(iv) ag(vn)ar = vy, myaa

Proof. Since vy, is an unitary equivalence of imprimitivity bimodules, we have
v € L(ar) = L(aAs) = M(A). And since vy, is unitary by definition, v €
UM(A), hence (i). Moreover, v(y4 ) = w(d(h),g) o (Id® Ad,, ) cw*(1, g), which
proves (ii).
Further, since vpa1 = ag), and v, intertwines the actions on ay, we get
Qy(ny (@) = vpaeg (a)vy = vpavy,.
Finally, we have

ag(vp)ar = agupog-100 = agupan g1

= Qg (n) Qg1 = Qgp(h)g—1 = Uy, (h) 1
O

Ezample 3.12. Let (7,v) be a strict group action of C = (G, H,0,7) on a C*-
algebra A. That is, 7 is an ordinary group action 7: G — *-Aut and v is a
group homomorphism v: H — UM(A) satisfying

(i) Ton(a) = vpavy,
(i) 74(vn) = vy, n)
Now consider the 7-semidirect product bundle A = A x, G and define u;, by
Up * (aa g) = (GU;; a(h)g)
(acg)-un = (@, g0(h))

Then (A, ) becomes a Fell bundle over C.
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Proof. 1t is obvious that uj by construction is a map of order d(h). It remains
to check, that uy is indeed a unitary multiplier. This can be done by simple
calculations:

(a1,91)((az, 92) - upn) = (alagl)(a2v'y92(h)7928(h)>

= (angl (CLQU,Y (h)) 791928(h))
(

a17g, (az)v (h)? 91928(h)>

Vy1y2
A1Tg, (a2),9192) - un

(
((a1,91)(az2,92)) - un

So up € M(A)y(ny. Further we show that uy, is unitary.

((a;9 ) )

((rg-1(a"),97") - un)”

(Tgl g

el 4] ) 0
(Ta(h) lg( Yo ))ﬁ(h)‘lg)

= un (ro0-1g (v,y WTe a)),a(h)*lg)

= up - (Ton)-1g (Tg=1(vn)7g-1(a)) ,0(h) ' g)
(

g
To(h)— 1(vpa),d(h)~ 19)

U;h"u;;' (a’ag) = Uhp-
Up, -

= uh

= Uh

= Up-
(Ta(h) 1 vha)v )
((vp, (vha) vn) va*, )
(

a,9)

The calculations for u} -up - (a, g) are quite similar, and will be therefore omitted
at this place. O

Definition 3.13. We will refer to (A, u) as constructed in 3.12 as the (7, v)-
semidirect product of A and C.

Theorem 3.14. Let C be a crossed module, an action of C on a C*-algebra A
in the category Corr(2) is equivalent to a saturated Fell bundle (A, u) together
with an isomorphism of C*-algebras A; = A

Proof. Let C = (G, H,0,) act on a C*-algebra A by (a, ) we use the construc-
tion from Theorem 2.39 to construct a Fell bundle over the underlying 1-group.
To get a Fell bundle over a 2-group, we need to construct some multipliers
up € UM(A)gny- Therefore, let vy py: g = ag(n)y be the bigons induced by
(9,h) € G x H and define up, := (Ap, pip) by

Ap = V(g=ty,—1(h=1))" Ag = ag-1 = ag-19(n)-1 = Ag(n)g

MR = V(g=1 p-1) P Ag =gt = gy 19 = Agan)
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It is obvious, that A\p, u, are indeed of left- respectively right order d(h). Fur-
ther, to show that aA,(b) = pun(a)b for a € Ay, b € Ay, calculate

aAp(b)
=w(g; 0~ g e V(gz;l,a,gz,l(hfl))(b))
=69 0™ 91 ) Wagm—1g7t 1) © Vg w1 (@) O Vgt i ()
oy, () V(a(h)—lgfl,h)w<g;17 8(h)_19f1)(V(g;17h—1)(a) ®b)
:V(gfla(h)*lggl,’y%q(h*l)ggl(h))w(ggl’ O(h) " g1 ") (n(a) ® b)
V(01000 105" 7,1 ) (1(@)D)
=pp(a)b.
Moreover, for a € Ay, b€ Ag,:
lab) = viyos s 1y 053 g7 (0 ®4 )

= gzt ) h Vigp o) ©@(92 91 )@ ®ab)

= W<a(h)_19517gfl)(V(g;I,eG)(a) ®A V(g1 p-1)(D))

= au(b).

A similar calculation shows A(ab) = A(a)b. In a final step,

Ayg (@) = V(g1 51 (4, )1 (@)
= Vg1 5 (g (b)) (@) = V(g=1,0-1) (@) = pin(a)

for all a € Ay, and all g € G. Hence u, € UM(A)pp) for all hin H.

Conversely, given a Fell Bundle A over a crossed module C = (G, H,d,7),
construct a group action as in Theorem 2.39. The only thing left is to define
some bigons v (g ).

