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Introduction

Motivation

Goal : to study the electronic transport in disordered materials and identify if
a material is a conductor or an insulator

Quantum mechanics setting :

physical state a vector y in a Hilbert space #, with ||y = 1

physical observables self-adjoint operator H
possible outcomes 6(H) spectrum of the operator H



Introduction

Dynamics of a particle moving in a material : y € # = L2(RY) or £2(Z9),
il =1,
atW(t,X) = —iH\If(t,X),

y(t,x) = eiitHW(o’X)’
where H = Hy + V is a self-adjoint Schrédinger operator on .

Example : electrons in a crystal, H = —A + V acting on ¢?(Z), the potential
Vy(x) = g(x)y(x), where g is a periodic function.

~N L
extended states

band a.c. spectrum

extended states ~ y(t, x) propagate in space as t grows ~ transport



Introduction

Dynamics of a particle moving in a material : y € # = L2(R%) or (2(Z),
Il =1,
at\lj(tvx) = 7iHW(t7X)a

W(f,X) = eiitHW(()’X)v

where H = Hy + V is a self-adjoint Schrodinger operator on #.

Example : electrons in a disordered crystal

T

y(t,x) do not propagate in space as t grows ~ absence of transport



Introduction

Disordered media

P. W. Anderson 1958 :
if the medium has impurities, there is no wave propagation.
“Absence of diffusion in certain random lattices”, Phys. Rev. (Nobel 1977)

Anderson model : Hp, = —A + Vi, on ¢2(Z%), with

Vo(x) =) ;8;(x),

jezd

where ® = ()70 is a random variable in a probability space (€2, P).

T

Localization : first rigorous mathematical results in the late 70s, early 80s.



Introduction

Recall from spectral theory

For a self-adjoint operator H and a vector ¢ € #, there exists a spectral
measure uy ¢ such that

(0.He) = [ Adluno(2)
or, formally
H= /R At p(1)-

For this spectral measure u = uy o one has the usual Lebesgue
decomposition into three mutually singular parts

=P+ %+ ™

which induces a decomposition of the Hilbert space H = Hpp ® Hse B Hae,
such that

Hyg :/kdyL(P(k)7 * € pp, Sc, ac
R ,



Introduction

Then, writing
6.(H)=0(Hy;), =€ pp,sc,ac

we have the following decomposition for the spectrum

6(H) = Opp(H) Uso(H) Usae(H)

*kk



Introduction

The Anderson Model : on each point of the lattice we +

|
|
place a potential, which can be e or . 7# \ § :
|
T
We consider many possible configurations. P |
Every configuration of the potential is a —— — }i ‘ i
vector o in a probability space (Q2,P). t‘ ¢ - i —
[ \

We get a random operator ® — Hy = —A + Vi, where
Vo(x) =Y, @§;(x),
jezd
with @; € {o, } bounded, independent, identically distributed random
variables.

For typical o, W(t, x) does not propagate in
space as t grows ~ absence of transport




Introduction

Anderson localization (disambiguation)

Consider the Anderson model Hy, = —A + V,, acting on a Hilbert space .
We say it exhibits :

spectral localization in an interval I if 6(H) N I = 6pp(H) N I, almost
surely.

Anderson localization (AL) in I if 5(H) N I = Gpp(H) N I with
exponentially decaying eigenfunctions, almost surely.

dynamical localization (DL) in I if there exist constants C < e and ¢ > 0
such that for all x,y € Z9,

DL E ( sup|(8,,e ™oy,(Hy)dx)| ) < Ce~c*Y
teR

delocalization in / when (DL) does not hold.

dyn. loc = Anderson loc. = spectral loc.
dyn. loc <= Anderson loc. <+ spectral loc.

67



Introduction

Consequences of dynamical localization in an interval /

e Absence of transport If (DL) holds in / C R, then for ¢ € £2(Z9) with

compact support we have

weighted space ) .
g time evolution

2 —itHy,.
sup [[| X |P/2e~ oy ()] < oo,
t
AN
restriction in energy
for every p > 0, with probability one.
e In particular, sup;{X?),(t) < o almost surely.

e Decay of Fermi projector kernel : if E € I, there exist constants C; < oo
and C, > 0 such that

E (1{8y,X(-ex.) (Ho)8x)]) < Cre™ %]



Introduction

What is known

Consider the operator Hy, = —A + AV, with A > 0 acting on £2(Z9).

Theorem (Localization in d = 1)
For any A > 0 Hg, exhibits localization throughout its spectrum a.s.

Theorem (Localization d > 1)

i. forh > 0 large enough, Hy, exhibits localization throughout its spectrum
a.s.

ii. for fixed A, Hy, exhibits localization in intervals | at spectral edges a.s.



Introduction

Phase diagram for Hg, 5 on ¢3(Z7), with d > 1

Transport (Anderson) transition : passage from localized to extended states.

Localisationv”

ext. states ?

