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Abstract
Diese Bachelorarbeit beschreibt eine Java GUI Anwendung zur Konfiguration des lpGBT
Transceivers, der bei der Phase-II Aufrüstung des ATLAS Spurdetektors eingesetzt wird.
Zur Umsetzung wird das CERN USB-I2C Dongle als zusätzliche Hardware benötigt.
Anstelle des lpGBT ASICs, welches im späteren Anwendungsfall benutzt wird, wird das
Programm mithilfe des lpGBT FPGA Emulators getestet, der in dem Xilinx Ultrascale+
KCU116 Evaluation Kit implementiert ist. Die Tests bestätigen, dass die Anwendung eine
oder mehrere lpGBT Instanzen über denselben Bus konfigurieren kann, erlauben jedoch
keinen Aufschluss über die Fähigkeit der Anwendung, die sonstigen Module zu steuern
oder die Sicherungen des lpGBT ASICs zu brennen.

Stichwörter: lpGBT ASIC, FPGA Emulator, Konfigurationssoftware, ITk Pixel Auslese

Abstract
This bachelor thesis describes a Java GUI application for the configuration of the lpGBT
transceiver, which is part of the ATLAS Phase-II inner-tracker upgrade. For this purpose,
a CERN USB-I2C dongle is required as additional hardware. Tests are carried out with
the lpGBT FPGA emulator hosted on a Xilinx Ultrascale+ KCU116 development board,
instead of the lpGBT ASIC used in the real setup. The tests successfully validate the
programmer GUIs ability to configure one single or multiple lpGBT instances over the
same bus, but cannot test its ability to control the additional modules and fuses included
in the ASIC.
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1 Introduction

To advance particle physics, collider experiments with high center of mass energies pro-
ducing large amounts of data to improve statistics are needed. The ATLAS experiment at
the Large Hadron Collider (LHC) is one of these experiments. Alongside CMS, it tests the
Standard Model of particle physics and searches for physics beyond it. With the planned
upgrade of the LHC to the High Luminosity Large Hadron Collider (HL-LHC), increasing
its luminosity to L = 5× 1034 cm−2 s−1 and its center of mass energy to

√
s = 14 TeV [1],

the ATLAS experiment needs to upgrade as well to benefit from it. The HL-LHC will be
installed during the long shutdown 3 (LS3) from 2025 to mid-2027. One of the changes
in the Phase-II ATLAS upgrade are the newly developed inner-tracker (ITk) pixel and
strip detectors. The radius of the innermost layer of the pixel detector is reduced from
an average of 50.5 mm to a maximum of 39 mm, to reduce the lever arm of the measured
trajectories. Also, their resolution is increased, to be able to resolve the different collisions
within a bunch crossing from one another. For example, the ITk pixel sensors decrease the
pixel size to 50 µm× 50 µm compared to the current value of 50 µm× 400 µm for most of
the sensors. Of course, with finer resolution the amount of sensor data to be transmitted
outside the detector and processed also increases. That is why also a new transceiver
chip, the Low Power Giga Bit Transceiver (lpGBT), is being developed for use with the
ITk pixel detector, amongst others. Increased radiation levels due to the higher number
of collisions are a key design aspect for the new hardware.
The goal of this thesis is to describe the development and testing of a graphical user in-

terface (GUI) application for configuring the lpGBT over the I2C protocol, called "lpGBT
programmer software" [11]. For this, first the backgrounds necessary for understanding
the different parts of the project, as well as more details about the context in which the
lpGBT will operate, are presented in Sec. 2. Afterwards, the hardware equipment used
in the development process and the hardware setup used for the real world configuration
application will be discussed in Sec. 3. The programmer software itself is detailed and
discussed in Sec. 4. It covers the programmer software specifications, its structure and
also a view on the programmer interface and how it is used to configure the lpGBT. Fi-
nally, the different test setups and procedures are explained in Sec. 5, and their results
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1 Introduction

are shown, before a conclusion is given in Sec. 6.
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2 Background

2.1 Large Hadron Collider

The Large Hadron Collider (LHC) [2] is a proton-proton collider located inside a 26.7 km
long underground tunnel near Geneva. It was built as the successor of the Large Electron-
Positron (LEP) collider, because the synchrotron radiation losses are significantly lower
for the heavier protons as compared to those of the electrons and positrons (Eloss ∝ m−4),
and protons are easy to produce in large numbers compared to the other heavy, charged
and stable particles or antiparticles. The resulting centre of mass energy of currently
13 TeV, which is the highest to date, allows not only for testing the standard model of
particle physics, but also for discovering new particles beyond the standard model, which
are expected to have higher masses and therefore need a high centre of mass energy
to be produced. The two separate beam pipes, in which the protons are accelerated in
opposite directions, meet at four interaction points, at each of which a collider experiment
is hosted. Currently, the four main experiments at the LHC are the ATLAS, CMS, ALICE
and LHCb experiments. Because of the environment, in which the programmer software
was developed, and not because of any restrictions in using the lpGBT or the programmer
software for different experiments, the ATLAS experiment is the context, in which the
lpGBT is discussed.

2.2 The ATLAS experiment

2.2.1 General

The ATLAS detector [3] is a general purpose detector. It measures the particles created
from the proton-proton collisions by their interactions with the detector material in dif-
ferent cylindrical layers around the beam pipe. By combining the information of these
different layers, its type, energy and momentum may be reconstructed.
The innermost layer is the inner tracking detector. Since, for small distances to the

beam pipe, measurement errors of the particles position have a larger impact on the
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2 Background

Figure 2.1: A computer generated cross-sectional view of the Atlas detector. © Cern

measured direction of the particle because of the small lever arm, it consists of three
layers with increasing resolution towards the beam pipe. Going from the beam pipe
outwards, the particle first encounters the pixel detectors, then the strip detectors, and
finally a transition radiation detector. Pixel and strip refer to the shape of the cells on the
semiconductor sensors. Solenoid magnets around the inner detector create a 2 T magnetic
field parallel to the beam axis. With this, a charged particles trajectory is not a line, but
rather a helix, and the particles transverse momentum vector can be calculated from the
curvature of the helix. Neutral particles are not detected, as they do not leave ionisation
tracks in the semiconductor sensor.