To accomplish this, use the multipliers uy, to define v(g 5) := pj,-1, hence

Fop—
V(g,h): Qg = Ag—1 " Ag-1o(n)-1 = Qa(n)g-

We have to check, that this constructions produces the right horizontal and ver-
tical multiplication, as defined in Theorem 3.8. For the vertical multiplication,
that is

(V(a(h)g,n) © V(g.m))(ag)
:(Ag—l . Uh—l) cUpr—1
:Ag—l cUp—1pr—1

=V(g,hn)(g)
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For the horizontal multiplication consider
V(gi,h1) "h V(927h2)(o‘91 ° Ozg2) :V(glyhz)(agl) ° V(gz,hz)(am)
:Ag;1 -uh;u‘lg;l -uhfl
:Agz—lAgl—l . u%n (h2—1) . uh1—1
:A(glgz)_l “U(h1vgy (ho))~t

=V(g192,h174, (h2) (ag1g2)

Since uy, is unitary by definition, this yields the right bigons v, 1. O

3.3 Continuity of weak 2-Group Actions

Let 2 be a Fell bundle, we equip the multiplier Fell bundle M (2) with the
strong topology. That is, for any net (ux)rea we say

uy > usuy-a—u-aand a-uy > a-uin Aforallae A

Lemma 3.15. [10] Let G be a locally compact group, A be a Fell bundle over G,
then the maps (u,a) — ua and (u,a) — au on M(A) x A to A are continuous.

Proof. At first we show, that if v € T'o(2), then

(u,9) = u(v(g)) (3.1)

is continuous on M*(2) x G to 2. Let u; — u in M*(21), g; — g in G. We may
assume that g; and g all lie in a compact subset K C G. Let € > 0, (ex)rea be
an approximate unit in 2[. We fix some index A\g in A, such that

llex,y(k) — (k)| < e for all k in K (3.2)
To show that w;y(g;) = uy(g), we use Proposition 2.18. Define
a; := (uiexy)v(gi) and a = (uex,)y(g)-

Then a; — a, since wu;ey, — wuey, in A, and multiplication in A is jointly
continuous. Hence our (a;) fulfills condition (i) of Proposition 2.18. Moreover,
equation (3.2) and the fact, that ||u;|lo < 1 and |Jullo < 1 yield condition (iii)
and (iv), and of course (ii) is fulfilled by construction. Hence (3.1) is continuous.
Now suppose that u; — u in M*(2), and a; — a in A. Choose vy € T'x(2), such
that v(7(a)) = a. Then u;v(mw(a;)) — wa by the first part of the proof, and

l[uiai = uiry(m(a))|| < llai = y(w(ai))l| = 0.

Hence u;a; — ua, which proofs the assumption. The proof for the map (u, a) —
au works the same way. O

Corollary 3.16. Let G be a locally compact group, A be a Fell bundle over G,
and M(2L) be the multiplier bundle over 2 equipped with the strong topology.
Then UM(L) is a topological group.
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Proof. Let u € M(2), and (ex)rea be an approximate unit of 2. Then for
each a € A, we have (uey)a = u(eya) = ua and a(uey) = (au)ey — au, hence
uey — u strongly in M(2(). That is, A is strongly dense in M(2). So there is
a continuous extension of the maps in Lemma 3.15 to M () x M(2l), which
restricted to UM (A) x UM (2) yields a continuous multiplication on UM ().
Moreover, for some net u; — u in UM (), we have ufa = (a*u;)* = (a*u)* =
u*a for all a in A. Doing the same calculations for au*, we see that the involution
on M(2l) is strongly continuous, and since u* = u~! for unitaries, so is the
inversion on UM (2A). Thus UM () is a topological group with respect to the
strong topology. O

Corollary 3.17. UM() is strongly closed in M*(2).

Proof. Let u; — u in M!(2A), such that u; € UM() for all i, then by the
continuity of the involution and multiplication on M!(2l), we have 1 = u;u} —
uu*, and hence u* = v~ O

Definition 3.18. Let G be a locally compact group, 2 be a Fell bundle over G,
we define the uniform-on-compacta topology on T'(2) by saying, that a net ~;
converges to 7, if and only if for each compact subset K in G, sup ¢ [|7i(g) —

(9l =0

Now let G be a locally compact group, 2 be a Fell bundle over G, and K C G
be compact, then we define a semi-norm pg on I'(*8) by

pr(7) = sup (9l

The collection of all these seminorms generates the uniform-on-compacta topol-
ogy for I'(*B).

Moreover, we want to define an action of M(B) on I'(*B). Let ©v € M(2),, and
v € I'(2A), define:

Clearly uy and yu are in T'g(A), and (uv)y = u(vy) and y(uwv) = (yu)v for
v € M(B). Further it is easy to verify, that

pr (uy) < llullopg-1x(7)
pr(yu) < [lulloprg—1(7)

Proposition 8.19. [10] Let (u;) be a net in M*(), u an element of M*(A). It
is a necessary and sufficient for u; — u strongly that the following two conditions
hold:

(i) Let 7%u;) — 7°(u) in G.
(i1) wiy — uy and yu; — yu uniformly-on-compacta for all v in To(B).

Proof. Assume that u; — u strongly, that is u;a — ua and au; — au for all @ in
A. Since (u;a) can be seen as a net in A converging to ua, it is necessary that
m(u;a) — m(ua), which proves the necessity of (i). Let v € T'9(B), let K C G
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be compact, and let ¢ > 0. By Lemma 3.15, the map (v, g) + vy(7%(v) !

continuous on M*(2) x G to B. So

g) is

1

(v,9) = vy (7 (v) " g) — uy(x®(u) " g)|

is continuous on M'(2) x G and vanishes for v = u. Consequently, by the
compactness of K, there is a strong neighborhood U of u in M!((), such that
loy(7O(v)~tg) — uy(7®(u)"1g)|| < e for all v in U and g in K. But this says
pr(vy —wy) < € for all v in U. Since K and e are arbitrary, this implies
u;y — wy uniformly on compacta. Similarly yu; — ~yu, so (ii) holds.

