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Introduction

Motivation

Goal : to study the electronic transport in disordered materials and identify if
a material is a conductor or an insulator

Quantum mechanics setting :

physical state

physical observables

possible outcomes

a vector ψ in a Hilbert space H , with ‖ψ‖= 1

self-adjoint operator H

σ(H) spectrum of the operator H
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Introduction

Dynamics of a particle moving in a material : ψ ∈H = L2(Rd ) or `2(Zd ),
‖ψ‖= 1,

∂t ψ(t,x) =−iHψ(t,x),

ψ(t,x) = e−itH
ψ(0,x),

where H = H0 + V is a self-adjoint Schrödinger operator on H .

Example : electrons in a crystal, H =−∆ + V acting on `2(Zd ), the potential
Vψ(x) = q(x)ψ(x), where q is a periodic function.

extended states

band a.c. spectrum

extended states ∼ ψ(t,x) propagate in space as t grows ∼ transport
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Introduction

Dynamics of a particle moving in a material : ψ ∈H = L2(Rd ) or `2(Zd ),
‖ψ‖= 1,

∂t ψ(t,x) =−iHψ(t,x),

ψ(t,x) = e−itH
ψ(0,x),

where H = H0 + V is a self-adjoint Schrödinger operator on H .

Example : electrons in a disordered crystal

ψ(t,x) do not propagate in space as t grows ∼ absence of transport
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Introduction

Disordered media

P. W. Anderson 1958 :
if the medium has impurities, there is no wave propagation.
“Absence of diffusion in certain random lattices”, Phys. Rev. (Nobel 1977)

Anderson model : Hω =−∆ + Vω on `2(Zd ), with

Vω(x) = ∑
j∈Zd

ωjδj (x),

where ω = (ωj )j∈Zd is a random variable in a probability space (Ω,P).

Localization : first rigorous mathematical results in the late 70s, early 80s.
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Introduction

Recall from spectral theory

For a self-adjoint operator H and a vector ϕ ∈H , there exists a spectral
measure µH,ϕ such that

〈ϕ,Hϕ〉=
∫
R

λdµH,ϕ(λ)

or, formally

H =
∫
R

λdµH,ϕ(λ).

For this spectral measure µ = µH,ϕ one has the usual Lebesgue
decomposition into three mutually singular parts

µ = µpp + µsc + µac

which induces a decomposition of the Hilbert space H = Hpp⊕Hsc⊕Hac ,
such that

HH∗ =
∫
R

λdµ∗H,ϕ(λ), ∗ ∈ pp,sc,ac
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Introduction

Then, writing
σ∗(H) = σ(HH∗), ∗ ∈ pp,sc,ac

we have the following decomposition for the spectrum

σ(H) = σpp(H)∪σsc(H)∪σac(H)

***
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Introduction

The Anderson Model : on each point of the lattice we
place a potential, which can be • or •.

We consider many possible configurations.
Every configuration of the potential is a
vector ω in a probability space (Ω,P).

We get a random operator ω 7→ Hω =−∆ + Vω, where

Vω(x) = ∑
j∈Zd

ωjδj (x),

with ωj ∈ {•,•} bounded, independent, identically distributed random
variables.

For typical ω, ψω(t,x) does not propagate in
space as t grows ∼ absence of transport
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Introduction

Anderson localization (disambiguation)

Consider the Anderson model Hω =−∆ + Vω acting on a Hilbert space H .
We say it exhibits :

• spectral localization in an interval I if σ(H)∩ I = σpp(H)∩ I , almost
surely.

• Anderson localization (AL) in I if σ(H)∩ I = σpp(H)∩ I with
exponentially decaying eigenfunctions, almost surely.

• dynamical localization (DL) in I if there exist constants C < ∞ and c > 0
such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

• delocalization in I when (DL) does not hold.

dyn. loc⇒ Anderson loc.⇒ spectral loc.
dyn. loc : Anderson loc. : spectral loc.
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Introduction

Consequences of dynamical localization in an interval I

• Absence of transport If (DL) holds in I ⊂ R, then for ϕ ∈ `2(Zd ) with
compact support we have

sup
t
‖|X|p/2e−itHωχJ(Hω)ϕ‖ <∞,

restriction in energy

weighted space
time evolution

for every p ≥ 0, with probability one.

• In particular, supt〈X 2〉I(t) < ∞ almost surely.

• Decay of Fermi projector kernel : if E ∈ I, there exist constants C1 < ∞

and C2 > 0 such that

E
(
|〈δy ,χ(−∞,E)(Hω)δx〉|

)
≤ C1e−C2|x−y |
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Introduction

What is known

Consider the operator Hω =−∆ + λVω, with λ > 0 acting on `2(Zd ).

Theorem (Localization in d = 1)
For any λ > 0 Hω exhibits localization throughout its spectrum a.s.

Theorem (Localization d > 1)

i. for λ > 0 large enough, Hω exhibits localization throughout its spectrum
a.s.

ii. for fixed λ, Hω exhibits localization in intervals I at spectral edges a.s.
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Introduction

Phase diagram for Hω,λ on `2(Zd), with d > 1

Transport (Anderson) transition : passage from localized to extended states.

−2d 2d

σ(Hω,λ)

LocalisationX

ext. states ?