—2d

2d

Remark : delocalization is an open problem !



Introduction

We have now two tasks :
Determine the spectrum
Prove localization

Methods to prove localization in arbitrary dimension combine functional
analysis and probability tools to show the decay of resolvents,

e Multiscale Analysis (Fréhlich-Spencer’83).
e Fractional Moment Method (Aizenman-Molchanov’93).



Introduction
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The Anderson model

The Anderson model

Ergodic properties and spectrum

14/67



The Anderson model

Some definitions from probability

» We consider a probability space (€2, B,P), where B is a c-algebra and
IP is a probability measure on (€2, B).

» Given a probability space (2, B,P), a random variable is a measurable
function X : Q2 — R.

» The probability distribution of X is the measure u defined by
u(A) =P({w € 2; X(w) € A}).
» The support of the measure u is given by
suppu ;= {x € R; u([x —&,x+¢]) > 0, Ve > 0}.

> Ifforany A€ B, P(Y(®) € A) =P(X(w) € A) = u(A), we say X and Y
are identically distributed.
» A collection of random variables {X;},.;0 is called a stochastic process.



The Anderson model

» A collection of random variables {X,} is called independent if, for any
finite subset {ny,...nx} C Z9 and abritrary Borel sets Ay, ..., Ax C R,

k
P(Xn, (@) € At, ..., Xn (@) € Ac) = [[P(Xr (@) € A).
j=1
» If the collection of random variables { X} is independent and identically
distributed (i.i.d.), we have

P(X () € A, ..., X(0) € A) = l—kl,u(A).

j=1

» We will often consider (2, B,P) = (de,ﬂg, ® ,u),where

nezd

R%Z := @ R and write ® := (®n) peza instead of {Xp(®)},czd.
jezd



The Anderson model

The Anderson model

Hy=—-A+ Z w;Ps; on (7%,
jezd
where P, = (5;,)9;.
e —A is the discrete Laplacian
—0g(n) =~} (¢(m) —o(n)),
m~n

e () are i.i.d. random variables, with probability distribution u with compact
support A.

e Q:=AZ 50:= (®;). The probability space is the product space
(22, B,P) with the product G-algebra of Borel sets B and the product
probability measure

P= CED;L

jezd

Analogously, we can define the Anderson model on ¢2(T"), for T a countable
set. For ex., on a tree with branching number K, called the Bethe lattice B.



The Anderson model

The Anderson model

Hy=—-A+ Z w;Ps; on (2%,
jezd
——
Vo

where Ps, = (8;,-)9;. This operator acts in the following way

(Ho®) () = =A@+ Voo(n)o(n)
= —AQ+ ®,9(n).

Since suppu is compact, the potential Vi, is bounded. Moreover, V,, is
self-adjoint on £2(Z).

Since —A and V,, are self-adjoint, the operator Hy, = —A + V,, is self-adjoint
in (2(Z9).



The Anderson model

Definition

The map Q > ® — H,, € B(H) is measurable if for any @,y € ¥, the map
Q35 0~ (9, Hyy) € Cis measurable.

If the operator is unbounded, we check measurability of f(Hg,), for any bounded
function f: R — C.

e The Anderson model @+ Hy, on £2(Z9) is measurable.

Note that H,, represents the family of operators (Hy)oc-



The Anderson model

Definition
He is called ergodic if there exists an ergodic group of transformations (Ty)yer
acting on Q associated to a family of unitary operators (Uy)yer on # s.t.

He () = UyHpUy forallyeT.

e The Anderson model Hy, on ¢2(Z?) is ergodic with respect to Z¢.
That is, with respect to the translations Ty(®) = (0p4y),cz¢ and

Uyo(n) = (n—1) with y € Z°.

Ex. The Anderson model Hy, on ¢?(B), where B is the Bethe lattice under
some constraints, is ergodic w.r.t. a certain family of transformations in B (see
Acosta-Klein’92).



The Anderson model
e The Anderson model Hy, on £2(Z9) is ergodic with respect to Z°.
Indeed, recall the family {Ty},cq of translations on S given by
Ty(®) = (On—y) peze
and the family of unitary operators Uy acting on Kz(Zd) defined by
Uyo(n) = p(n—7), veZ.

Note that Uy is given by Uy@(n) = ¢(n+7) = U-y. Then

UyHo U—y@(n) = Uy (=) U—y@(n) + Uy (Vo U—y) @(n)

=—A@(n)+ (Vm Ufy(P) (n—v)

= —A(n)+ Vo(n—7) (U-49) (n—7)
= —A@(n)+ Vo(n—7)o(n).

Recall that V,, acts in the following way : Vi,@(n) = 0,¢(n), for all n € Z9.