After the inner tracker follow, in order, the electromagnetic and hadronic calorimeters
[4]. In these, the respective particles react with the detector medium, creating more
particles doing the same. This leads to a particle shower, where the energy of the original
particle is distributed over more and more particles. The summed sensor signals along
the showers path is then a measure for the original particles energy. The electromagnetic
calorimeter detects photons, electrons and positrons, which generate the showers by a
combination of γ → e+e− pair creation and Bremsstrahlung. The hadronic calorimeter
detects hadrons, for which the main processes are inelastic collisions with the nuclei of
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2.2 The ATLAS experiment

the detector material.
The calorimeters in the ATLAS detector are of sampling type, meaning that the passive

material generating the shower and the active material, in which the measurement is
performed, for example by collecting the ionisation charge, are not the same. This is
the more compact and cheaper solution, but has the drawback, that only parts of the
shower can be probed. Because different detector regions require different calorimeter
designs, the calorimeters are divided into a barrel part around the beam axis, an end-
cap part closing the barrel and a forward calorimeter (FCal) for the even higher rapidity
regions. These different regions can be see in the cross-sectional view of Fig. 2.1. The
hadronic version of the barrel calorimeter is the tile calorimeter. The location inside
the detector influences the shape of the calorimeters and the materials used, which are
listed in Tab. 2.1. For example, most of the calorimeters use liquid Argon as the active
material, which can be easily exchanged, making it a good candidate for the high radiation
zones. But the hadronic tile calorimeter can use the cheaper scintillating tiles, as it is
further away from the beam. Similar to the tracking detector, the calorimeters increase
in granularity towards the beam axis.

Type Barrel End-cap Forward

Electromagnetic
Active material Liquid Argon Liquid Argon Liquid Argon
Passive material Lead Lead Copper
Rapidity region |η| < 1.475 1.375 < |η| < 3.2 3.1 < |η| < 4.9

Hadronic
Active material Scintillator Liquid Argon Liquid Argon
Passive material Steel Copper Tungsten
Rapidity region |η| < 1.7 1.5 < |η| < 3.2 3.1 < |η| < 4.9

Table 2.1: The different parts of the ATLAS calorimeter, and the materials they use.
The scintillator is Polystyrene in combination with a wavelength shifter.

The only particles that remain after the calorimeters are muons, as they are not
hadronic, but also have a mass that is too high for showering in the electromagnetic
calorimeters, because the intensity for Bremsstrahlung is ∝ m−2 (calculated classically).
They do, however, leave ionisation tracks. This is used in the muon chambers, the outer-
most layer, which measure the muon tracks and momentum inside a magnetic field similar
to the tracking detector. Toroidal magnets generate a magnet field in the muon cham-
bers, with field flux densities of 1 T in the central region and 0.5 T in the end-caps. The
magnetic field lines follow the azimuthal angle φ around the beam axis, as opposed to the
field lines of the inner solenoid, that generates a magnetic field with field lines parallel to
the beam axis.
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2.2.2 Pixel readout electronics

A closer look shall be given at the readout system of the upgraded inner-tracker (ITk)
pixel detector [5]. The inner-tracker upgrade including the readout system will be installed
alongside the HL-LHC in LS3. Regarding the readout system, first laboratory tests with
a full readout chain are prepared just at the time of writing. The absence of such setup
in the testing phase of the programmer software directly influences the testing setup
described in Sec. 5.
The readout chain starts at the pixelated semiconductor sensors, where the ionisation

tracks of the to be detected particles are created. The separated ionisation charges gen-
erate a current in the pixel electrodes. For reading out the current signal of the passive
sensors, a separate, active front-end readout chip is necessary. It contains readout pix-
els mirroring the sensor pixel layout, so that each pixel on the sensor is connected to a
readout pixel, when the two chips are connected. The connection between the pixels is
established using bump-bonding technology. The front-end chip also contains common
logic for reading out the pixels.
One, two or four front-end chips using one sensor chip of corresponding size are grouped

into single, dual and quad modules, respectively. Multiple front-end chips are then con-
nected to an aggregator chip, which merges the front-end data lines into one single data
line. This data line finally connects to the off-detector counting room for data acquisition
via optical links.
At the ATLAS experiment, the proton bunches collide with a frequency of 40 MHz.

Reading out every single event would yield data rates in the order of many PB/s, and
it would be impossible to store and analyse the data. To reduce this frequency without
losing the rarely occurring events one wants to look at, a trigger system selects which
events to store. This is done in multiple stages, where the first stage, the Level-1 (L1)
hardware trigger, only uses a crude but very fast analysis, giving the second stage, the
High-Level Trigger (HLT), more time to take a decision. The L1 trigger may still need
up to 2.5 µs to decide, so the event data has to be buffered on the read out chips until
the L1 trigger decision is known. This further complicates the readout chain, as it is
now necessary to have bidirectional communication between the front-end chips and the
counting room for sending the trigger signals, instead of simply sending the sensor data
one way. Apart from the trigger signals, also the front-end chip configuration uses the
downlink data path: Because the front-end chip, due to space restrictions, cannot protect
the pixel configurations from single event upsets (SEUs) caused by the radiation, the pixel
configuration has to be periodically refreshed from the outside. This technique is called
"trickle configuration".
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2.3 ASICs and FPGAs

For the ATLAS upgrade, the RD53 [6] is used as the front-end chip, and the lpGBT,
which is described in Sec. 2.6 and the target of the configuration software, is the data
link.

2.3 ASICs and FPGAs

Certain applications require special integrated circuits with unusual specifications, that
are not available commercially. These then have to be designed manually by the user, but
as a result can be custom tailored to the use case. The production of the chips according to
the design is then done by a hardware manufacturer. The result is an application specific
integrated circuit (ASIC). Inside the ASIC, transistors are directly connected to form
logical gates and higher level structures, which then make up the ASICs functionality.
An alternative to ASICs are field programmable gate arrays (FPGAs), which are con-

figurable integrated circuits: As opposed to the ASIC, the chips functionality is not
implemented in the FPGAs transistors directly. Instead, they form configurable logic
blocks with configurable connections between them. A simple example of a logic block is
a look up table (LUT), that contains the desired output logic level (high, low) for each
combination of input logic levels. By setting the values of the table, a LUT may emu-
late any logic gate. Thus, together with the configurable connections between the logic
block inputs and outputs, the same higher level structures as present in the ASIC may
be created.
Depending on the memory technology used for storing the connection command values

inside and amongst the logic structures, the FPGA can be one-time programmable (OTP)
in the case of anti-fuse connections, or reprogrammable in the case of using RAM-based
or EEPROM (flash) connections. The latter is a more interesting choice, because it
allows reconfiguring of the implemented functionality. This is especially useful in the
development and testing phase, where lots of changes to the design are expected to happen,
or when one needs only a small number of chips, where the expenses of manufacturing an
ASIC would be out of proportion. On the other hand, the design of an ASIC provides
greater control over the hardware features, like including analogue and digital blocks on
the same ASIC, which may not be easily added to an FPGA. Another example in the
context of collider experiments is the required radiation hardness of the hardware inside
the detector not fulfilled by the FPGAs. Also, due to the additional configuration layer,
the same design takes up more space on an FPGA, so for larger projects size may be an
issue.
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2.4 VHDL applications and Xilinx Vivado workflow