λ

Remark : delocalization is an open problem !
11 / 67



Introduction

We have now two tasks :

Determine the spectrum

Prove localization
Methods to prove localization in arbitrary dimension combine functional
analysis and probability tools to show the decay of resolvents,

• Multiscale Analysis (Fröhlich-Spencer’83).

• Fractional Moment Method (Aizenman-Molchanov’93).
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Introduction
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The Anderson model

The Anderson model

Ergodic properties and spectrum
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The Anderson model

Some definitions from probability

I We consider a probability space (Ω,B,P), where B is a σ-algebra and
P is a probability measure on (Ω,B).

I Given a probability space (Ω,B,P), a random variable is a measurable
function X : Ω→ R.

I The probability distribution of X is the measure µ defined by

µ(A) = P({ω ∈ Ω; X(ω) ∈ A}).

I The support of the measure µ is given by

suppµ := {x ∈ R; µ([x− ε,x + ε]) > 0, ∀ε > 0}.

I If for any A ∈ B , P(Y (ω) ∈ A) = P(X(ω) ∈ A) = µ(A), we say X and Y
are identically distributed.

I A collection of random variables {Xi}i∈Zd is called a stochastic process.

14 / 67



The Anderson model

I A collection of random variables {Xn} is called independent if, for any
finite subset {n1, ...nk} ⊂ Zd and abritrary Borel sets A1, ...,Ak ⊂ R,

P(Xn1 (ω) ∈ A1, ...,Xnk (ω) ∈ Ak ) =
k

∏
j=1

P(Xnj (ω) ∈ Aj ).

I If the collection of random variables {Xn} is independent and identically
distributed (i.i.d.), we have

P(X1(ω) ∈ A, ...,Xk (ω) ∈ A) =
k

∏
j=1

µ(A).

I We will often consider (Ω,B,P) =

(
RZd

,BR, ⊗
n∈Zd

µ
)

, where

RZd
:= ⊗

j∈Zd
R and write ω := (ωn)n∈Zd instead of {Xn(ω)}n∈Zd .
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The Anderson model

The Anderson model

Hω =−∆ + ∑
j∈Zd

ωjPδj on `2(Zd ),

where Pδj = 〈δj , ·〉δj .

• −∆ is the discrete Laplacian

−∆ϕ(n) =− ∑
m∼n

(ϕ(m)−ϕ(n)),

• ωj are i.i.d. random variables, with probability distribution µ with compact
support A.

• Ω := AZd 3 ω := (ωj ). The probability space is the product space
(Ω,B,P) with the product σ-algebra of Borel sets B and the product
probability measure

P =
⊗
j∈Zd

µ.

Analogously, we can define the Anderson model on `2(Γ), for Γ a countable
set. For ex., on a tree with branching number K , called the Bethe lattice B.
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The Anderson model

The Anderson model

Hω =−∆ + ∑
j∈Zd

ωjPδj︸ ︷︷ ︸
Vω

on `2(Zd ),

where Pδj = 〈δj , ·〉δj . This operator acts in the following way

(Hωϕ)(n) =−∆ϕ + Vω(n)ϕ(n)

=−∆ϕ + ωnϕ(n).

Since suppµ is compact, the potential Vω is bounded. Moreover, Vω is
self-adjoint on `2(Zd ).

Since −∆ and Vω are self-adjoint, the operator Hω =−∆ + Vω is self-adjoint
in `2(Zd ).
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The Anderson model

Definition
The map Ω 3 ω 7→ Hω ∈ B(H ) is measurable if for any ϕ,ψ ∈H , the map
Ω 3 ω 7→ 〈ϕ,Hωψ〉 ∈ C is measurable.

If the operator is unbounded, we check measurability of f (Hω), for any bounded
function f : R→ C.

• The Anderson model ω 7→ Hω on `2(Zd ) is measurable.

Note that Hω represents the family of operators (Hω)ω∈Ω.
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The Anderson model

Definition
Hω is called ergodic if there exists an ergodic group of transformations (τγ)γ∈Γ

acting on Ω associated to a family of unitary operators (Uγ)γ∈Γ on H s.t.

Hτγ(ω) = UγHωU∗γ for allγ ∈ Γ.

• The Anderson model Hω on `2(Zd ) is ergodic with respect to Zd .
That is, with respect to the translations τγ(ω) = (ωn+γ)n∈Zd and
Uγϕ(n) = ϕ(n− γ) with γ ∈ Zd .

Ex. The Anderson model Hω on `2(B), where B is the Bethe lattice under
some constraints, is ergodic w.r.t. a certain family of transformations in B (see
Acosta-Klein’92).
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The Anderson model

• The Anderson model Hω on `2(Zd ) is ergodic with respect to Zd .

Indeed, recall the family {τγ}γ∈Zd of translations on Ω given by

τγ(ω) = (ωn−γ)n∈Zd ,

and the family of unitary operators Uγ acting on `2(Zd ) defined by

Uγϕ(n) = ϕ(n− γ), γ ∈ Zd .

Note that U∗γ is given by U∗γ ϕ(n) = ϕ(n + γ) = U−γ. Then

UγHωU−γϕ(n) = Uγ (−∆)U−γ ϕ(n) + Uγ

(
Vω U−γ

)
ϕ(n)

=−∆ϕ(n) +
(
Vω U−γ ϕ

)
(n− γ)

=−∆ϕ(n) + Vω(n− γ)
(
U−γϕ

)
(n− γ)

=−∆ϕ(n) + Vω(n− γ)ϕ(n).