Therefore Vi (n—7)0(n) = @p—y9(n) = Vz,()9(n), and so

U«{Hw U,Y(p = H‘Cy(u))~

20/67



The Anderson model

Almost sure spectrum

Theorem (Pastur'80, Kunz-Souillard’80, Kirsch-Martinelli ’82)

If Hy, is an ergodic operator, there exist closed sets ¥, > pp, L a¢, ~sc C R
such that for P-a.e. ® € Q2
Y =0(Hy)

Ypp = GPP(H(D)a Ya= Gac(Ho))v Yoo = Gsc(Hco)~

Theorem (Kunz-Souillard’80)
Let Hy = —A + Vi, be the Anderson model on (?(Z°). Then

(*) 6(Hw) = o(—A)+suppu a.s.

21/67



The Anderson model

Summary

We saw that the Anderson model Hy, in ¢2(Z9) is ergodic. That is, there
exists an ergodic group of transformations (ty)yer acting on Q associated to
a family of unitary operators (Uy)yer on # s.t.

Hry0) = UyHoU; forallyeT.

e ergodicity = the spectrum of H, is deterministic.
That is, there exists > C R, such that

6(Hp) = X forP-a.e.0 € Q.

e ergodicity = the pp/sc/ac spectrum of H, is deterministic.

e For Hy in ¢2(Z%), we can compute the exact set in R which corresponds
to the deterministic spectrum.

N
N
>

4



The Anderson model

e ergodicity = existence of Integrated Density of States.
Moreover, this function does not depend on ® € Q.

e The IDS gives another way to prove that the spectrum is deterministic.
e In some cases, the IDS gives also information on the localization region !

Reference

e W. Kirsch, An invitation to Random Schrédinger Operators, in Random
Schrédinger Operators, Panoramas et Syntheses Vol. 25, 2008 (SMF).



Dynamical Localization

The proof of localization

From Fractional Moment Method to localization

24/67



Dynamical Localization

What is known

Consider the operator Hy, = —A + A V¢, with A > 0 acting on /2(Z¢).

e Recall that Hg, exhibits dynamical localization (DL) in I if there exist
constants C < oo and ¢ > 0 such that for all x,y € Z9,

DL E ( sup|(8,,e ™oy,(Hy)dx)| ) < Ce~*Y!
teR

Theorem (Localization in d = 1)
For any A > 0 Hg, exhibits localization throughout its spectrum a.s.

Theorem (Localization d > 1)

i. for k> 0 large enough, Hy, exhibits localization throughout its spectrum
a.s.

ii. for fixed A, Hy, exhibits localization in intervals | at spectral edges a.s.

24/67



Dynamical Localization

Absence of transport

e Recall that Hy, exhibits dynamical localization (DL) in I if there exist
constants C < oo and ¢ > 0 such that for all x,y € Z9,

DL E ( sup|(8,,e ™oy (Hy)8)| | < Ce eVl
teR Y

Theorem (DL implies absence of transport)
If (DL) holds in J C R, then for ¢ € EZ(Z") with compact support we have

weighted space . .
P time evolution

sup || X P2 o (HL) gl < oo,
‘ X

restriction in energy

for every p > 0, with probability one.



Dynamical Localization

Proof of theorem (DL implies absence of transport)

Recall that | X| @(n) = |n| @(n) for ¢ € (3(Z9). Take ¢ € £2(Z7), that is, for
some R > 0, (n) =0 for |[n| > R, and ||¢|| = 1. Then, using the expression

IxII* = Y183, )
)

[1X1P & ™Mo, (Ho)o||* = Y [(8;, 1XIP & ™oy (Ho)o) |

jezd

<2|/|2p| oy (Hy)0)|®

SZI/I (87, e~ ons(Ho)e)]| |0l
/

Moy )(Ho) ( Yy <<P75k>5k>>‘

< Z|J|2p x.

<ZZ 17 (87, & ™ot (Hi )3 |

J |kI<R

26/67



Dynamical Localization

11X1P e~ oy, (Ho)o|* <Y Y 1iI*P |(8), 6 ™oxi(Ho)i)|

J |kI<R

Taking the expectation E in both sides, we get
(sup (|1 X[P & ™oy, (He)g|| )

<22/2PE(sup| Hw>sk>|)

J |kI<R

<Y Y liPce X (DL)

J |k|I<R

< oo
Finally, if E(f) < oo, then f < oo a.s. Therefore, for any p > 0,

sup || X1P &~y (Ho)o||* < = as.
t



Dynamical Localization

Pure point spectrum

Recall that

e We say that H,, exhibits dynamical localization (DL) in I if there exist
constants C < e and ¢ > 0 such that for all x,y € 79,

DL E ( sup|(8,,e ™oy (Hy)8)| ) < Ce eVl
teR

Theorem (DL implies pure point spectrum)

If (DL) holds in an interval I, then Hy, has pure point spectrum in | with
probability one.

The proof relies on the RAGE Theorem.