Conversely, assume (i) and (ii), and let a be an arbitrary element of A. Choose
v € T'g(A), so that y(m(a)) = a. Let g; := w(uw;a), g = w(ua). By (i), gi —
g. Since u;y — wy uniformly on compacta and ¢g; — g, we have u;7v(g;) —
uy(g9)- But (ui7)(g9) = uy(n®(ui)~'g;) = wiy(n(a)) = wa, and (uy)(g) =
uy(m(u)~tg) = wy(r(a)) = ua. So u;a — ua in A. Similarly au; — au. So
u; — u strongly. O

Proposition 3.20. [10] Let g be in G, and (u;) be a net of elements of UM (B),
such that 7°(u;) — g. Suppose further that there exist functions M and L on
L) to T'(A) such that wiy — L(v) and yu; — M(~). Then there exists a
multiplier u in UM(2L), such that 7°(u) = g and vy = L(v) and yu = M(f)
for all v € T ().

Proof. Let h € G, n € I'x(A) and n(h) = 0y, then
L) (k)| = tim [ em) ()| = lim ()| < (B = 0.

Hence, L(n)(gh) depends only on n(h). Note further, that L and M are neces-
sarily linear, therefore we can define a quasi-linear map A: A — A of left order
g as follows:

A(n(h)) := L(n)(gh) (3.3)
Note that by the preceding argument,
Aa) = limu;a (3.4)
for all a in A. In particular
M) < llal (3.5)

To show that A is continuous, suppose a; — a = v(h) in A, where v € To(20).
Then, if h; = 7(a;), we have by (3.5)

[A(ai) = A(y(Ri))Il < llai = y(hi)|| = 0
Also, h; — h, so
A(v(hi)) = L(v(gh:)) — L(f)(gh) = Aa).

Hence A is continuous. Similarly, we define a continuous bounded quasi linear
function p: B — B of right order g, such that

p(y(Rh)) = M(f)(hg) (3.6)
ula) = lilm au; (3.7)
(@)l < llall (3.8)
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Finally, if a,b € A, we have by (3.4) and (3.7)
pu(a)b = lima(u;b) = aA(b)

Thus, u == (\,u) € M(2). By (3.5) and (3.8) u € M!(A). Moreover, by
(3.3) and (3.6) we have uy = L(v) and yu = M(y) for all v € I'(2), and by
Corollary 3.17 u is unitary. O

Definition 3.21. Let C = (G, H, 9, ) be a crossed module, we say C is a topo-
logical crossed module, if G and H are topological groups, 0 is a continuous
group homomorphism and + is strongly continuous.

Definition 3.22. Let C = (G, H, 0, ) be a topological crossed module. A Fell
bundle over C is continuous, if the underlying Fell bundle over G is continuous,
and if the map u: H — UM(2) is a continuous group homomorphism with
respect to the strong topology on UM (2).

Now we are ready to define continuity for a weak action (A, o, w,u,v) of a
topological crossed module on a C*-algebra in €ort(2). Considering the previous
discussion, we say that v, ) is continuous, if the map (h, g) — v(g.n)(n(d(h)"'g))
is continuous for all 7 € a. On the one hand, this expresses the close relation of
v to multipliers, on the other hand it ensures that v(x(a,),n,)(@i) = V(r(a),n)(@)
for h; — h in H, and a; — a in A. Hence we define:

Definition 3.23. Let (A, a,w,u,v) be a weak group action of a topological
crossed module C = (G, H,d,~) in the category Corr(2). We say (A, o, w,u,v)
acts continuously on A, if (A, «,w,u) is a continuous action by G, and if the
map

(h,9) = Vg (n(0(h) " g)) := (v(gnyn) (R)

is continuous from H x G to oy for all ) € a.

Theorem 3.24. Let C be a topological crossed module, a continuous action of C
on a C*-algebra A in the category Corr(2) is equivalent to a continuous saturated
Fell bundle (A, u) together with an isomorphism of C*-algebras A; =2 A

Proof. Let (A, a,w,u,v) be a weak action of a crossed module C = (G, H, 9,7),
apply 3.14 to construct a Fell bundle 2 over C, moreover use Theorem 2.54 to
show, that the underlying Fell bundle over G is continuous. All we have to check
is the continuity of the map h — up,

Recall that for u; = ()\h,uh) we have pp = vg-1p-1). Moreover, for any
section 7 € T'g(B), let n* := noi be the corresponding cross-section in «, where
¢ denotes the inversion on G. Now by Theorem 3.20 pp, — p if there exists
a continuous function M: I'o(B) — T'y(B) such that pp,(n) — M(n). Then
u(n) = M(n). Let h; — h in H, using the continuity of v, 1), we have

1, (1) (9) = pn, (n(gd(hi) ™))
= V(gfl,h;l)(ni(a(hi)g_l)
= Yg-1h-1) (' (B(R)g™")
= pn(n(gd(h)™"))
= un(n)(g)
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Thus we have M(n) = pun(n), and therefore
p(n(g)) = M(n)(g0(h)) = pn(n(g0(h)d(h)~") = pn(n(g)),

hence p = pp, and therefore pp, — pp. The proof for A, works similarly.