Recall that Vω acts in the following way : Vωϕ(n) = ωnϕ(n), for all n ∈ Zd .
Therefore Vω(n− γ)ϕ(n) = ωn−γϕ(n) = Vτγ(ω)ϕ(n), and so

UγHωU−γϕ = Hτγ(ω).
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The Anderson model

Almost sure spectrum

Theorem (Pastur’80, Kunz-Souillard’80, Kirsch-Martinelli ’82)
If Hω is an ergodic operator, there exist closed sets Σ, Σpp,Σac ,Σsc ⊂ R
such that for P-a.e. ω ∈ Ω

Σ = σ(Hω)

Σpp = σpp(Hω), Σac = σac(Hω), Σsc = σsc(Hω).

Theorem (Kunz-Souillard’80)
Let Hω =−∆ + Vω be the Anderson model on `2(Zd ). Then

(∗) σ(Hω) = σ(−∆) + suppµ a.s.
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The Anderson model

Summary

We saw that the Anderson model Hω in `2(Zd ) is ergodic. That is, there
exists an ergodic group of transformations (τγ)γ∈Γ acting on Ω associated to
a family of unitary operators (Uγ)γ∈Γ on H s.t.

Hτγ(ω) = UγHωU∗γ for allγ ∈ Γ.

• ergodicity⇒ the spectrum of Hω is deterministic.
That is, there exists Σ⊂ R, such that

σ(Hω) = Σ for P-a.e.ω ∈ Ω.

• ergodicity⇒ the pp/sc/ac spectrum of Hω is deterministic.

• For Hω in `2(Zd ), we can compute the exact set in R which corresponds
to the deterministic spectrum.
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The Anderson model

• ergodicity⇒ existence of Integrated Density of States.
Moreover, this function does not depend on ω ∈ Ω.

• The IDS gives another way to prove that the spectrum is deterministic.

• In some cases, the IDS gives also information on the localization region !

Reference

• W. Kirsch, An invitation to Random Schrödinger Operators, in Random
Schrödinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).
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Dynamical Localization

The proof of localization

From Fractional Moment Method to localization

24 / 67



Dynamical Localization

What is known

Consider the operator Hω =−∆ + λVω, with λ > 0 acting on `2(Zd ).

• Recall that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Theorem (Localization in d = 1)
For any λ > 0 Hω exhibits localization throughout its spectrum a.s.

Theorem (Localization d > 1)

i. for λ > 0 large enough, Hω exhibits localization throughout its spectrum
a.s.

ii. for fixed λ, Hω exhibits localization in intervals I at spectral edges a.s.
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Dynamical Localization

Absence of transport

• Recall that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Theorem (DL implies absence of transport)
If (DL) holds in J ⊂ R, then for ϕ ∈ `2(Zd ) with compact support we have

sup
t
‖|X|p/2e−itHωχJ(Hω)ϕ‖ <∞,

restriction in energy

weighted space
time evolution

for every p ≥ 0, with probability one.
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Dynamical Localization

Proof of theorem (DL implies absence of transport)

Recall that |X |ϕ(n) = |n|ϕ(n) for ϕ ∈ `2(Zd ). Take ϕ ∈ `2
c(Zd ), that is, for

some R > 0, ϕ(n) = 0 for |n|> R, and ‖ϕ‖= 1. Then, using the expression

‖x‖2 = ∑
j
|〈δj ,x〉|2

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2

= ∑
j∈Zd

∣∣〈δj , |X |p e−itHω χI(Hω)ϕ〉
∣∣2

≤∑
j
|j|2p ∣∣〈δj ,e

−itHω χI(Hω)ϕ〉
∣∣2

≤∑
j
|j|2p ∣∣〈δj ,e

−itHω χI(Hω)ϕ〉
∣∣‖ϕ‖

≤∑
j
|j|2p

∣∣∣∣∣〈δj ,e
−itHω χI(Hω)

(
∑
|k |≤R

〈ϕ,δk 〉δk

)
〉
∣∣∣∣∣

≤∑
j

∑
|k |≤R

|j|2p ∣∣〈δj ,e
−itHω χI(Hω)δk 〉

∣∣
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Dynamical Localization

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2 ≤∑

j
∑
|k |≤R

|j|2p ∣∣〈δj ,e
−itHω χI(Hω)δk 〉

∣∣
Taking the expectation E in both sides, we get

E
(

sup
t

∥∥|X |p e−itHω χI(Hω)ϕ
∥∥2
)

≤∑
j

∑
|k |≤R

|j|2p E
(

sup
t

∣∣〈δj ,e
−itHω χI(Hω)δk 〉

∣∣)
≤∑

j
∑
|k |≤R

|j|2p Ce−c|j−k | (DL)

< ∞

Finally, if E(f ) < ∞, then f < ∞ a.s. Therefore, for any p ≥ 0,

sup
t

∥∥|X |p e−itHωχI(Hω)ϕ
∥∥2

< ∞ a.s.