28/67



Dynamical Localization RAGE theorem

Theorem (Ruelle-Amrein-Georgescu-Enss)

Let H be a s.a. operator on (?(Z9), let P, and Py be the orthogonal

projections onto H; and }43,,, resp. Let \; be a cube of side L around the
origin. Then, for any ¢ € (?(Z9),

_ _ —/tH
1Pegl* = Jim lim T/ (Z le )dt

XéAL

HPpp(PH = “moorlmoi (Z |e—/tH )dt

XENL

Proof : e.g. see Kirsch’s notes.

29/67



Dynamical Localization

Take @ € £4(Z9), that is, for some R > 0, ¢(n) = 0 for |n| > R. From RAGE
Theorem we have that

| Pe(Ho )xi(Ho)@|)* = Ilm lim 7/ (Z ety ( (x)|2> dt

—y00 T—po0 T X¢/\L
Note that
. 2
Z e~ itH X1(Ho)0(x) HX,\ce itH xi(H H HX/\fe*ItHXI(Hm)X/\R(p‘
X¢/\L
) 2
< HXAfe_ItHX/(H‘D)XAH ||(P||2
<Y Y [(Bes e i Ho)Sk) | o]
IX|>L|k|<R

Taking the expectation [E in both sides, and using Fatou’s lemma and Fubini,
yields

E (|| Po(Ho )21 (Ho)9|I7)
<imm L [T ¥ J6lE (| ee M(Ho)3)

[x|>L|k|<R



Dynamical Localization

E([| Po(Ho)xi(Ho)ol?)
T .
<iim im 2 [ Y Y 9IPE (|8 e " xi(Ho)d0)|)

Lo T—oo T Jo XSLIK=R

Note that by hypothesis (dynamical localization),
E (|(8x, & ™31(Ho)3k)|) < Cec* K

uniformly in ¢, then

E(||Pe(Hotu(Ho)ol?) < Cllglf® im Y 3 e
[X|>L|k|<R

Since the sum in the r.h.s is convergent, the limit when R — o is 0. Then

E(||Po(Ho)11(Ho)®[1?) = 0

implies P.(He)%1(He)® = 0 for almost every @ € Q and @ € £.(Z?). Since
£,(Z7) is dense in £2(Z9), the result follows. O



Dynamical Localization
Alternative proof (absence of transport implies pure point spectrum).

Take @ € £;(Z9), that is, for some R > 0, ¢(n) = 0 for |n| > R. From RAGE
Theorem we have that

[Pt (Ho)ol = Jim im % [ <Z|e (Mo (x )|>dr

—So0 Tﬂoo

XENL
Note that
Y le ™ u(Ho)o(x)P < Y 2,JIIXI” e "31(Ho)o(x)[?
XENL xeﬁ/\L| |
i 1
<[I1XIP e ™ x(Ho)o()I? Y, —25
XENL |X|
Therefore,
im % [T I1XP e MHo)o|Pat < ¢
T—eo T
Which leaves

P (Hw)X/(Hm)(PH <CI|m Z

2p:
= gn X



Dynamical Localization

How to prove localization ?

e Study decay of the resolvent.

Theorem ( Fractional Moment Method (FMM) )

If for a given | C 6(Hy) a.s., the following holds : there exists s € (0,1) and
0 < ¢, C < o such that

(*) E (’ (8x, (Hm,x —(E+ I'S))716y> ’s> < Ce—clxl

uniformly in E € I, € > 0 and x,y € 7.9, then the operator Hg, exhibits
dynamical localization in |I.
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Dynamical Localization

e Relate resolvent decay to dynamical localization.

]E< sup |(5x,f(H)XI(H)5y>|)

FR—C,|f|<1

: C“m'm/ZE [Goalx 2, E +ie)] )VZE(‘Gw,x(zm;E—ie)|s)1/2dE.

le|—0

Proof : Graf’'94, based on Stone’s theorem, see also Stolz’s notes.
In particular, this gives dynamical localization.

(DL) E (SUP|< ’TH(DKXI( 1)6 >|) < Ce XVl

teR
e The Simon-Wolff Criterion : works if the probability distribution of the
random variables is absolutely continuous. Then, if for Lebesgue-a.e. E € |
and P-a.e. ®

. A\ —1 2
(Lmo Z [(8y, (Ho— (E+1i€)) '8x)|” <
then the spectral measure associated with 8y is pure point in / for P-a.e. .



Dynamical Localization

methods of proof Thm 3.5 Anderson localization
Dynanncal

Multiscale locahzatlon expon. decaying
Analysis [dBG,DS] RAGE Thm eigenfunctions
Thln 34 N
Fractional A ure Doint
Moment (A] bsence pure p
Method [Thm 4.2,GK04] © of transport spectrum
; (Spectral locahzatlon)
: &/E
AN Simon-Wolff RAGE Thm
AN - criterion _
To--___ _Thmd4ll -7

FIGURE — Summary taken from [RM’17] of relation between localization and methods
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Proof of localization

Fractional Moment Method

Proof of localization at high disorder

Reference :
We follow closely Section 4 in G. Stolz’s notes An introduction to the

mathematics of Anderson localization, Contemporary Mathematics 551,
2010.