Instead of manually defining and connecting the logic blocks using the schematic design
entry, a higher level hardware description language can be used for specifying the FPGAs
behaviour. In this project, the Very High Speed Integrated Circuit Hardware Description
Language (VHDL) [7] is used. Because structural diagrams are used in Sec. 2.6 and Sec.
5.3, their background is described in the following. An example showcasing the objects
described in the text can be seen in Fig. 2.2.
In VHDL, logic is described by defining logical building blocks, called entities, with

input and outputs called ports. The definition of an entity promises certain behaviour on
the ports, but does not describe, how this behaviour is achieved. A software analogue are
interfaces, that dictate what input and output methods a class has, but do not specify an
implementation. The implementation of the entities functionality is called an architecture.
Within the architecture definitions, multiple strategies may be used to describe it. In one
of them, the structural description, the architecture of one entity consists of any number of
other entities, whose ports are connected by signals. This results in a hierarchical design,
which can be easily represented graphically, like in Fig. 2.2. The structural description
intuitively corresponds to the way one would solve a problem by gradually dividing it
into smaller tasks. Another type of architecture is the behavioural description. Instead of
specifying what components are connected in which way to produce a certain behaviour,
it directly describes the behaviour the end result has. As this is a more abstract level
of description, the actual components and their connections have to be generated by the
design software. On the other hand, this leaves more liberty to the design tool to better
target the used technology. [8]
When designing a VHDL system, all these elements are specified in textual format

using VHDLs syntax. How the code is then further processed depends on the tooling
environment. For this project, the Xilinx Vivado suite is used. One entity, the top
level module, is selected to represent the behaviour of the entire FPGA. A behavioural
simulation of the code can be used to verify it on a logic level. This does not take
into account hardware aspects like timing, and therefore does not guarantee success in
the final FPGA. The first step towards the FPGA design is the synthesis of the code.
The synthesis generates a list of logic blocks and the connections, called nets, between
them from the VHDL hardware description. The implementation step then chooses the
locations of the blocks and nets inside the FPGA. This is non-trivial, because beyond
the fixed size of the chip constraining the layout, there may be constraints in the time it
may take for some logic blocks to produce a result, depending on the application. These
timing constraints, together with the related clock definitions and the description of how
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the hardware pins are connected to the ports of the top level module, are specified in a
so-called constraints file. Once the implementation is done, a bitstream containing the
implementations information is created, which can be finally used to program the FPGA.
Besides the behavioural simulation, Integrated Logic Analyzers (ILAs) may be used for

debugging the project. These are injected into the design after the synthesis step, and
connect to selected nets. When running the design on the FPGA, they buffer the values
of the nets over time, and write these buffers back to Vivado over the JTAG debugging
interface, once a selectable trigger condition is met. This way, one can directly see what
is happening inside the FPGA in a given situation. ILAs are also used for testing the
programmer software, as described in Sec. 5.2.
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Figure 2.2: Using a half-adder and a full-adder as an example, to illustrate how enti-
ties with ports are implemented by a structural architecture using signals
and instances of other entities. In the architecture diagram, the concrete
implementation of the half-adder does not need to be known, as long as its
functionality is guaranteed by it.

2.5 I2C protocol

The I2C protocol [9] is a two-wire serial bus. The hardware devices on the bus have a
numeric address and are assigned a role of either master or slave, with at least one master
present on the bus. All devices are attached to the same two serial lines, the serial clock
(SCL) and the serial data (SDA) line. Both of these lines are tied to logic high using a
pull-up resistor. The SCL line is controlled by the masters, and the SDA line is controlled
by the device currently writing data to the bus, as uniquely specified by the protocol.
Only the masters may initiate a communication.
The bytes are transmitted bit-by-bit, grouped into single bytes and delimited by the

START, STOP, ACK and NACK signals. A transmission is always started by a START
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and ended by a STOP condition from the master. When using 7-bit addressing, the
first byte is also always the address of the slave, with which communication shall be
established, and a read/write flag, indicating the direction of the transmission. This
way, even with multiple slaves connected to the same data lines, a single slave may be
selected for communication. After each transmitted byte, the receiving device has to
report status by giving either an acknowledge (ACK) or not acknowledge (NACK) signal,
where the not acknowledge signal reports an error, ending the transmission. Giving no
signal automatically leads to a not acknowledge. Thus, the bus can be scanned for the
connected slaves by initiating a transfer using the START signal and the first byte, and
then listening, whether the addressed slave responds with ACK, or a NACK if no slave
with the given address is present. A diagram showing the values of SDA and SCL during
a transmission can be seen in Fig. 2.3.
The I2C protocol is only a framework on how the bytes are transmitted between master

and slave. How they are interpreted depends on the device.

1

0

1

0

SDA

SCL

slave addressSTART R/W ACK transmission STOP

B6 B5 B4 B3 B2 B1 B0 B6 B5 B4 B3 B2 B1 B0B7

Figure 2.3: An example one-byte write operation (R/W = 0) in the I2C protocol. The
addressed slave controls the SDA line only during the acknowledge (ACK).

2.6 The lpGBT

The lpGBT is a transceiver ASIC for use in collider experiments. The context in which it
is used is already described in Sec. 2.2.2. Its key features are radiation hardness and high
data rates, as required by operation inside the detector. It is robust against radiation
damage, which is achieved using 65 nm CMOS technology. Also, special measures for
countering the SEUs are taken, for example by triplicating memory cells and using an
error correction scheme in the transmission.
The lpGBT is designed to be flexible, to allow use in multiple different environments.

This includes, for example, selectable data rates for the optical link and the E-Ports con-
necting to the front-end modules, the chooseable data directions (transmitter, receiver,
transceiver), the hardware pin configurations, and settings regarding the modules pro-
cessing the communication in general. It also contains debugging features, like a test
pattern generator, and experiment control and monitoring features, like the three I2C
master modules and the SEU counter.
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Figure 2.4: The register configuration of the lpGBT. The first part of the physical reg-
isters is duplicated into E-Fuses. The physical register 0x140 is shown in
a detail view, revealing how it is composed of logical registers, spanning a
varying number of bits.