27 / 67



Dynamical Localization

Pure point spectrum

Recall that

• We say that Hω exhibits dynamical localization (DL) in I if there exist
constants C < ∞ and c > 0 such that for all x ,y ∈ Zd ,

(DL) E
(

sup
t∈R
|〈δy ,e

−itHω χI(Hω)δx〉|
)
≤ Ce−c|x−y |

Theorem (DL implies pure point spectrum)
If (DL) holds in an interval I, then Hω has pure point spectrum in I with
probability one.

The proof relies on the RAGE Theorem.

28 / 67



Dynamical Localization RAGE theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)
Let H be a s.a. operator on `2(Zd ), let Pc and Ppp be the orthogonal
projections onto Hc and Hpp, resp. Let ΛL be a cube of side L around the
origin. Then, for any ϕ ∈ `2(Zd ),

‖Pcϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
ϕ(x)|2

)
dt

‖Pppϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x∈ΛL

|e−itH
ϕ(x)|2

)
dt

Proof : e.g. see Kirsch’s notes.
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Dynamical Localization

Take ϕ ∈ `c(Zd ), that is, for some R > 0, ϕ(n) = 0 for |n|> R. From RAGE
Theorem we have that

‖Pc(Hω)χI(Hω)ϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2

)
dt

Note that

∑
x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2 =

∥∥∥χΛc
L
e−itH

χI(Hω)ϕ

∥∥∥2
=
∥∥∥χΛc

L
e−itH

χI(Hω)χΛR ϕ

∥∥∥2

≤
∥∥∥χΛc

L
e−itH

χI(Hω)χΛR

∥∥∥2
‖ϕ‖2

≤ ∑
|x |≥L

∑
|k |≤R

∣∣〈δx ,e
−itH

χI(Hω)δk 〉
∣∣‖ϕ‖2

Taking the expectation E in both sides, and using Fatou’s lemma and Fubini,
yields

E(‖Pc(Hω)χI(Hω)ϕ‖2)

≤ lim
L→∞

lim
T→∞

1
T

∫ T

0
∑
|x |≥L

∑
|k |≤R

‖ϕ‖2E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)
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Dynamical Localization

E(‖Pc(Hω)χI(Hω)ϕ‖2)

≤ lim
L→∞

lim
T→∞

1
T

∫ T

0
∑
|x |≥L

∑
|k |≤R

‖ϕ‖2E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)
Note that by hypothesis (dynamical localization),

E
(∣∣〈δx ,e

−itH
χI(Hω)δk 〉

∣∣)≤ Ce−c|x−k |

uniformly in t , then

E(‖Pc(Hω)χI(Hω)ϕ‖2)≤ C ‖ϕ‖2 lim
L→∞

∑
|x |≥L

∑
|k |≤R

e−c|x−k |

Since the sum in the r.h.s is convergent, the limit when R→ ∞ is 0. Then

E(‖Pc(Hω)χI(Hω)ϕ‖2) = 0

implies Pc(Hω)χI(Hω)ϕ = 0 for almost every ω ∈ Ω and ϕ ∈ `c(Zd ). Since
`c(Zd ) is dense in `2(Zd ), the result follows.
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Dynamical Localization

Alternative proof (absence of transport implies pure point spectrum).

Take ϕ ∈ `c(Zd ), that is, for some R > 0, ϕ(n) = 0 for |n|> R. From RAGE
Theorem we have that

‖Pc(Hω)χI(Hω)ϕ‖2 = lim
L→∞

lim
T→∞

1
T

∫ T

0

(
∑

x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2

)
dt

Note that

∑
x /∈ΛL

|e−itH
χI(Hω)ϕ(x)|2 ≤ ∑

x /∈ΛL

1

|x |2p | |X |
p e−itH

χI(Hω)ϕ(x)|2

≤ ‖|X |p e−itH
χI(Hω)ϕ(x)‖2

∑
x /∈ΛL

1

|x |2p

Therefore,

lim
T→∞

1
T

∫ T

0
‖|X |p e−itH

χI(Hω)ϕ(x)‖2dt < C

Which leaves

‖Pc(Hω)χI(Hω)ϕ‖2 ≤ C lim
L→∞

∑
x /∈ΛL

1

|x |2p = 0
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Dynamical Localization

How to prove localization ?

• Study decay of the resolvent.

Theorem ( Fractional Moment Method (FMM) )
If for a given I ⊂ σ(Hω) a.s., the following holds : there exists s ∈ (0,1) and
0 < c, C < ∞ such that

(?) E
(∣∣〈δx ,(Hω,λ− (E + iε))−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in E ∈ I, ε > 0 and x ,y ∈ Zd , then the operator Hω exhibits
dynamical localization in I.
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Dynamical Localization

• Relate resolvent decay to dynamical localization.

E

(
sup

f :R→C,|f |≤1
|〈δx , f (H)χI(H)δy 〉|

)

≤ C lim inf
|ε|→0

∫
I
∑
z
E
(∣∣Gω,λ(x ,z;E + iε)

∣∣s)1/2
E
(∣∣Gω,λ(z,y ;E− iε)

∣∣s)1/2
dE .

Proof : Graf’94, based on Stone’s theorem, see also Stolz’s notes.

In particular, this gives dynamical localization.

(DL) E
(

sup
t∈R
|〈δx ,e

−itHω,λ χI(Hω,λ)δy 〉|
)
≤ Ce−c|x−y |.