Conversely, let C = (G, H, d,7) be a topological crossed module, 2 = (A, )
a saturated continuous Fell bundle over C. Define a crossed module action
(A, a,w,u,v) as in Theorem 3.14. By Theorem 2.54, « and w are continuous.
Recall that v(g ) = pp-1. Since h — uy is continuous, and pp, (a;) — pn(a) by
Lemma 3.15, we have

Wgon)(1)(90) = (k=17 (977 )
= -1 (v(g; ' 9(ha) ™))
= -1 (v(g7rA(R) ™)
= Ve (V' (0(h)"g))
(v)(9)

which proves the assumption. O

= V(g,n)\Y
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Chapter 4

An Extension to Groupoids

We are aiming on to extend our results in Section 2 to groupoids. Hence, we
are starting with a brief discussion of locally compact, and especially r-discrete
groupoids. Then we define actions of r-discrete groupoids in €orr(2) and Fell
bundles over groupoids and generalize the results of Section 2 to the case of
r-discrete groupoids.

4.1 Properties of r-discrete Groupoids

Definition 4.1. [21] A topological groupoid consists of a groupoid G and a
topology 7 compatible with groupoid structure, that is

(i) the inversion x — 2! is continuous and

(ii) the multiplication (g,h) — gh is continuous with respect to the product
topology on G x g1,

Remark 4.2. [21] For any topological groupoid, the following statements hold:
(i) s, r are continuous

(ii) the inverse map 4 is a homeomorphism

(iii) G© is closed in G via the embedding ¢: x — 1,.

(iv) if G is Hausdorff, GV x,. GV is closed in GV x g1

Definition 4.3. [21] Let G be a locally compact groupoid. A left Haar system
for G consists of measures {\*,z € G} on G, such that

(i) supp A" =G”

(ii) (continuity) for any f € C.(G)}, the map x — [ fd\* is continuous and
has compact support

(iii) (left invariance) for any = € GV, f € Cc(G) holds [ f(zy)dA\*®)(y) =
J F)dXN @ (y)

Definition 4.4. [19] A locally compact groupoid is a topological groupoid G
satisfying
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(i) G© is locally compact Hausdorff in the relative topology inherited from
g

(ii) there is a countable family A of compact Hausdorff subsets of G, such that
the family {4 : A € A} of interiors of members of A form a basis of the
topology of G

(iii) every G* is locally compact Hausdorff in the relative topology inherited
from G

(iv) G inherits a left Haar system {\*}
Remark 4.5. [19] Definition 4.4 yields the following statements:

e by (i), every singleton subset of G(9 is closed in G(?). Thus by continuity
of r and s, each G%, G, is closed in G.

e by (iii), every singleton subset of G is closed, and the topology of G has a
countable basis. Further G(¥, G*. and G, have a countable bases.

Proposition 4.6. [19] Let G be a locally compact groupoid. Then r and s are
open maps from G to G0,

Proof. Let U be an open subset of G. By Definition 4.4, U is a union of open
Hausdorft subsets of G, an thus Hausdorff too. Let g € U, f € C¢(U) with
f>0and f(g) > 0. Define f° on G by fO(z) := [ fdA*. By Definition 4.3
O € Co(6@) and f°(r(g)) > 0. Since f° vanishes outside 7(U), the open
subset {z € G : f(x) > 0} = f~1((0,00)) is contained in r(U). So r(U) is a
union of open subset and therefore open in G(°). Since s(U) = r(U™1), s(U) is
also open in G(©. O

Definition 4.7. [19] Let G be a locally compact groupoid, let G°P be the
family of open Hausdorff subsets U C G, such that the restrictions r,, s|, are
homeomorphisms onto open subsets of G(©. G is called r-discrete, if G is a
basis for the topology of G.

Remark 4.8. There are several equivalent definitions of r-discrete groupoids.
Renault defines a locally compact groupoid to be r-discrete, if G(©) is open in
G (cf. [21]). Tt is easy to see, that this is a direct result of our definition, since
g0 = UAegop r(A) is open in G by Proposition 4.6. The converse is shown in
by Renault in [21, Proposition 2.8].

Lemma 4.9. [21] Let G be an r-discrete groupoid
(i) For any x € G, G* and G, are discrete spaces.
(it) If a Haar system exists, it is essentially the counting measure
Proof. (i) [19]Let g € G®, then there is an U C G°P, such that g € U. Since
r is injective on U, the singleton {g} = G* (U is open in G*

(i) [21] Let {A\*} be a left Haar system. Since G is discrete and A* has
support G”, every point in G* has positive A”-measure. Let f = A(xgo),
where xgo is the characteristic function of GO, It is continuous and
positive. Replacing A% by f(x)~!\®, we may assume that \*({g}) = 1 for
any z. Then by invariance, AY({h}) =1 for any h € gg.

O
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Considering the previous lemma, we may regard an r-discrete groupoids
as the groupoid analogue to discrete groups. Especially any countable discrete
group G, viewed as a groupoid G with an one elemental object space is r-discrete.