All these features are controlled through registers, an overview of which can be seen in
Fig. 2.4. The physical registers are one byte memory cells with addresses ranging from
0x000 to 0x1ce. Within them, logical registers containing the actual configuration are
placed. Logical registers may take up single bits within a physical register, or they may
also span over multiple physical registers. The way the logical registers are interpreted
varies, and their exact usage is specified in the lpGBTs manual [12].
The physical register values can be read and written either internally by the internal

control (IC) field inside the data frames sent via the optical link, or externally via an
I2C slave interface on the lpGBT. Some registers only allow read access, as they report
the lpGBTs status or provide information not changeable over these two channels, like
pin configuration readbacks. A register configuration is mandatory for operation. The
registers critical to startup and operation are duplicated into E-Fuses, which may be blown
to permanently store a configuration on the chip. This way, instead of having to manually
configure the chip at each startup, the configuration can be automatically loaded from the
E-Fuses. The fuse blowing is performed through write operations to designated registers,
while a fusing voltage is applied to the respective pin.
According to the lpGBT specifications, when using the I2C protocol, the registers can be
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set by writing the lower and upper byte of the register address to be written to, and then
writing the contents. The contents may be one or more bytes, and the register address
is automatically incremented after each byte. A register read is initiated by writing the
register address. Then, instead of issuing a STOP condition to end the communication, a
START condition is repeated, after which the bytes can be polled from the lpGBT, until
the master gives a NACK. Again, the address increments automatically.
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3 Hardware environment

3.1 lpGBT emulator

An alternative to the lpGBT ASIC is the lpGBT FPGA emulator [13]. The lpGBT emula-
tors top level module structure can be seen in Fig. 2.4. It includes modules for generating
the clock signals, the E-Port EPortRx and EPortTx data signals and for serialising the
data. These are controlled by the register module, as expected. The two configuration
paths are implemented in their own modules controlling the register module, the I2C slave
module allowing external configuration over the I2C bus, and the IC interface, which uses
the data from the high speed optical link.
A Xilinx Ultrascale+ KCU116 development board is used to host the lpGBT emulator.

The emulator is not limited to just this board, although an alternative board must provide
a sufficient transceiver performance of at least 10.24Gb/s, and the constraints file would
have to be adapted for it.

Serial Data

E-link clocks Serial Data

High Speed Link
Datapath and
MGT Serdes

36

To DAQ

From DAQ

224

5.16/10.24 Gbps
FEC5/FEC12
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28 EportRx (7 Groups)

16 EportTx (4 Groups)

1 E-link (Eport-SCA - slow control @80 Mbps)
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SDA SCLSysClk Reset

EportRx

160/320/640/1280

EportTx
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Phase shif er clocks

40/80/160/320/64
0/1280

I2C slave

Figure 3.1: The top level module view on the lpGBT FPGA emulator [14].
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3.2 CERN USB-I2C dongle

Because the lpGBT programmer software targets conventional computers, which do not
provide an I2C interface, a bridge between the computers I/O ports and the I2C bus is
needed. The CERN USB-I2C dongle is hardware developed for configuring the GBTx
transceiver ASIC [15], the lpGBTs predecessor. It can be connected to the computer
running the lpGBT programmer software on one of the USB ports, and on the other side
control one or more lpGBT instances as a master on the I2C bus. An Atmel ATmega88PA
microcontroller with built-in support for the I2C protocol is used in the dongle hardware
for this task.
The microcontroller accepts a USB command byte array of fixed length from the pro-

grammer, performs the action specified by the first byte of the command array, and sends
a result byte array of the same length back. The arguments expected in the input and
produced as the output depend on the command. All commands used by the programmer
software are summarised in Tab. 3.1.
Because it was developed for the GBTx, it already contains features specific to this use

case. For one, it contains two open drain reset ports for resetting a connected lpGBT,
or other devices using active low reset pins. Additionally, a 2 ms long 1.5 V pulse and a
3.3 V fusing voltage on respective pins are controllable. They are used in the fuse burning
process of the GBTx, and may be partially reused for blowing the lpGBTs fuses. The
dongle also provides an adjustable target supply voltage, which can be switched on and
off using the USB commands. Just for configuring the lpGBT, no modifications to the
dongle firmware or hardware with respect to the original GBTx version are necessary.
However, before blowing the fuses, the 3.3 V fusing voltage has to be reduced to 2.5 V, to
be compatible with the lpGBT.
In Fig. 3.2, the hardware setup for configuring one or more lpGBTs can be seen. Besides

the SDA and SCL lines of the I2C bus connected to all lpGBTs, a reset chain and the
connection of the fusing voltage is shown. The reset chain works by connecting one open
drain output of the dongle to the first lpGBTs reset port, and then carrying the lpGBTs
reset output into the next lpGBTs reset input. A reset signal from the dongle is then
distributed along the chain. The behaviour of the reset output can also be configured
through the lpGBTs registers. The fusing voltage connection is only needed for blowing
the fuses.

14



3.2 CERN USB-I2C dongle

SDA

SCL

OpenD1

P3V3

SLSDA (U3)

SLSCL (U2)

RSTB (D3)

RSTOUTB (T2)

VDDF2V5 (J10, K10)

SLSDA (U3)

SLSCL (U2)

RSTB (D3)

RSTOUTB (T2)

VDDF2V5 (J10, K10)

Dongle lpGBT #1

lpGBT #2

Computer

lpGBT

programmer

software

USB

Figure 3.2: The hardware setup of the lpGBT programmer softwares target use case.
A reset chain is shown in blue, and the fusing voltage connection is shown
in red. The coloured connections are optional, if only a configuration of the
chip shall be performed.
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3 Hardware environment

Command Code Arguments Output Description
I2CTRANS 1 1 +N bytes:

address +
transmission
data

M bytes:
received
data

Write data to the
slave with the given
address, repeat the
START command,
and return the
response

I2CWRITE 2 1 +N bytes:
address +
transmission
data

- Write data to the
slave with the given
address

I2CSCAN 4 2 bytes: start
adr., end adr.