• The Simon-Wolff Criterion : works if the probability distribution of the
random variables is absolutely continuous. Then, if for Lebesgue-a.e. E ∈ I
and P-a.e. ω

lim
ε→0

∑
y∈Zd

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 < ∞,

then the spectral measure associated with δx is pure point in I for P-a.e. ω.
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Dynamical Localization

methods of proof
Dynamical

localization

Absence
of transport

pure point
spectrum

expon. decaying
eigenfunctions

Anderson localization

(Spectral localization)

Multiscale
Analysis

Fractional
Moment
Method

Thm 3.5

RAGE Thm

Thm 3.4

[Thm 4.2,GK04]

RAGE Thm

[dBG,DS]

criterion
Thm 4.11

Simon-Wolff

[A]

FIGURE – Summary taken from [RM’17] of relation between localization and methods
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Proof of localization

Fractional Moment Method

Proof of localization at high disorder

Reference :
We follow closely Section 4 in G. Stolz’s notes An introduction to the
mathematics of Anderson localization, Contemporary Mathematics 551,
2010.
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Proof of localization

In the rest of this lecture, we will focus on showing

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.
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Proof of localization

We assume the random variables ωn have an absolutely continuous
probability distribution, with a continuous density, i.e., there exists ρ ∈ C (R)
s.t.

dµ(x) = ρ(x)dx

The proof relies on two results :

• An a priori bound on the fractional moment of the resolvent :

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,λ,ρ).

• A decoupling lemma : for ρ there exists a constant C < ∞ s.t., uniformly
in α and β ∈ C,∫

1
|v−β|s ρ(v)dv ≤ C

∫ |v−α|s
|v−β|s ρ(v)dv
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The a priori bound

Since the random variables ωn have a probability density ρ, compactly
supported and bounded, we can write

E(·) :=
∫

Ω
(·)dP =

∫
A
...

∫
A

(·)...g(ωn)dωn...

Lemma (A priori bound)
There exists a constant C = (s,ρ) < ∞ such that

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,ρ)

λs ,

for all x ,y ∈ Zd and λ > 0.

Proof : we will start by showing that

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤ C(s,ρ)

λs .
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We will use the conditional expectation with (ωn)n 6=x ,y fixed.

Ex ,y (·) =
∫
A

∫
A

(·)ρ(ωx )ρ(ωy )dωx dωy .

Note that if we are able to show

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤ C(s,ρ)

λs ,

the r.h.s does not depend on (ωn)n/∈{x ,y} anymore. We can then take the E
with respect to the rest of the r.v. and obtain

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,ρ)

λs ,

which is the desired result.
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Proof of the a priori bound

Goal : to obtain an upper bound for

Ex ,y

(∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s) , x ,y ∈ Zd .

We split the proof in two cases : i) when x = y and ii) when x 6= y .

i) Case x = y (rank-one perturbation)
Recall that

Hω,λ =−∆ + λ ∑
n∈Zd

ωnPn, Pn := 〈δn, ·〉δn.

Write ω = (ω̂,ωx ), where ω̂ = (ωn)n 6=x . Then

Hω,λ = Hω̂,λ + λωx Px

Using the resolvent identity, we get(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−λωx
(
Hω̂,λ− z

)−1
Px
(
Hω,λ− z

)−1
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(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−λωx
(
Hω̂,λ− z

)−1
Px
(
Hω,λ− z

)−1

Now we take matrix-elements i.e. compute 〈δx , ·〉 in both sides :

〈δx ,
(
Hω,λ− z

)−1
δx〉= 〈δx ,

(
Hω̂,λ− z

)−1
δx〉

−λωx〈δx ,
(
Hω̂,λ− z

)−1
δx〉〈δx ,

(
Hω,λ− z

)−1
δx〉

Using the notation Gω,λ(x ,y ;z) := 〈δx ,
(
Hω̂,λ− z

)−1
δx〉, we get

Gω,λ(x ,x ;z) = Gω̂,λ(x ,x ;z)−λωx Gω̂,λ(x ,x ;z)Gω,λ(x ,x ;z).

If we write α = α(ω̂,x ,z) := (Gω̂,λ(x ,x ;z))−1, then

Gω,λ(x ,x ;z) =
1

α + λωx
.

Here, α is well-defined, because
ImGω̂,λ(x ,x ;z)

Imz > 0.
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Gω,λ(x ,x ;z) =
1

α + λωx
,

where α ∈ C and does not depend on ωx !
Suppose suppρ⊂ [−M,M]. Then

Ex

(∣∣Gω,λ(x ,x ;z)
∣∣s)=

∫ M

−M

1
|α + λωx |s

ρ(ωx )dωx

≤ ‖ρ‖∞

λs

∫ M

−M

1

|αλ−1 + ωx |s
dωx .

The r.h.s is integrable, independent of α and λ. Therefore,

Ex

(∣∣Gω,λ(x ,x ;z)
∣∣s)≤ C(ρ,s)

λs .

which is the desired bound for x = y .
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ii) Case x 6= y (rank-two perturbation)
Recall that

Hω,λ =−∆ + ∑
n∈Zd

ωnPn, Pn := 〈δn, ·〉δn.

Write ω = (ω̂,ωx ,ωy ), with ω̂ = (ωn)n/∈{x ,y}, then

Hω,λ = Hω̂,λ + λωx Px + λωy Py .