4.2 Weak Groupoid Actions in Corr(2)

Let G be an r-discrete groupoid, 2 = (A,7: A — g<0>) be a C*-bundle in the
category Corr(2). We can define an action of G on 2 as usual as a homomorphism
of 2-categories : G — Corr(2), such that

1: GO = ¢orr(2)© g: G — Corr(2)M
T = flm g — Qg
where A, denotes the fiber over x and «, is an A,y — A,y -imprimitivity
bimodule.

Further for any (g, f) € g<1)s(g)><r(f)g<1>, there exists an A,(y)— A, (g)-imprimiti-
vity bimodule isomorphism w(g, f), such that

1(0) £ 4(g) 01(f) = 0y © 0 228
and bigons u,: 14, = «a, for all z € G(©), such that for y € G(¥), and all g € G¥
we get
(1) =599 ) £ wa, L oy By,
Moreover, our w(g, f) and 1, have to satisfy some coherence laws similar to (1.9)

and (1.10). The only difference is that we have to pay some extra attention to
composability. This proves the following lemma:

Lemma 4.10. A weak groupoid action in Corr(2) of an r-discrete groupoid G
on a C*-algebra A is given by

(i) Agg) — Ar(g)-imprimitivity bimodules oy for all g € g,
(ii) invertible bigons w(g,h): an @4, (n) g = agn for all (g,h) in g<1>s(g)><,.(h)
g<1>, and
(i) invertible bigons uy,: 14, = aq,,

such that any w(g, h), u, fulfills some analogues to the coherence laws (1.9) and
(1.10), with some extra attention to composability.

Definition 4.11. [17] Let G be a second countable, locally compact Hausdorff
groupoid. A Fell bundle over G is a second countable Banach bundle 8 =
(B,m: B — G), such that

(i) For any z € G B, is a C*-algebra and for every g € G, B, is an
invertible correspondence from B,.(g) to By(g)-

(ii) For every (g,h) € G®, where G(2) denotes the set of pairs of composable
morphisms in GV, exists an unitary equivalence UY between B, ®5_ . By
and Bg, which induces an associative, bilinear product

s(9)

m:B% - B
(bl, bg) — [I:}é;; (bl X b2)
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Where B2 := {(by,bs) € B x B: (7 (b1),7 (b2)) € G?}.
(iii) There exists an involution on B, such that

m(b*) =7()~!

b +— b* is conjugate linear
(m (b1, b2))" = m (b3,01)
for b1, b2 € By holds

Q

b
¢

)
)
)
d)

m (b3, b2) = (b1,b2) B,
m (b1,b3) = B, (b1, b2)

where we tacitly use the isomorphism B; = B,
(iv) The mappings m and the involution are continuous

A Fell bundle is called saturated, if B, is full as a B
as a B,(,) Hilbert module.

r(g) Hilbert module as well

Ezample 4.12. [17] Let G be a groupoid, A = (A,7: A — G(¥) a C*-bundle
over G, Assume that G acts on 2 by a homomorphism a: G — Aut(2l).
Assume that « is continuous in the sense, that &: s* — r*2 is continuous,
where

s*A = {(a,9):a € Ayg)}
rA = {(a,9):a€ Ay}

are the pull-back bundles and where &(a, g) = (a4(a), g)
When we set B := s*2 with p(a,g) = g, we obtain a Fell bundle over G, where
the product and involution are given by

(a1,91) - (a2,92) = (a,-1(a1)az, g192)
(a,9)" = (ag(a®),g7")

The obtained Fell bundle ‘B is called the crossed product of 2 by G and denoted
by B =2Ax,G.

Theorem 4.13. Let G be an r-discrete groupoid. A weak groupoid action of
G by correspondences on a C*-bundle A = (A, 7: A — G©)) is equivalent to a
saturated Fell bundle B = (B, p: B — G) over G with isomorphisms p,: By, —
A, for all z € GO,

Proof. Starting with a groupoid action (2, a,w,u), we have to generalize the
proof of Theorem 2.39 and check condition (i) to (iv) of Definition 4.11.

First of all, for any g € GV, we identify B, € B with a,-1. Since oy is an
As(g) — AT(Q)—impI‘imitiVity bimodule for all g € Q(l), B, is an Ar(g) — As(g)—
imprimitivity bimodule for all ¢ € GV Further, for any = € G, identify
B, € B with A, and implement the isomorphisms ., using the identity bigons
Uz, bY 0 = u;: By, = aj, — 14, = A, for all z in G, That way B covers
all properties from Theorem 4.11, condition (i).

For (ii), the w(g, f) yield a unitary equivalences U, gf (cf. [16], Theorem 3.5: any
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surjective, A-linear isometry between two Hilbert-modules €4, F4 is an unitary
equivalence) by
1 —1

Bg X Bf = Qg1 ® af-1 w9

aj-1g-1 = Byy,

where the associativity of the multiplication m: (b1, by) — U:((:;)) is given by
the coherencelaw (1.10).

To check condition a)—d) of (iii), recall the definition of ¢, and define again
%12+ Ug(x). Since dy: By — By-1, the identity a) is obvious. b) follows
directly from the definition of the dual and c) has been already shown by proving
Theorem 2.39.

In order to show d), we use Remark 1.22. For by, by € By, vy = u;(z) ow(gt

.9)
and wy = v,-1 = us’(lg) ow(g,g71), we get

m( T, bg) = w(g,g_l)(b{ ® bz) = Us(g) © wq(bT & bg)
= us(g)(<ﬁg_1(b>{)7b2>s(g)) = ur(g)(<blvb2>s(g))~

The second equation follows from c¢) and property (iii) of Definition 1.1.