N bytes:
addresses
of the
detected
slaves

Scan the bus for
slaves in the given
address range using
the technique
described in Sec. 2.5

VERSIONGET 100 - 2 bytes:
dongle
version

Retrieve the dongle
version

GOBOOTLOAD 107 - - Switch the dongle to
bootloader mode

VTARGETSET 200 1 byte: 1/0 - Switch the target
supply voltage on/off

IO1SET 203 1 byte: 1/0 - Switch the open drain
reset port 1 on/off

IO2SET 205 1 byte: 1/0 - Switch the open drain
reset port 2 on/off

VFUSESET 207 1 byte: 1/0 - Switch the fusing
voltage on/off

Table 3.1: Overview of the dongle commands used in the programmer software. The
code field refers to the value of the first byte of the USB argument array.
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4 Software development

4.1 Motivation and requirements

As already mentioned, configuring the lpGBT is necessary for its operation. The final goal
is to develop an application for doing this, but some choices have to be made along the
way. A discussion of the choices, presented in the following, motivates the programmer
softwares current specifications.
The first choice is, whether to use the I2C or the IC configuration path. Since the IC

configuration path uses the optical link, it already requires a working configuration within
the registers, meaning it has to be configured at startup using either the I2C protocol or
the fuses. In reverse, the fuses cannot be blown using the IC path without an external
I2C programmer, as this also requires access to the registers. Therefore, the more flexible
choice is the I2C configuration path. Additionally, I2C configuration is easier to set up,
when only the lpGBT ASIC or emulator without the other components of the readout
chain are available.
Secondly, the CERN USB-I2C dongle is chosen as the device controlling the I2C bus, so

that the already existing dongle hardware already available at the involved institutes can
be reused. This is in contrast to the piGBT lpGBT configuration software [16] developed
before the lpGBT programmer software, as it uses a Raspberry Pi single-board computer
in place of the computer/dongle combination, which is not available in some institutes.
The programmer software targets manual configuration by a person, instead of exposing

the configuration functionalities to a scripting environment for automatic configuration.
Thus, a GUI is chosen as the interface between the user and the software, as opposed to
an application programming interface (API) or a command line interface (CLI).
The "GBTx programmer" is the GUI configuration program of the GBTx [17]. It also

uses the dongle to configure the GBTx over the I2C interface, similar to what this project
achieves. Therefore, as an additional benefit of using the I2C configuration path and the
dongle, parts of the graphical interface design and the code for controlling the dongle
could be adapted to this project from the GBTx programmer software.
This adaptation requires the use of the Java programming language, in which the GBTx
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programmer software is written. Its benefits with regards to this project are the included
Swing GUI framework and the cross-platform support. A disadvantage is the depen-
dency on the Java Runtime Environment (JRE) for executing the programmer software
on the target computer. The additional JRE layer also makes it harder to add an API
for a scripting language like Python besides the GUI, even if the class structure of the
programmer software allows it. For the GBTx, this is addressed by having two separate
implementations: the Java GBTx programmer GUI and a smaller command line and
scripting module written in Python.
With these choices, a set of tasks the programmer software should be able to perform

are defined, going from direct hardware control to tasks using higher abstraction: The
programmer software should, on a very basic level, be able to control the dongle function-
alities by sending the USB commands listed in Tab. 3.1. Using the I2C dongle commands,
the physical register byte values should be presented, with the option to read them from
or write them to the lpGBT. Since both the dongle and the I2C bus support multiple
slaves, the lpGBT programmer software should also be able to scan and select from the
devices on the bus. In addition to the physical register values, the logical register values
should be selectable, too, as these are more relevant to the configuration itself. Due to
the different interpretations of the logical registers bit patterns by the lpGBT, this is the
most complex task. On a similar note, higher level access should be provided to the other
lpGBT functionalities controlled through the registers, like the fuse blowing process. Es-
pecially the higher level interfaces for the logical registers and the lpGBT functionalities
can make good use of the GUI concept, since a GUI better supports, and in some cases
requires, a more user-friendly and less technical presentation than for example a command
line interface.
The following sections describe, how these tasks can be performed in the project im-

plementation.

4.2 General user interface

A screenshot of the lpGBT programmer GUI is shown in Fig. 4.1. Generally, the window
is divided into the header bar, the page tree, and the page content. The pages, selectable
in the page tree and displayed in the page content, provide a view onto the workspace
lpGBT instance, which is a replica of the lpGBTs registers in the computers memory.
The header bar then controls, how the workspace values are processed. Also, hardware
related actions can be performed in the header.
Going from left to right in the screenshot of Fig. 4.1, the first controls of the header
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Figure 4.1: An annotated screenshot of the lpGBT programmer GUI, showing the three
main areas of the user interface.

are the buttons for writing selectable parts or all of the physical registers to an image
file, and in turn reading the image files into the workspace instance. After that follow
the two buttons for writing the workspace values to the selected lpGBT, or reading the
selected lpGBTs register values. By default, all registers are read/written, although the
user can select which registers are read or written on a per-register basis, by using the
page described in Sec. 4.4. The header continues with two reset buttons. Upon activation,
they send a 500 ms reset pulse to the respective open drain reset pins of the dongle. A
fourth group of controls is used to scan the I2C bus for devices, and to set the target
lpGBT. The selection is done by choosing the lpGBTs slave address in the "Address"
combo box. Its selectable values are updated at startup, or each time an I2C scan is
performed. Lastly, two labels show the status of the dongle and the lpGBT, if they
can be accessed by the programmer software. For the dongle, the firmware version, as
reported by the VERSIONGET USB command (see Tab. 3.1), is shown. For the lpGBT, the
first four register values specifying the chips ID are read and displayed on success. Each
button of the header is only enabled for use, when the necessary hardware is detected by
the programmer. For example, when taking the screenshot of Fig. 4.1, no dongle was
connected and only the lpGBT image buttons are enabled.

All register configuration is performed on the workspace instance, and has to be actively
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written to the lpGBT to take effect. This is not necessarily the case for the additional
interfaces described in Sec. 4.6. The decoupling from the hardware allows editing lpGBT
image files without having a dongle or lpGBT attached to the computer.
The view onto the workspace values is paginated, because the distinction between phys-

ical and logical registers creates different ways of representing the same register values
graphically. Also, the large number of registers (459) requires the pagination for accessi-
bility.