Writing P = Px + Py and using the resolvent identity, we get(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−
(
Hω,λ− z

)−1
(λωx Px + λωy Py )

(
Hω̂,λ− z

)−1

Now, we want to determine the matrix-elements (omit z for convenience)(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
in terms of (

Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)
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Using(
Hω,λ− z

)−1
=
(
Hω̂,λ− z

)−1−
(
Hω,λ− z

)−1
(λωx Px + λωy Py )

(
Hω̂,λ− z

)−1
.

we can compute each matrix element, for ex.

Gω,λ(x ,x) = Gω̂,λ(x ,x)−λωx Gω,λ(x ,x)Gω̂,λ(x ,x)−λωy Gω,λ(x ,y)Gω̂,λ(y ,x).

After some computations... we get(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
=

[(
Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)−1

+λ

(
ωx 0
0 ωy

)]−1

=:

[
G−1

ω̂
+λ

(
ωx 0
0 ωy

)]−1

Since Gω,λ(x ,y ;z) is one element of the matrix, we can bound it by the norm
of the matrix

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ Ex ,y

(∥∥∥∥∥
[

G−1
ω̂

+ λ

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s)
.
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 1
λs Ex ,y

(∥∥∥∥∥
[

1
λ

G−1
ω̂

+

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s)

=
1
λs

∫ ∫ ∥∥∥∥∥
[

1
λ

G−1
ω̂

+

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s

ρ(ωx )ρ(ωy )dωx dωy

≤ ‖ρ‖
2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

G−1
ω̂

+

(
ωx 0
0 ωy

)]−1
∥∥∥∥∥

s

dωx dωy ,

Now, we would like to decouple the matrix with elements ωx ,ωy , and isolate
each term. For this, we do a change of variables

u =
ωx + ωy

2
, v =

ωx −ωy

2
,

and get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 2‖ρ‖2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

G−1
ω̂

+

(
−v 0
0 v

)
+uI2x2

]−1
∥∥∥∥∥

s

du dv
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 2‖ρ‖2
∞

λs

∫ M

−M

∫ M

−M

∥∥∥∥∥
[

1
λ

G−1
ω̂

+

(
−v 0
0 v

)
+uI2x2

]−1
∥∥∥∥∥

s

du dv

Note that the matrix
1
λ

G−1
ω̂

+

(
−v 0
0 v

)
has either positive or negative imaginary part.

Therefore we can use the following result :
Lemma : For all 2×2 matrices A such that either ImA≥ 0 or ImA≤ 0, one
has ∫ M

−M

∥∥∥(A + uI)−1
∥∥∥s

du ≤ C(M,s).

For a proof, see G. Stolz’s notes.
We obtain

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ 4M ‖ρ‖2
∞

C(M,s)
1
λs
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Remarks

In the last proof we obtained the following(
Gω,λ(x ,x) Gω,λ(x ,y)
Gω,λ(y ,x) Gω,λ(y ,y)

)
=

[(
Gω̂,λ(x ,x) Gω̂,λ(x ,y)
Gω̂,λ(y ,x) Gω̂,λ(y ,y)

)−1

+λ

(
ωx 0
0 ωy

)]−1

This is a special case of a more general result, called the Krein formula.
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Theorem (Krein formula)
Let H be a self-adjoint operator on some Hilbert space H . If

H = H0 + W ,

with W a finite rank operator satisfying

W = PWP

for some finite-dimensional orthogonal projection P, then, for z with Imz 6= 0,
we have [

P(H− z)−1P
]

=
[
W +

[
P(H0− z)−1P

]−1
]−1

where the inverse is taken on the restriction to the range of P.
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Let us recall that we want to prove the following

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.

Ingredients of the proof :

• The a priori bound on the fractional moment of the resolvent :

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ C(s,λ,ρ).

• A decoupling lemma : for ρ there exists a constant C′ < ∞ s.t., uniformly in α

and β ∈ C, ∫
1

|v−β|s ρ(v)dv ≤ C
∫ |v−α|s
|v−β|s ρ(v)dv
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Proof of Theorem
Suppose x 6= y . Then 〈δx ,δy 〉= 0 and

〈δx ,δy 〉= 〈δx ,
(
Hω,λ− z

)−1 (
Hω,λ− z

)
δy 〉

=
〈

δx ,
(
Hω,λ− z

)−1
(−∆δy − (Vω− z)δy )

〉
=

〈
δx ,
(
Hω,λ− z

)−1

(
−∑

u∼y
δu− (λωy − z)δy

)〉

=

〈
δx ,
(
Hω,λ− z

)−1

(
−∑

u∼y
δu

)〉
+ (λωy − z)

〈
δx ,
(
Hω,λ− z

)−1
δy

〉
=−∑

u∼y
Gω,λ(x ,u;z) + (λωy − z)Gω,λ(x ,y ;z).

One can compute that

Gω,λ(x ,y ;z) =
a

λωy −b
,

where a and b do not depend on ωy .
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)=
1
λs E

(
|a|s∣∣ωy − b

λ

∣∣s
)

≤ C′

λs E

(∣∣ωy − z
λ

∣∣s |a|s∣∣ωy − b
λ

∣∣s
)

decoupling lemma

=
C′

λs E
(
|λωy − z|s

∣∣Gω,λ(x ,y ;z)
∣∣s)

where we used that
Gω,λ(x ,y ;z) =

a
λωy −b

.