To check (iv), recall from Lemma 4.9 that for any x € Q(O), G® and G, are
discrete. Now ¢W, x,. g = |_|m€g(0) G, x G*, thus GW, x, G is r-discrete
over G, and therefore m is continuous. Moreover, since the inversion i is
a homeomorphism, the continuity of the involution can be shown in terms of
cross-sections as in Theorem 3.24.

Now let B = (B,p: B — G) be a groupoid Fell bundle. Since for any
z € GO, B, is a C*-algebra, this yields a C*-bundle

A=(A:=Bn W_l(g(o)),mA: A— Q(O)).

Define «, := By-1, this is by definition a B,y — B, (y)-imprimitivity bimodule
and hence an A,y — A, (g)-imprimitivity bimodule. Let 1, be the identity in
GZ, this yields a B, — Bg-imprimitivity bimodule B;, which is isomorphic to
BBsp,. We can use ¢, to define a unit bigon

-1
®x
Uy : ].AI :Az —>B12 = 0

x

For the bigons w(g, h), let (g,h) € Gs X, G and define

h—1
w(g, h) ap @ ag = Bp-1® Bg—l Ll) Bh—lg—l = Qgp

By definition of m and U, this makes w(g,h) a bilinear, associative, unitary
equivalence, and thus a bigon in Corr(2). O
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Chapter 5

An Extension to 2-Groupoids

Analogously to Chapter 3, we start with the construction of a quotient groupoid,
and show that pull backs of Fell bundles by a quotient map yield a special class
of a Fell bundle. Moreover, we define a crossed module of r-discrete groupoids
and show that these yield 2-groupoids. Then we combine our results of all
previous sections to show, that weak actions of r-discrete 2-groupoids in Corr(2)
are equivalent to saturated Fell bundles.

5.1 Quotientgroupoids and their Pull-Back Bun-
dles

Definition 5.1. [1] Let G be a groupoid, G is called totally disconnected, if
GY = for all z,y in GO, such that x # y.

G is called discrete, if G is totally disconnected, and G* = {1,.} for all z in g
A subgroupoid H of G is called wide, if HO) = gO),

Remark 5.2. Please note, that in some papers a totally disconnected groupoid
is meant to be a topological groupoid with (topologically) totally disconnected
objectspace. This is not the case in this thesis.

Definition 5.3. [1] Let G, H be groupoids, 8: G — H a groupoidmap. Define
ker(#) to be the wide subgroupoid of G, whose morphism are

ker(0)V) := {g € G : 0(g) = 1, for some z € HO}.

We call ker(6) the kernel of G.
Further, for any subgroupoid X of G, we say 6 annihilates X, if (X)) is a discrete
subgroupoid of H.

Definition 5.4 ( [14]). Let G be a groupoid. Two elements z,y € G(© are
called connected, if G¥ = (). A subgroupoid # is called connected, if all elements
in H(© are connected. And a subgroupoid # is called component of G, if it is a
maximal connected subgroupoid.

Definition 5.5 ( [14]). Let G be a groupoid, a subgroupoid H is called normal,
iff

(i) H contains all identity elements of G
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(ii) h € HZ, g € GY implies ghg™' € HY.
Let G be a groupoid, H be a normal subgroupoid of G. The components of
H define a partition on G(?). We write [x] for the equivalence class containing

z € GO and Q/H(O) for the set of equivalence classes.

H also defines an equivalence relation on G(M) as follows: g = ¢/(mod H) iff
g = hig'hy for some hi,hy € H (we denote the set of equivalence classes
by G /H. Two equivalent arrows of G must have there sources in the same
component of H, and similarly for their targets. So to each class [g] of arrows

can be assigned a unique source and target in G/ H®. We define a multiplication

on g/?—[(l) as follows: let [g], [f] € Q/H(l), the product [g][f] is defined iff there
exists g1 € [g], f1 € [f], such that g; f1 is defined in G. Then [g][f] := [¢1 f1]-

Proposition 5.6. [1/] This multiplication is associative and well defined
Proof. Let g1, f1,[g],[f] be as above and g2 € [g], fo € [f] such that gofs is
defined in G. Then
92 = hg191hg2 and fo="hsifihgo
, where hgi,hgo, hfi,hpe € H, and
92f2 = hg1g1hgahyi fihyo
in G. Since g, f1 is defined in G, hgahs lies in a isotropygroup of H, so
v =fy "hghpi fr

is defined and lies in H. Hence

g2f2 = hg191 frvhy, = g1 fi(mod H).

Now for [g]: [y] — [#], [f]: [w] — [z] in G/H, the product [g][f] is defined iff
there is an h € H, such that ghf is defined in G, that is, iff [x] = [y], and then we
have [g][f] = [ghf]: [w] — [2]. Moreover, if ([e][f])[g] is defined, then eh; fhaog
is defined for some hq, ho € H O

Hence, G/H is a category whose identities are the components of H. More-
over, we can define a map 7: G — G/H, g — [g],  — [z] for all z in GO, g in
G This map is surjective, hence G/H is a groupoid, since G is a groupoid.
Definition 5.7. [14] We call G/H the quotient of G over H, and 7 the associated
quotient map.

Lemma 5.8. Let G be a groupoid, N be a normal, totally disconnected sub-
groupoid of G. Then for all g in G holds [g] = N:((;))g.