4.3 Controlling the dongle

The dongle USB commands themselves were already given in Tab. 3.1, but some com-
ments are due, on how they are being used. On initialisation of a dongle found on
the USB bus, its target supply voltage is enabled and its fuse voltage is disabled, us-
ing the VTARGETSET and VFUSESET commands. The IO1SET, IO2SET, VERSIONGET and
GOBOOTLOAD commands are used directly, without additional logic behind it.
This is not the case for I2CTRANS and I2CWRITE, as the number of registers, that may

be read or written in a single given dongle command, is limited by the USB command
byte arrays length, which depends on the firmware version of the dongle. To speed up the
communication, the goal is to read/write the maximum possible number of register the
dongle allows with each command, since for each new command the lpGBTs slave address
and the register address needs to be repeated. On the other hand, registers disabled for
read/write and gaps in the registers (address range 0x13d - 0x13f) shall be avoided. This
problem is solved by first dividing the registers into ranges to be read/written individ-
ually in the programmer code. A range is found by starting from a start address, and
incrementing it, until the start address is not blocked. Then, the frame is expanded until
either the maximum length is reached, or another blocked register is hit. The start ad-
dress of the first range is 0x000, and the start of each new range is the first register after
the previous range. For the write operations, this process is iterated until the read-only
registers are reached, and for the read operations, this process is iterated until the end
of the physical registers. A similar strategy is used for scanning the I2C bus, although in
this case the address range to be scanned (0x01 - 0x7f) is continuous. In agreement with
the lpGBTs I2C interface, the I2CTRANS command is used for reading, and the I2CWRITE
command is used for writing the registers.
Even if technically possible, switching between multiple dongles connected to the PC

is not supported. When more than one dongle is connected, the first one to be reported
by the USB library is used.
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4.4 Interface of the physical registers

4.4 Interface of the physical registers

The interface of the physical registers is already shown in Fig. 4.1. It contains a table of
values, where each row displays one physical register of the workspace instance. Within
a row, the name of the register as specified in the manual, its type, address and value
are presented. The type differentiates between the register regions. It reads "R/W/F" for
fuseable registers, "R/W" for writable, but not fuseable registers, and "R" for the read-
only registers. The registers can be filtered by name. Also, each register can be enabled
or disabled for read/write when using the header buttons. For convenience, buttons for
grouped control over this read/write enable feature are placed underneath the table. The
actual editing of the values is done by clicking the value cells of writable registers. After
the click, the cell turns into an editor, and the hexadecimal byte value can be typed in or
selected using the spinner controls.

4.5 Interface of the logical registers

logical register configuration folder

physical reg.
address

physical
reg. bit

register
description

register
name

specific
control

additional
groups

set default value
(where applicable)

Figure 4.2: Annotated screenshot of a page for configuring the logical registers.

The logical register configuration pages, collected inside the "Configuration" folder of the
tree, which can be seen in Fig. 4.2, provide a list-like view onto the logical registers. Each
line consists of a description of the placement within the physical registers, a description
of the registers purpose, the name, a register-specific control and, where applicable, a
button for resetting it to its default value. The placement part specifies the physical
register addresses the logical register is contained in, and in the case of it being just
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one physical register, also which bits of it are mapped. Hovering the mouse over the
information icon besides the name reveals the registers description as a tool tip. In
addition to the placement inside different pages within the tree, groups within the pages
can be defined, as shown in the figure. The pages of the tree are oriented towards how
the registers are grouped in the lpGBTs manual.
The lines are generated just from a description of the logical registers. This description

also assigns the logical registers one of currently eight types. The type specifies, how the
register value is interpreted in the lpGBT, and consequentially, what control is chosen
to set its values in the GUI. This can be seen in Fig. 4.2, where the lines have different
register-specific controls. An overview on what controls are available is given in Fig. 4.3.
Setting the value through the control immediately changes the corresponding bits inside

the workspace instance, which can be verified in the physical register page. The other
bits of the physical register, that do not belong to the modified logical register, are
left unchanged. This is one of the biggest strengths of the programmer software, as
the required modifications on the bit level, which are error prone when done manually,
are automatically performed. Again, only the workspace instance, instead of the actual
lpGBT device configuration, is changed. One should be aware, that trying to write
logical registers included in physical registers disabled for read/write will for that reason
not succeed.
Only the fuseable registers are implemented in the GUI using this type of page. The

reason is, that the non-fuseable registers are less static, in that they control live config-
uration, monitoring and experiment control features. Controlling them would certainly
be possible with this page type, but it is not the optimal way to represent these regis-
ters graphically and for user interaction. As an example, the lpGBTs I2C masters are
controlled through writing encoded commands into logical registers spanning at least 4
physical registers. One I2C master transaction requires sending up to 6 of such com-
mands. Thus, controlling the I2C masters by hand using this kind of page would be very
tedious, and special pages addressing these features are required in the GUI. The pages
addressing such features implemented at the time of writing are described in Sec. 4.6.

4.6 Additional interfaces

Other lpGBT modules controlled by the registers are accessed through their own cus-
tomised pages.
The "Fuses" page controls the fuse blowing process. It gives an overview over the

register contents of the fuseable registers, like the page described in Sec. 4.4. In addition,
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4.6 Additional interfaces

Figure 4.3: The available controls for setting the logical register values. For further
information, please see the programmers manual. a) (AssocListSlice) free
assignment between value and quantity b) (BitChoiceSlice) choice on a by-
bit basis c) (BooleanSlice) a single bit flag d) (NumericSlice) the register
value is interpreted as an unsigned integer e) (MultiByteSlice) the register
value is interpreted as a 4 byte unsigned integer f) (IntervalSlice) the value
selects a quantity within an interval g) (CalculatingSlice) the value maps
to the quantity through a function h) (MultiByteSlice) a sequence of bytes
without further interpretation

when the fuses are already blown, their values can be read and then displayed besides or
compared to the workspace instance values. Blowing the fuses to the displayed workspace
register values is also possible. Before blowing the fuses, the programmer software asserts
that the updateEnable, pllConfigDone and dllConfigDone flags are enabled, if the
corresponding check boxes are set. These flags must be set, in order to operate the
lpGBT at startup using the configuration stored in the fuses.

To pick up the example of Sec. 4.5, a separate page is implemented for the lpGBTs I2C
masters. Within, the masters configuration (master select, frequency, pin configuration)
can be set and bytes can be read and written to the connected slaves. The read and
write operations are specified textually in a script format. Each line in the script starts
with a command, followed by the commands arguments separated by whitespace. The
script is then interpreted from start to end, and the commands are executed sequentially.
The most important commands are the read command, which takes the number of bytes
to be read from the slave as an argument, and the write command, which writes the
argument bytes to the slave. All other commands are used to change the master settings
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during execution of the script. When the script is run, an output text containing the
slaves response, notifications of changed settings and error messages is generated. A more
detailed description of the script syntax is given in the prepared programmers manual.
The benefit of the script format, compared to special controls for reading/writing the
values, is that initialisation procedures of one or more devices consisting of multiple write
operations, also across the different masters, can be performed using just one script.
Also, this script can be saved to and loaded from the filesystem, and does not have to be
manually input every time, which would have been the case for the special controls.
Another page is the "SEU Monitoring" page. Here, the lpGBTs internal SEU counter

can be logged and displayed over time. The log files name, the rate at which the value
is read and the data width of the pages graph can be set. This feature was inspired by a
similar tab in the GBTx programmer GUI.
For debugging purposes, an "Interactive Debug" page hidden behind the --debug com-

mand line flag was created. It contains controls for writing and reading single physical
registers, as well as controls for performing the testing procedure described in Sec. 5.2.