Recall that we had shown that

(λωy − z)Gω,λ(x ,y ;z) = ∑
u∼y

Gω,λ(x ,u;z).

Therefore, using that (∑n |an|)s ≤ ∑n |an|s, we get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s) .
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E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s) .
If none of the points u is equal to x , we can iterate this argument.

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C′

λs ∑
u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s)
≤ C′

λs (]of neighbors)max
u

u∼y

E
(∣∣Gω,λ(x ,u;z)

∣∣s)
≤
(

C′

λs

)2

(]of neighbors) ∑
u′∼u

E
(∣∣Gω,λ(x ,u′;z)

∣∣s)
iterating this argument, at each step we get a factor(

C′

λs

)
(]of neighbors)

52 / 67



Proof of localization

We can iterate this argument at most ‖x− y‖ times,

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤((C′

λs

)2

(]of neighbors)

)‖x−y‖
sup
u∈Zd

E
(∣∣Gω,λ(x ,u;z)

∣∣s)

We can bound the r.h.s using the a priori bound and get

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C(ρ,s)

λs

((
C′

λs

)2

(]of neighbors)

)‖x−y‖

Finally, we take λ large enough such that((
C′

λs

)2

2d

)
< 1.

Then, we have

E
(∣∣Gω,λ(x ,y ;z)

∣∣s)≤ C(ρ,s)

λs e−C(C′,λ,s,d)‖x−y‖.
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We have shown

Theorem
Let s ∈ (0,1). Then there exists λ0 > 0 such that for λ≥ λ0, there are
constants 0 < c, C < ∞ such that

(∗) E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

uniformly in x ,y ∈ Zd and z ∈ C\R.

With this result, we can prove dynamical localization, and pure point
spectrum. For a proof of dynamical localization, see Section 5 in G. Stolz’s
notes.
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Theorem (The Simon-Wolff Criterion, Simon-Wolff’86)
Let Γ be a countable set of points. Let Hω =−∆ + Vω on `2(Γ), such that the
probability distribution of the random variables, µ, is absolutely continuous.
Then, for any Borel set I :

I If for Lebesgue-a.e. E ∈ I and P-a.e. ω

lim
ε→0

∑
y∈Γ

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 < ∞,

then for P-a.e. ω, the spectral measure of H associated to δx is pure
point in I.

I If for Lebesgue-a.e. E ∈ I and P-a.e. ω

lim
ε→0

∑
y∈Γ

∣∣〈δy ,(Hω− (E + iε))−1
δx〉
∣∣2 = ∞,

then for P-a.e. ω, the spectral measure of H associated to δx is
continuous in I.
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To prove pp spectrum, we would like to use the Simon-Wolff Criterion. Recall
our result, which holds for any given s ∈ (0,1), in the whole spectrum with λ

large enough, uniformly on z = E + iε, ε > 0,

E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)≤ Ce−c‖x−y‖

Then

E

(
∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s)≤∑

y
E
(∣∣〈δx ,(Hω,λ− z)−1

δy 〉
∣∣s)< ∞.

which implies that

∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣s < ∞ for P-a.e.ω ∈ Ω.

Because the bound is uniform on ε, we an take the limit when ε→ 0.
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We use the inequality : If s ∈ (0,1),(
∑
n
|an|
)s

≤∑
n
|an|s .

Take s = 1/4,(
∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣2) 1

4

≤∑
y

∣∣〈δx ,(Hω,λ− z)−1
δy 〉
∣∣ 1

2 < ∞

for P-a.e. ω ∈ Ω. Therefore, by the Simon-Wolff Criterion, the spectral
measure associated to Hω and δx is pure point in the deterministic spectrum
of Hω, for P-a.e. ω ∈ Ω. Since this holds for every δx , one can deduce that

σ(Hω) = σpp(Hω) for P-a.e.ω ∈ Ω.
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Fractional Moment Method

Proof of localization at the bottom of the spectrum.

Reference :
We follow closely Section 4 in G. Stolz’s notes An introduction to the
mathematics of Anderson localization, Contemporary Mathematics 551,
2010.
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Let Hω =−∆ + λVω and fix the disorder λ. Say, λ = 1. Assume the ωx are
iid with bounded probability density supported in [0,M], M > 0. Then

σ(Hω) = [0,4d ] + [0,M] = [0,4d + M] a.s.

Theorem
For any s ∈ (0,1), there exists δ > 0, C1 < ∞ and C2 > 0 such that

(∗∗) E
(∣∣〈δx ,(Hω− (E + iε))−1

δy 〉
∣∣s)≤ C1e−C2‖x−y‖

for all x ,y ∈ Zd , E ∈ [0,δ] and ε > 0.

This implies that Hω exhibits localization in I = [0,δ].

Problem : The a priori bound (Lemma 1) still holds, but we cannot use λ to
make the bound as small as we want.
Way out : Restrict to a finite volume. Take a cube of side L, Λ and consider
the restriction Hω,Λ. Approximate LHS of (**) with

E
(∣∣〈δx ,(Hω,Λ− (E + iε))−1

δy 〉
∣∣s) when Λ→ Zd
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(∣∣〈δx ,(Hω− (E + iε))−1
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for all x ,y ∈ Zd , E ∈ [0,δ] and ε > 0.
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E
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δy 〉
∣∣s) when Λ→ Zd
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Take a cube Λ of side L and write

Hω = Hω,Λ⊕Hω,Λc + TL = Hω,L + TL,

where

〈δx ,Hω,Λ⊕Hω,Λc δy 〉=


〈δx ,Hω,Λδy 〉, if x ,y ∈ Λ

〈δx ,Hω,Λc δy 〉, if x ,y ∈ Λc

0 otherwise

,

the boundary operator TL is given by

〈δx ,TLδy 〉=

{
−1, if (x ,y) ∈ ∂Λ

0 otherwise
.