Proof of localization

In the rest of this lecture, we will focus on showing

Theorem
Let s € (0,1). Then there exists Ao > 0 such that for A > Ao, there are
constants 0 < ¢, C < oo such that

() E(|@n(Hor—2)"8)[7) < cemeb

uniformly in x,y € 79 and z € C\ R.



Proof of localization

We assume the random variables ®, have an absolutely continuous
probability distribution, with a continuous density, i.e., there exists p € C(RR)
s.t.

du(x) = p(x)dx
The proof relies on two results :
e An a priori bound on the fractional moment of the resolvent :

E (|(8r. (Hoa—2)"8,)[°) < C(s.h.p).

e A decoupling lemma : for p there exists a constant C < o s.t., uniformly

inaand B € C,
v —Ocl
C/ dv
v |Sp —prPl




Proof of localization

The a priori bound

Since the random variables ®, have a probability density p, compactly
supported and bounded, we can write

E():= / )dP = / / g(on)do,...

Lemma (A priori bound)
There exists a constant C = (s,p) < o such that

E <|<SX7(H(»,7»_Z)718J’>|S) < @’

forall x,y € Z9 and A > 0.
Proof : we will start by showing that

IN

Exy (| (8x (Hop. —2)"8y) |s)

38/67



Proof of localization

We will use the conditional expectation with (®p)n.x,, fixed.

/ / p(w,) doy dw,.

Note that if we are able to show

Euy (|5 (Hos—2) 75,)]%) < %52

the r.h.s does not depend on (®;) n¢(x,,; @anymore. We can then take the £
with respect to the rest of the r.v. and obtain

E(|<SX>(Hm,x—Z) 5 >|) C(xssp)’

which is the desired result.




Proof of localization

Proof of the a priori bound

Goal : to obtain an upper bound for

Exy (|30 (Hoa=2)7"8))[), x.y € 2°.

We split the proof in two cases : i) when x = y and i) when x # y.

i) Case x = y (rank-one perturbation)
Recall that
Hop=—A+L Y Py, Pp:=(8p,)8,.

nezd

Write @ = (O, 0x), where & = (®;),x- Then
Hm7;\ = H(?),?» + Ay, Py

Using the resolvent identity, we get

(Hu),l — 2)71 = (H(o’}\ —2)71 — 7\.0))( (HCo,l — 2)71 PX (Hu).}» —2)71

40/67



Proof of localization

(H(o,k — Z)i1 = (Hﬁ),k — Z) - 7\.0))( (HG),A — Z) - Py (Hu),k — Z) -

Now we take matrix-elements i.e. compute (Jy, -) in both sides :

(8xs (Hon —2) " 8¢) = (85, (Han —2) ' 8x)
— A0y (8, (Han —2) " 8x) (8x, (Hon —2) ' 8)
Using the notation G, (X, ¥;2) := (8, (Haa — 2)71 3x), we get
G (X, X;2) = G (X, X; 2) — My Gy A (X, X; 2) Gy A (X, X; 2).
If we write a0 = ai(®, x, z) := (Gg (X, X; 2)) ", then

1
o+ AWy

GOJ,?L(XaX; Z) =

G (x:x:2)

. . Im
Here, o is well-defined, because s > 0.

41/67



Proof of localization

1
o+ Ay’

where o € C and does not depend on y !
Suppose suppp C [—M, M]. Then

Gw7k(X,X;Z) =

s M 1
B (|Goate i)l = [, () dos

R S .
A Jomod T ayS

The r.h.s is integrable, independent of o and A. Therefore,

Clp,
Ey (|Gw,x(x,x;z)ls> < (;SS).

which is the desired bound for x = y.



Proof of localization

ii) Case x # y (rank-two perturbation)
Recall that
Hop=—0+ Y, 0Py, Pp:=(3,,-)5,.

nezd
Write @ = (®, 0y, ©y ), with ® = (©n)s¢(x,,}, then

H(D,k = HG),L + 7\.0)XPX + 7\.(1)yPy.

Writing P = P, + P, and using the resolvent identity, we get

—1 —1 —1 -1
(Hoa—2) =(Hpr—2) —(Hoa—2)  (AoxPx+Ao,Py) (Hoa —2)
Now, we want to determine the matrix-elements (omit z for convenience)

( Gm_)L(X,X) G(x),?»(xvy) )
G (¥5%) Gm,)»(%)’)

in terms of
( Gapp(x:x)  Gaa(x,y) )
Gaa (v, x)  Gaplysy)



Proof of localization

Using

—1 —1 —1 —1
(Hoa—2) =(Hpar—2) —(Hoa—2)  (AoxPx+Ao,Py) (Hoa—2) .
we can compute each matrix element, for ex.
Gw,?»(xa X) = G@)J»(Xv X) 77\‘(‘0)(G(0,7»(Xa X)GG),K(X7 X) 7}\’0‘)}’G0)77»(Xay) GG),?\(ya X)'