4.7 Class structure

There are too many classes to discuss all in detail, but the class structure of the most
important classes and why it was chosen is presented in the following. Of course, this
section refers to the class structure at the time of writing. In the hopes of making it easier
to understand, an illustration of the text is shown in Fig. 4.4. In the first instance, the
project is split into the model classes, taking care of the logic and hardware control, on
one side and the GUI classes on the other side. The model classes do not refer to the GUI
classes, so the possibility of reusing them independently in a different interface, such as a
command line interface, is left open.
The main class is MainWindow. It creates a window including the layout and func-

tionality of the header panel and the page tree. The header controls the hardware, so
MainWindow creates an instance of the HardwareManager, which is supposed to be the one
class for connecting the hardware classes to the GUI. It contains the two main hardware
related classes, the Dongle class adapted from the GBTx programmer software, and the
LpGBT class containing the workspace instance, the fuse values and the currently targeted
I2C address. Access to the HardwareManager and LpGBT is only given through the in-
terfaces IHardwareManager and ILpGBT. During development, this enabled connecting
the former DummyHardwareManager and DummyLpGBT test classes implementing these in-
terfaces to the GUI instead. So the GUI could be tested without a working hardware
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4.7 Class structure

implementation, but later it could still be easily changed to use the real hardware classes,
by just changing the code instantiating the two objects.
For implementing the application pages, the abstract FeaturePanel class is created.

It provides the methods needed to display the child class objects in the tree. Also, it
contains event methods called by the MainWindow on page initialisation, select, deselect
and for refreshing the displayed data on change. A new tree page is therefore created sim-
ply by implementing these predefined methods in a child class extending FeaturePanel,
and adding it to the tree inside the MainWindow. As a result of this design, the pages
are decoupled from one another, and the implementation of the different configuration
functionalities are automatically placed inside their own classes.
The SlicePanel shown in Sec. 4.5 for configuring the logical registers, called slices

in the implementation, requires the most additional structure. The custom controls
in each line are instances of the classes extending SliceDisplayBase. They are for
each page generated from a SliceBase array describing the logical registers, which are
stored in the static class RegisterSlices. The conversion between the model classes
extending SliceBase and the GUI classes extending SliceDisplayBase is done in
the SliceDisplayCreator by using the visitor pattern [10]. This free assignment be-
tween the model and GUI classes allows one model to have two different GUI controls
(MultiByteSlice), or two models to have the same control (BooleanSliceDisplay). In-
side the model classes, BitRange and BitString are used to map the logical register
values to the physical register bits.
The benefit of using the auto-generated pages is that changes and bug fixes in the

model or GUI classes are automatically reflected in all instances throughout the pages.
Also, the layout of the pages can be changed in one single place. The GUI generation
just from the small SliceBase objects inside RegisterSlices allows quick development
and modification of the GUI, as more or less required by the number of ≈ 200 logical
registers currently implemented. A downside to this design is the loss of flexibility in the
GUI: If one wants to deviate from the list-like structure, an entirely new page has to be
implemented.
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5 Testing

5.1 Testing goals and limitations

Beyond testing the user interface during development, the programmer softwares core task
of configuring the lpGBT needs to be tested. Ideally, the lpGBT ASIC and a working
readout chain are used for the tests. However, the lpGBT ASIC was not available in the
testing phase, so it is substituted by the lpGBT emulator. The KCU116 development
board hosting the emulator was also neither connected to front-end modules nor a data
acquisition (DAQ) system, which are needed for a complete readout chain. So a real-
world test case involving configuring and modifying the readout chain features on-the-fly
was not possible. Thus, the overall testing possibilities are limited compared to the full
setup, as used in the detector. Still, most of the programmer software functionalities can
be validated with the lpGBT FPGA implementation, with the exception of the analogue
features of the lpGBT and the fuse blowing.
The abstract task of configuring the lpGBT is already broken down into a list of smaller

tasks the programmer software can perform in Sec. 4.1. They are also already listed in
the order they have to be tested, going from direct hardware control to the higher level
features, as hardware control is required for successfully reading and writing the registers,
which is in turn required for configuring the other modules of the lpGBT through the
higher level interfaces. Consequentially, the whole testing process is divided into two
consecutive steps: In the first step, the dongle connection is established, and it is verified,
that the programmer software can read and write the lpGBT emulators register values.
The performed actions and their results are detailed in Sec. 5.2. The second step tests
the hardware setup, in which multiple lpGBT instances are configured over the same bus.
For the programmer software this means testing its I2C scan feature and the ability to
select between the slaves on the bus. How this is achieved using only one single FPGA
development board is shown in Sec. 5.3.
The one task defined in Sec. 4.1, but not addressed by these two testing steps, are

the higher level interface implementations of Sec. 4.6. Since the corresponding modules
are not, or in the case of the fuses can not, be implemented in the lpGBT emulator (see
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Fig. 3.1), the interfaces ability to control the lpGBT ASIC can not be verified with the
hardware test setup. The fuse blowing is an irreversible process, so to prevent the untested
fuse blowing code from running and possibly permanently misconfiguring an lpGBT ASIC,
it is commented out. While having untested features makes the concerned pages useless
in practice, their interfaces are working, and the commented out sections of the fuse
panel, or the communication code of the other pages, provides a demo implementation,
showcasing how the programmer softwares class structure may be used to perform the
respective tasks. This way, when the features are actually needed, less effort has to be
put in to reach a fully functioning version of these pages.
Another point to discuss is, how the successful tests with the lpGBT emulator translate

back to the lpGBT ASIC use case. The dongle is the hardware sending the actual sig-
nals, and it is now verified to work at least with the GBTx ASIC and the FPGA lpGBT
emulator. With this background, it will surely work with the lpGBT ASIC, too. So as
long as the dongle is interfaced correctly by the programmer software, and the order and
meaning of the bytes confirm to the lpGBTs specifications, both of which are tested with
the lpGBT emulator, the programmer software will also correctly program the lpGBT
ASICs registers. After establishing successful configuration of the ASICs registers them-
selves, their influence on the lpGBTs components solely depends on the lpGBT, and not
the programmer software.