Apply geometric resolvent identity twice to get

Gω = Gω,L−Gω,LTL (Gω,L+1−GωTL+1Gω,L+1)
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For simplicity, consider x = 0 and compute decay between points 0,y . Take L
such that |y | ≥ L + 2. Then

Gω(0,y ;z) = ∑
(u,v)∈∂ΛL

∑
(u′,v ′)∈∂ΛL+1

Gω,L(0,u;z)Gω(u′,v ;z)Gω,L+1(v ′,y ;z)

Take |·|s, a bit of algebra and then E :

E |Gω(0,y ;z)|s

≤ ∑
(u,v)∈∂ΛL

∑
(u′,v ′)∈∂ΛL+1

E |Gω,L(0,u;z)|s
∣∣Gω(u′,v ;z)

∣∣s ∣∣Gω,L+1(v ′,y ;z)
∣∣s

Compute expectation first in ωu′ and ωv . Use independence and a priori
bound. One gets

E |Gω(0,y ;z)|s ≤ Cs ∑
(u,u′)∈∂ΛL

∑
(v ,v ′)∈∂ΛL+1

E
(
|Gω,L(0,u;z)|s

)
E
(∣∣Gω,L+1(v ′,y ;z)

∣∣s)

≤ C′sL(d−1)Ld e−cL
d

d+2
∑
v ′
E
∣∣Gω,L+1(v ′,y ;z)

∣∣s ...iterate
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The estimate

E
(
|Gω,L(0,u;z)|s

)
≤ CLd e−cL

d
d+2

is a consequence of what is know as the "initial length estimate".
Write E0 = infσ(Hω) (in our case E0 = 0).
We say

Λ "is good" ⇔ infσ(Hω,Λ)≥ E0 +
1

Lβ
.

E
(
|Gω,L(0,u;z)|s

)
= E

(
|Gω,L(0,u;z)|s χ{Λ"is good"}

)
+E

(
|Gω,L(0,u;z)|s χ{Λ"is bad"}

)
Lemma (Initial length estimate)
For every β ∈ (0,1) there are η > 0 and C < ∞ such that

P
(

infσ(Hω,Λ)≤ E0 +
1

Lβ

)
≤ CLd e−ηLβd/2

for all L ∈ N.
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Estimating the "initial lenght estimate" via IDS

Eigenvalue counting function : Let {ΛL}L∈N be a sequence of concentric
cubes in Zd . Consider the restriction Hω �ΛL := χΛLHωχΛL . We define, for
E ∈ R,

Nω
L (E) :=

1
vol(ΛL)

]{e.v. of Hω �ΛL≤ E}.

The Integrated Density of States (IDS) is defined as

N(E) := lim
L→∞

Nω
L (E).

• For the Anderson model Hω on `2(Zd ), as a consequence of ergodicity, we
have

∗ Existence : the limit exists for P-a.e. ω ∈ Ω, and is deterministic.

∗ Almost-sure spectrum : for P-a.e. ω ∈ Ω,

{E : E is a growth point of N}= σ(Hω)
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Proof of localization

Lifshitz tails
Let E0 = infσ(−∆ + V0), with V0 periodic. The Integrated Density of States
(IDS) for H =−∆ + V0 behaves as

N(E)∼ (E−E0)d/2, E ↘ E0.

On the other hand, the IDS for the Anderson model Hω =−∆ + Vω, behaves
near E0 = infΣ as

N(E)∼ e−(E−E0)−d/2
E ↘ E0 Lifshitz tails

−∆ + V0

Ed/2

−∆ + Vωe−E−d/2

E

N(E)
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Proof of localization

For the Anderson model Hω on `2(Zd ),

∗ The IDS decays exponentially near the bottom of the spectrum
⇒ localization.

How ?
Lifshitz tails⇒ Initial length estimate, i.e., existence of a spectral gap at the
bottom of the spectrum of Hω,Λ, with good probability.

P(σ(Hω,L)∩ [0,E])≤ E
(
tr χ[0,E] (Hω,L)

)
’≤’ CLd N(E)

≤ cLd ec′E−d/2

Take E = 1
Lβ

and obtain initial length estimate.
Now you can go on with the proof of localization using the Fractional Moment
Method.
It works for energies near E0 !
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Proof of localization

Beyond localization

• Delocalization for the Anderson model on the lattice remains an open
problem.

• There are a few results on delocalization, for very particular models. Ex.
the Anderson model on the tree, and the Landau Hamiltonian in two
dimensions.

Bn−1 Bn Bn+1

localization

disjoint bands condition
spectral band

spectral gaps

∃ transport

λ 2M < 2B

• The probability distribution of eigenvalues in the region of localization is
typically Poisson.

• Many interacting particles. What is the right definition of localization ?
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Proof of localization

Thank you !
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