After some computations... we get

Goa(x) Goaley) Y _[( Goatex) Gaa(xy) \ ', (o0 0 )]
(Gmﬁx(%X) Goa(¥,y) )_[( Gy, %) G:x(%}/)) +l< 0 o )}

o 0 -
. —1 X
= {Gd) +7\,< 0 o )]

Since G(M(x,y; z) is one element of the matrix, we can bound it by the norm

of the matrix
o \1'I°
4 Oy
(5 o))

e
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Proof of localization

e ) )
pr (% 0 )] ren
lelm// [ (0()))( (f))y )r

Now, we would like to decouple the matrix with elements wy, ®,, and isolate
each term. For this, we do a change of variables

(i) <o

=% (0x) p(0y) dooy doy,

doy doy,

O+ Wy — Wy
2 T

e

and get

(’wa x y,z)| HPHDQ/ /




Proof of localization

—1
— 0
{ ( Ov v )+UH2x2:|
1 4 —v 0
XGG’ +< 0 v )

has either positive or negative imaginary part.

Therefore we can use the following result :

Lemma : For all 2 x 2 matrices A such that either ImA > 0 or ImA < 0, one
has

S

(’Gu)k X,y:2 )| 2HPH2/ /

Note that the matrix

duav

M s
/ [ca+uny | au < cms).
.y

For a proof, see G. Stolz’s notes.
We obtain

1
E(|Gor(x.yi2)|") < 4Mlpll2. C(M.5)75
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Remarks

In the last proof we obtained the following
(Gm.x(x,x) Gm,x(x,y)): (Ga).x(&x) Gaa(x.) >‘H(mx o)
Goa(y:x)  Goaly.y) Goaly:x) Gaaly.y) 0wy

This is a special case of a more general result, called the Krein formula.

-1
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Theorem (Krein formula)
Let H be a self-adjoint operator on some Hilbert space H . If

H=Hy+ W,
with W a finite rank operator satisfying
W = PWP

for some finite-dimensional orthogonal projection P, then, for z with Tmz # 0,
we have

[P(H—2z)""P] = [W+ [P(Ho —2) " P] ‘1] -

where the inverse is taken on the restriction to the range of P.
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Let us recall that we want to prove the following

Theorem
Let s € (0,1). Then there exists Ay > 0 such that for A > g, there are
constants 0 < ¢, C < oo such that

(*) E (|<5x, (Hoa — z)‘18y>|s> < ce—clxl

uniformly in x,y € 79 and z € C\ R.
Ingredients of the proof :

e The a priori bound on the fractional moment of the resolvent :
— S
E (|3, (Hor —2)7'8,)|°) < C(s,1.p).

e A decoupling lemma : for p there exists a constant C’' < oo s.t., uniformly in o
and B € C,
v—of®

/ijp(v)dv <C
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Proof of Theorem
Suppose x # y. Then (8,,8,) = 0 and

Proof of localization

(8x,8y) = (8, (Hon. —2)71 (Hoa—2)8y)
= (80 (Hon—2) " (-08, — (V- 2)3,) )

—<5X,(HM 2) < ,;ys
(

Sx,(me Z < 25

u~y

=—Y Goalx,u;2)+ (Ao, —

u~y

One can compute that

Go(X,y:2) =

where a and b do not depend on ®,.

)

>> (ro, — )<5x,(Hm,k*Z)_15y>

Z)Gm’)\’(X,y;Z).

a4
Ao, —b’
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/ o, — Z S als
< %E (W) decoupling lemma

= B (1, —2I° | Gop(x.y:2)[°)

where we used that

Gop(X,y:2) = "o, —b

Recall that we had shown that

(7"('0,\/ —Z)G(D’)\(XJ/;Z) = Z G(l).]\,(x7u; Z).

u~y
Therefore, using that (¥, |an|)® < ¥, |an|®, we get
E(‘Gw.x(x,y;z)f) ZE(‘G(D)LXUZ” )
u~y
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E (|Gm7;b(x,y;z)|s) < }iUZ}E (‘Gm_,;b(x, u;z)|s) .

If none of the points u is equal to x, we can iterate this argument.