5.2 Communication tests

Due to the dongle code being mostly reused from the GBTx programmer software, com-
munication with the dongle, like querying its firmware version, was established quickly.
After that, there are three ways to detect changes in the register values, all of which were
used to verify the programmer softwares communication with the lpGBT emulator. The
two direct ways are reading the register values through the ILAs on the FPGA, or through
the I2C slave. Indirectly, changes in the register values may be detected by measuring
changed behaviour of the lpGBT emulator.
By tracing the ILA values of the SDA, SCL and register signals over time, one has

direct verification of a transactions validity and success. An example of this is shown in
Fig. 5.1. The ILAs are great for probing individual transactions, but become tedious
when checking the validity for multiple different transactions. This can be automated for
the writable registers, by using the second way of reading the registers, the regular I2C
path. Ideally, if one would check whether all writable registers read back the correct value
after writing all possible values, the testing would be complete. To save time, the range
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5.2 Communication tests

Reg. 0x003:
SDA:
SCL:

ILA buffer index:

I2C slave state:

slave adr.
=0x01

reg. address
(lower byte)

=0x03

reg. address
(upper byte)

=0x00

reg. value
=0xabACK ACK ACK ACK

R/W=0

register
content
changes

Figure 5.1: A screenshot of the Vivado ILA view, displaying a write transaction. After
the write, the register value of the target register changes respectively. The
presentation is the same as in Fig. 2.3. The START and STOP conditions
cannot be seen directly, because the ILA buffer is set to only capture on
SCL change, but they can be indirectly seen in the slave state change.

of all possible values is only sampled using fewer random values. The resulting testing
procedure is

1. Set the workspace values to random byte values from 0x00 to 0xFF, and store a
copy of the generated values

2. Write all registers to the device

3. Reset the workspace values by negating

4. Read all registers from the device

5. Compare the workspace values to the copied values of step 1

It may be iterated to get closer to the ideal case. Between two iterations, the value gen-
erated in step 1 is guaranteed to change in the implementation. In step 3, the negation is
chosen in favour of just resetting the values to a constant, so that no value is distinguished.
When running this procedure using the lpGBT emulator, the list of registers passing all
iterations of this procedure exactly matches the list of writable registers implemented in
the lpGBT emulator. The unimplemented registers are hard-wired to read 0x00, so their
failure is the expected result.
Because both the logical register pages and the specialised pages internally map to the

physical registers, these tests also confirm their ability to read from and write to the
device. As an example of measuring modified behaviour, an oscilloscope is connected to
one of the E-Clock outputs. Their frequency may be set by using the lpGBTs registers, and
upon setting the value in the logical register page, the change in the E-Clocks frequency
and polarity can indeed be measured, as seen in Fig. 5.2.
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5 Testing

Figure 5.2: A tiled view on the output of a differential E-Clock over time. The frequency
changes between the tiles as a result of reconfiguring the settings with the
logical register programmer GUI.

5.3 Multi-lpGBT tests

For testing the multi-lpGBT setup with only one FPGA development board, the emulator
modules are duplicated inside the FPGA, and thus form two separate lpGBT instances.
This is not done with the full emulator, but with a stripped version containing only the
necessary modules in each instance, to speed up the implementation step. The stripped
emulator consists of the clock generator, I2C slave and register modules. A diagram of
the setup parallel to the hardware setup in Fig. 3.2 is shown in Fig. 5.3.
This configuration is handled correctly by the programmer software, too. The two

instances are picked up in the I2C scan and are displayed in the combo box for selecting
the target. Individually, they still pass the testing procedure described in Sec. 5.2. Also,
when switching between the instances one can see, for example in the lpGBT status label
or in the physical register values in general, that there indeed exist two separate register
instances with different values.
A problem arises when simply trying to connect both SDA lines of the two I2C slave

modules, to form the combined SDA port of the FPGA. Because when judging only from
the description of the SDA ports on the slave modules, marked in VHDL as both input
and output, it is possible that both slave modules actively drive the combined SDA line
to different values. This leads to an error in the implementation step, as one net may
only have one driver. One possible solution to this problem is to split the single SDA
port of the slave module, as present in the original emulator, in three separate ports with
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5.3 Multi-lpGBT tests

distinct directions: An SDA_IN and SDA_OUT port, for the SDA input and output, and the
SDA_WRITE port, that specifies which of the two directions is currently used. With this,
the SDA_IN ports can be connected to the combined SDA line unconditionally, as they do
not drive it. The SDA_OUT ports are connected to the shared line only through tri-state
buffers, and only drive the shared line, if mutually excluding conditions are met. This
design ensures, that only one slave drives the FPGAs SDA pin at each given time, and it
can be therefore implemented successfully.

SDA

SCL

OpenD1

P3V3

Dongle
"lpGBT #1"

"lpGBT #2"

Computer

lpGBT

programmer

software

USB
I2C

slave
module

#1

register
module

#1

FPGA

I2C
slave

module
#2

register
module

#2

E

E

OUT_1

OUT_2

WRITE_2 & (!WRITE_1)

WRITE_1 & (!WRITE_2)

IN_2

IN_1SDA

Figure 5.3: A diagram showing the structure of the multi-lpGBT test configuration, the
results in the GUI and the wiring of the SDA lines as discussed in the text.
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6 Conclusion and Perspectives

6.1 Conclusion

As part of its infrastructure, a GUI application for configuring the lpGBT by setting its
register values over the I2C protocol was developed. It runs on a conventional computer,
but depends on the already existing CERN USB-I2C dongle hardware, for establishing and
controlling the I2C bus. Through the GUI, the values of both the physical and the logical
registers can be set in separate content pages. Also, experimental pages allow custom
tailored control over some of the lpGBTs monitoring and experiment control modules, as
well as the fuse reading and blowing process. The programmer softwares ability to read
and write the register values was successfully tested with the FPGA lpGBT emulator.
This holds true both in the case where one single, full emulator is used in place of the
lpGBT ASIC, and in the case where selected modules of the emulator were duplicated
to mimic configuration of more than one lpGBT ASIC over the same bus. With these
features, the programmer software can be utilised in the setup of a readout system, and
in further development of the lpGBT emulator.

6.2 Perspectives

Due to the circumstance of the lpGBT ASIC not being available for testing, the full-
featured use case of the programmer software is still partially untested. Further tasks
needed for completeness are communication tests with the lpGBT ASIC, although the
lpGBT emulator tests are expected to cover them, as discussed in Sec. 5.2. More im-
portantly, tests regarding the higher level interfaces, most critically the page for reading
and blowing the fuses, still need to be carried out, along with possible adjustments to the
software. On the hardware side, the dongles fusing voltage needs adjustment, to be able
to perform the fuse blowing process. Lastly, and with the least priority, there are still
lpGBT modules without a corresponding page in the GUI, like the eye opening monitor
or the test pattern generator. Implementing them is another possible continuation of the
project.
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