Proof. By definition, ¢’ € [g] iff g = n1g'ny for some ny € N:((;)), ny € NEE)
Since N is totally disconnected, we have r(g’) = r(g) and s(¢’) = s(g). Further,

the normality of A/ implies N:((;))g = gNSS((;’)). So for n} € N:((;)), we get

/
g ="nig n2
-1 _ /
gng = n1g
/ ’
Nag = N1g
—1_7 /
ny Nag =g

g/ c /\/':((j))g-

t ¢
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Definition 5.9. Let % = (B, ) be a Fell bundle over an r-discrete groupoid G,
and g € G, A multiplier of order g is a pair of bimodule morphisms m = (X, 1)
fulfilling

(i) A(By) = Byy for all f € G*9) and u(By) = By, for all f € G,(,).

(11) by ®r(g) )\(bg) = M(bl) ®s(g) by for all by € Bf17 by € sz with f1 S Qr(g)
and fy, € G5(9).

(111) /\(bl X bg) = )\(bl) ® by and N(bl ® b2) ~2h® /.L(bg).

We denote the set of multipliers of order g by M(*B), and the set of multipliers
on B by M(B).

Remark 5.10. Let B = (B,7) be a Fell bundle, m = (\, ) € M(B),, g € G,
Note that the further theorem implies

(1) )\(Bé(g)) = Bg and ,U(Br(g)) = Bg.

(ii) b1-A(b2) = p(b1) - by with by € Bi(g), ba € By(g), and - denoting the action
of By(g) respectively B4 on the imprimitivity bimodule B,,.

(iii) A(bibz) = A(b1) - bo and p(b)by) = by - pu(by) for by, by € Byg) and b, b5 €
Bu(g),

by using the equivalence B, = By, for all z in G(©).

Remark 5.11. Let 1, € G. Then M(%8)1, = M(B,), where the latter denotes
the usual multiplier C*-algebra of B,. Further for g € GZ, M(B1,), = M(By),
where the latter denotes the set of multipliers on the imprimitivity bimodule A,.
Finally, for G(®) = {x}, let A be the Fell bundle over the group G(!) such that
A = B, then M(B) =2 M(Q), where the latter denotes the multiplier bundle
on 2.

Hence our definition generalizes any former definition of multipliers.

Remark 5.12. As usual, for any multiplier m = (A, u), we write m - a to denote
A(a), and a - m for p(a).

Further we define the usual conjugation by m* - a := (¢* - m)* and a - m* :=
(m-a*)*.

Theorem 5.13. Let G be an r-discrete groupoid, N be a normal, totally dis-
connected subgroupoid of G. A Fell bundle 2 over G is isomorphic to a pull
back bundle q*B for some Fell bundle B over G/N, iff there is a continuous
homomorphism u: N — UM(2L), such that

(i) un € M(A), for all n € N
(i) agu, = ugng—1a4 for all ag € Ay, n € NI

Proof. Let % be a Fell bundle over G/N, ¢*B the corresponding pull-back bun-
dle. Now let n € V7. As in Theorem 3.5 we can define u, := (1), ,n)
to be our unitary multipliers. Since N is a group, we can do the same cal-
culations as before, with some extra attention to composability, to show that
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Up, € UM(¢*B).

Conversely, by Lemma 5.8, [g] = N¥g for all g € G*. Hence the construction
of Theorem 3.5 works generally identical in our new setting. O

Proposition 5.14. [1] Let G be a groupoid, N be a normal, totally disconnected
subgroupoid of G and q: G — G/N the quotient map. Then q annihilates N

5.2 Crossed Modules over Groupoids

Definition 5.15. [3] A continuous action v of a topological groupoid G on a
bundle $) = (h, ) of topological groups is a map v: G — Aut(h) such that ~,
for g € GY is a group isomorphism from H, to H,.

Definition 5.16. [3] A crossed module over a topological groupoid G and a
group bundle $) is a quadruple (G, $,0,7), where $ = (hy),cg© is a bundle
of topological groups over the object space G(¥), 9: $§ — G is a continuous
homomorphism, and v: G — Aut($)) is a continuous action, such that

Avg(h)) = gd(h)g™"  V(g,h) € Goxx H (5.1)
FYB(h)(k) = hkh~! V(h, k) €EH X G(0) H (52)
Remark 5.17. Please note, that condition (i) of the former definition implies,

that the boundary map O has to act as the identity on the objectspace G(?).
Hence the image 0(H) is a subgroupoid of G, having the same identities as G.

Theorem 5.18. A crossed module C = (G, 9,0,~) yields a strict-2-groupoid Ge
via

g¢" =g

g(l) g 1)

¢ =G0, x.

with a horizontal multiplication defined by

(91, 1) *n (92, h2) = (9192, h17vg, (h2))

where (g1,92) € GWyx,. GM, hy € H,(4,), and hy € H,(,,) and a vertical
multiplication defined by

(0(h)g, W) o (g, h) == (g,h'h)
where g € GV, h, W' € H,(g), and (g, h) denotes the bigon g — d(h)g

Proof. The calculations to check the coherence laws are identical to the ones
done in the proof of Theorem 3.8, so we skip those here. What is left to check
is, that the multiplications are actually defined.