¢ (|Gm’x(x’y;z)|s) = }% Z E (|Gm,x(x, u; Z)|S)

/

x—(ﬂof nelghbors)maxE(|G(M x,u;z)| )

u~y

( > (fof neighbors) ) E (|G(M(x, u';z)|s>

u'~u

iterating this argument, at each step we get a factor

<§s/) (tof neighbors)



Proof of localization

We can iterate this argument at most || x — y|| times,

lx=yll

E (|Gm_x(x,y;z)‘5) < <(§S’)2 (tof neighbors)> useuZpLE (}Gm,;h(x,u;z”s)

We can bound the r.h.s using the a priori bound and get

E <|G(°,;‘(X,y; z)|s) < C(;:S’ s) <<)i)2 (tof neighb0r3)>

Finally, we take A large enough such that
c\?
() 2) <+

E (‘Gm,x(x,y;z)‘s) < C(;:s’s) o—C(C As.d)x—y]]

x=ll

Then, we have




Proof of localization

We have shown

Theorem
Lets € (0,1). Then there exists Ao > 0 such that for . > Ao, there are
constants 0 < ¢, C < oo such that

(+) E (’(5)0 (Hop — 2)716y>|s) < ce—clxl
uniformly in x,y € Z9 and z € C\ R.

With this result, we can prove dynamical localization, and pure point
spectrum. For a proof of dynamical localization, see Section 5 in G. Stolz’s
notes.
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Theorem (The Simon-Wolff Criterion, Simon-Wolff’86)

LetT be a countable set of points. Let Hy = —A + Vi, on (2(T), such that the
probability distribution of the random variables, u, is absolutely continuous.
Then, for any Borel set | :

> If for Lebesgue-a.e. E € | andP-a.e. ®

lim Y |(8, (Ho — (E+1€)) 18,)|° < oo,

s—)Oyer

then for P-a.e. w, the spectral measure of H associated to 8 is pure
pointin I.

» If for Lebesgue-a.e. E € | and P-a.e. ®

lim Z |3y, ( E+I€))_18X>|2 = oo,

8—)0

then for P-a.e. w, the spectral measure of H associated to 8y is
continuous in |.



Proof of localization

To prove pp spectrum, we would like to use the Simon-Wolff Criterion. Recall
our result, which holds for any given s € (0, 1), in the whole spectrum with A
large enough, uniformly on z = E + i€, € > 0,

E (\<SX7(Hm,x—z)*‘6y>|s) < ce~clxl

Then
E(Z’<SX,(H&}\—Z ‘ )SZ (’ u)?»_ ) 18}’>|S) < oo,

which implies that

Y [(8x (Hop—2)7'8))|" < o forP-ae.0eQ.
y

Because the bound is uniform on €, we an take the limit when € — 0.

56/67



Proof of localization

We use the inequality : If s € (0,1),

(;m)s <Llar

Take s =1/4,

<Z| Xa ml* 15 |> Z| cok* )_18y>|%
y

for P-a.e. € 2. Therefore, by the Simon-Wolff Criterion, the spectral
measure associated to Hg, and 8 is pure point in the deterministic spectrum
of Hg, for P-a.e. ® € Q. Since this holds for every 8, one can deduce that

6(Hp) = Opp(Hp) for P-a.e.m € Q.



Proof of localization

Fractional Moment Method

Proof of localization at the bottom of the spectrum.

Reference :
We follow closely Section 4 in G. Stolz’s notes An introduction to the

mathematics of Anderson localization, Contemporary Mathematics 551,
2010.
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Proof of localization

Let Hy, = —A + AV, and fix the disorder A. Say, A = 1. Assume the m, are
iid with bounded probability density supported in [0, M], M > 0. Then

6(Ho) = [0,4d] +[0,M] = [0,4d + M] a.s.

Theorem
For any s € (0,1), there exists & > 0, Cy < 0 and C, > 0 such that

(%) E (| (8%, (Ho — (E+1i€))'8,) ‘S> < ceCelxl

forall x,y € 7.9, E € [0,8] and € > 0.
This implies that Hg, exhibits localization in / = [0, 3].
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Let Hy, = —A + AV, and fix the disorder A. Say, A = 1. Assume the m, are
iid with bounded probability density supported in [0, M], M > 0. Then

6(Ho) = [0,4d] +[0,M] = [0,4d + M] a.s.

Theorem
For any s € (0,1), there exists & > 0, Cy < 0 and C, > 0 such that

(%) E (| (8%, (Ho — (E+1i€))'8,) ‘S> < ceCelxl

forall x,y € 7.9, E € [0,8] and € > 0.

This implies that Hg, exhibits localization in / = [0, 3].

Problem : The a priori bound (Lemma 1) still holds, but we cannot use A to
make the bound as small as we want.

Way out : Restrict to a finite volume. Take a cube of side L, A and consider
the restriction Hp A. Approximate LHS of (**) with

IE(|<8X,(Hm,A—(E+ie))*‘5y>ys) when A — Z?



Proof of localization

Take a cube A of side L and write
Hy = Hon ® Hope + T = Ho L + T1,
where

(Ox, Hoaly), ifx,y e
<5X7 H(O,/\ @ Hm,A°8y> = <8X7 Hw,A05y>7 If Xv.y S /\C
0 otherwise

the boundary operator T; is given by

—1, if(x,y) €0A
0 otherwise

<8Xa TLSy) = {

Apply geometric resolvent identity twice to get

Gu) = Gu),L - C';007L 7—L (Gu),L+1 - Gm TL+1 Gm,L+1 )



Proof of localization

For simplicity, consider x = 0 and compute decay between points 0, y. Take L
such that |y| > L+ 2. Then

Go(0,y;2)= Y, Y Gou(0,u;2)Ge(U,V;2)Gors1(V,y: 2)

(u,v)EAL (U V') EOAL 41
Take |-|°, a bit of algebra and then IE :
]E|Gw(0,y;z)|s
< Y Y  E|Gu.(0,u;2)]° |Go(U, v;z)|S |Go.L+1(V,y: 2)

(u,v)EONL (U ,V')EIN 41

| S

Compute expectation first in ®, and ®,. Use independence and a priori
bound. One gets

E|Go(0,y:2) < Cs Y Y IE(|Gm_L(O,u;z)|S)IE(|Gm7L+1(v’,y;z)]s)

(uu)EONL (v,V/)EINL11

_d_
< cLpld=1)dgetar Y E|Go.r1(V.y; z)|°...iterate
V/



Proof of localization

The estimate d
E (|Go.(0,u;2)[%) < CLYe™ "

is a consequence of what is know as the "initial length estimate”.
Write Ey = info(Hy) (in our case Eq = 0).
We say

1
A'is good" < info(Hya) > Eo+ s

E (|Gw,.(0,u;2)[%)

=E (1Go.0(0.1:2)*X{p"is good} ) +E (|G (0,1 2)|° Xnis baa )

Lemma (Initial length estimate)
For every 3 € (0,1) there arem > 0 and C < oo such that

1
P (infG(Hm’/\) <Ey+ LB> < cLdetP?

forall L € N.



Proof of localization

Estimating the "initial lenght estimate" via IDS

Eigenvalue counting function : Let {A, },en be a sequence of concentric
cubes in Z9. Consider the restriction Hy, [A = XA, HoXa, - We define, for
E €R,

NP(E) = vol(/\ )lj{ev of Hy [a, < E}.

The Integrated Density of States (IDS) is defined as

N(E) := lim NO(E).

[—o0
o For the Anderson model Hy, on £2(7Z7), as a consequence of ergodicity, we
have
+ Existence : the limit exists for P-a.e. ® € €2, and is deterministic.
+ Almost-sure spectrum : for P-a.e. ® € €,

{E : E is a growth point of N} = 6(H,,)



Proof of localization

Lifshitz tails
Let Eg = info(—A + Vp), with Vg periodic. The Integrated Density of States
(IDS) for H = —A + V, behaves as

N(E) ~ (E—E)?2, E\ K.

On the other hand, the IDS for the Anderson model Hy, = —A + Vi, behaves
near Eg =infX as

N(E) ~ e~ (E-E) " EN_E, Lifshitz tails

NE)

. A+

,’/ 7[)7(/,"‘2 7A —+ ‘/{U
e b




Proof of localization

For the Anderson model Hy, on (2(Z),
* The IDS decays exponentially near the bottom of the spectrum
= localization.
How ?
Lifshitz tails = Initial length estimate, i.e., existence of a spectral gap at the
bottom of the spectrum of H A, with good probability.

P (6(Ho.) N[0, E]) < E (tr xpo.6) (Ho,))'<’ CLYN(E)

/g—d/2

Take E = # and obtain initial length estimate.

Now you can go on with the proof of localization using the Fractional Moment
Method.

It works for energies near Ey !



Proof of localization

Beyond localization

e Delocalization for the Anderson model on the lattice remains an open
problem.
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Beyond localization

e Delocalization for the Anderson model on the lattice remains an open
problem.

e There are a few results on delocalization, for very particular models. Ex.
the Anderson model on the tree, and the Landau Hamiltonian in two
dimensions.

spectral gaps

disjoint bands condition
spectral band

/\/\_/_\ V/— A2M < 2B —\‘

/ Bn+l

Bn—l \ / BTL

localization 3 transport
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Beyond localization

e Delocalization for the Anderson model on the lattice remains an open
problem.

e There are a few results on delocalization, for very particular models. Ex.
the Anderson model on the tree, and the Landau Hamiltonian in two
dimensions.

spectral gaps

disjoint bands condition
spectral band

/\/\_/_\ V/ A2M < 2B —\‘

By X f B S B
localization 3 transport

e The probability distribution of eigenvalues in the region of localization is
typically Poisson.
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Beyond localization

e Delocalization for the Anderson model on the lattice remains an open
problem.

e There are a few results on delocalization, for very particular models. Ex.

the Anderson model on the tree, and the Landau Hamiltonian in two

dimensions.
spectral gaps

disjoint bands condition
spectral band

/\/\_/_\ V/ A2M < 2B —\‘

By X f B S B
localization 3 transport

e The probability distribution of eigenvalues in the region of localization is
typically Poisson.

e Many interacting particles. What is the right definition of localization ?



Proof of localization

Thank you !
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