For the horizontal multiplication, (g1,92) € Gy x,. G, hence gig, is de-

fined and an element of g;'((;“)) Further, since hy € H,(,,)

Yo1 * Hs(gl) = H r(g1) Yo (hg) S H (g1)- Since hy € H h1'7q1 (hg) is defined

= Hé(g1)’ and
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and in H, ). Hence (g192, hivg,h2) € Grxx H = gé”. Thus the horizontal
multiplication is defined and closed.
For the vertical multiplication, note that from condition (1) of Definition 5.16

one can deduce, that for h € H,, d(h) € G®. Hence d(h)g € g;ég)). And since

(Ohg,h') € G.xx H, W/ € H,(,. Thus h'h is defined and an element of H, .

Further we get (g, h), (9(h)g,h'), (g, h'h) € g;((_g)) X H,(g). So o makes perfect

sense as a vertical multiplication. O

Corollary 5.19. By the former Theorem, we can define a weak action of a
crossed module C over a groupoid G and a bundle $ on a C*-bundle A over Q)
in the Core(2)-category as a (weak) 2-morphism : Ge — Cove(2), such that

1: G0 5 eore(2)@  g: G 5 Core ()@ 5 6P — Core(2)®
r— Ay g = Qg (gah)HV(g,h)'

Where oy are invertible C*-correspondences from Ay to Ay gy and vy 1) are
C*-correspondence isomorphisms, such that v(g p): ag — agpyg, which inherit
the vertical and horizontal multiplication from Ge.

Futher, the functor yields some invertible bigons w(g1,g2): g, g, = Qig, Pg(g,)
Qg = Qgrg, 0Nd Uzt 1a, = a,Aga, = o1, which satisfy some analogues to 1.9
and 1.10.

g’

5.3 Weak actions of 2-Groupoids in €Corr(2)

Let C = (G, $,0,7) be a crossed module, and assume G to be r-discrete and the
fibers H, to be discrete groups. Analogously to the group case, condition (i) of
Definition 5.16 implies that 9($)) is a normal subgroupoid of G. Condition (i)
of Definition 5.5 is fulfilled by Remark 5.17. To check condition (ii), let h € H,
(and hence d(h) € 9(9)%), g € GY. Now since v,: H, — H,, we get

ga(h)g_l = B(WQ(h)) € 8(Hy) C a(ﬁ)y

Hence, the quotient G/9($) is a groupoid.

Since § is a totally disconnected groupoid, so is 9(f)). Hence the quotient
map ¢: G — G/0(H) acts as identity on G(°). Further, by Lemma 5.8, the 2-
morphisms of the 2-groupoid description of C are consistent with the equivalence
classes of G/0($)). Hence, equivalently to the group case, the crossed module C
models the quotient G/9(9).

Using Theorem 5.13, this leads to the following definition of a Fell bundle over
C:

Definition 5.20. Let C = (G, $,0,v) be a crossed module over an r-discrete
groupoid G and a group bundle $ = (H,7: H — g<0>) with discrete fibers.

A Fell bundle over C is an ordinary Fell bundle B over G together with homo-
morphisms u: H — UM(B), such that

(i) up € UM(%)a(h) forallhe H

(i) b-up = uy,(ny-aforalbe By, he H.
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Theorem 5.21. A weak action by C*-correspondences of a crossed module C
over some r-discrete groupoid G and a discrete group bundle ) on a C*-algebra
bundle A is equivalent to a Fell bundle B over C, together with an isomorphism
p: By, — A;.

Proof. The construction should generalize Theorem 3.14 as well as Theorem
4.13. As a starting point, we use the construction of Theorem 4.13 and proof
the equivalence of the corresponding 2-morphisms and unitary multipliers as in
Theorem 3.14.

Starting with a Fell Bundle 98 over some crossed module C = (G, $,0,7), we
apply the construction of Theorem 4.13 such that for all g, f € G we get some
arrows oy := B,-1 and some bigons w(g, h): agay = agyr. And for all 2 € G,
we get some bigons ug: 14, = ag.

Analogously to the construction of Theorem 3.14, we define our bigons v, )
via

V(g,h)* Qg = Qg(h)g
ar—a-up

The same calculations as before lead to the result, that these define indeed some
bigons satisfying the necessary conditions.

Conversely, given a weak action of a crossed module C, applying the construction
of Theorem 4.13 to construct a Fell bundle over the groupoid G and using the
definition made in the proof of Theorem 3.14 to get some unitary multipliers
will lead to the right results. O
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Chapter 6

Outlook

There are several possibilities on how to continue this work. Most obviously,
one might try to topologize the results of Chapter 4 and 5. Since an (upper
semi-)continuous Hilbert A-module bundle is equivalent to a Hilbert Cy(X, A)-
Module, where Cy(X, A) is exactly the cross-section algebra over the trivial
bundle A x X. One might assume, that an (upper semi-)continuous Hilbert
Module bundle &, consisting of a family of Hilbert A,-modules and a C* bundle
2, such that any F, is an Hilbert A, module is equivalent to a Hilbert module
over the cross-sectional algebra over 2. Provided this construction works, one
may define continuity of groupoid actions analogously to continuity of group
actions.

More algebraically, one might try to extend the work to actions of 2-categories
or inverse semi-groups. That is, weaken the invertibility of arrows and bigons
or to generalize the construction of the cross-sectional algebra to Fell bundles
over 2-groups and 2-groupoids and analyze its properties.
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