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Short Introduction

The solutions to scattering problems in harmonic regime contain an intrinsic length of
oscillation λ, called the wavelength. Any numerical method based a discretization of the
computational domain should therefore use a mesh size fine enough to capture the varia-
tions of the solutions within a period of space λ. Many practical problems require however
a stronger constrain on the mesh size due to the presence of a smaller scale δ induced by
geometrical fine details or by physical strong contrasts. The cases where δ � λ therefore
lead to a significant increase in the size of the discrete model and consequently the cost of
the numerical scheme.

This course will provide an introduction to some asymptotic techniques that can be
used to replace the exact model with approximate ones whose numerical resolution does
not suffer from that stronger constrain and whose solution will converge to the exact one
as δ goes to zero. In general, one can construct a hierarchy of models with increasing rate
of convergence in terms of δ, but also with increasing complexity.

The main focus of this course will be on the theoretical side: understanding the prin-
ciple of asymptotic expansions, formally deriving approximate models and obtaining error
estimates through stability analysis of the problems with respect to the small parameter.

After a general introduction to scattering problems in harmonic regime (we shall re-
strict ourselves to the scalar problem modeled by the Helmholtz equation, as presented in
Chapter 1) we shall investigate three typical asymptotic configurations associated with:

1. The scattering from coated obstacles of thickness δ � λ. In this case a scaled
asymptotic expansion is used to derive so-called Generalized Impedance Boundary
Conditions (GIBC) that reproduce the effect of the thin layer without needing to
incorporate this thin layer into the computational domain. We shall follow a similar
approach as in [9] and in [17].

2. The scattering from strongly absorbing obstacles where the small scale δ is produced
by the boundary layer effect due to strong absorption. We shall explain here how
scaled asymptotic techniques can be adapted to capture boundary layer effects. They
also can be used to derive GIBCs. The treatment of this case is the object of Chap-
ter 2. The extension to Maxwell’s problem is summarized in [14] and is treated in
[19].

3. The scattering from periodic media where the periodicity scale δ is very small com-
pared to λ. We shall describe here the method of two-scale asymptotic expansion that
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can be used the obtain so-called homogenized models. These models only reproduce
slow variations of the solutions. The classical references to periodic homogenization
theory using two scale asymptotic expansions are [27, 10, 8]. The generalization to
non periodic cases is treated in [22].

More complex configurations that couple different small scales (for instance, highly oscil-
lating and/or strongly absorbing thin coatings) need a combination of the above mentioned
asymptotic techniques and/or a matching procedure that connect different asymptotic ex-
pansions. The technique of matched asymptotic expansions will be briefly described in
this context. The analysis of this kind of techniques is left as a reading perspective of this
introductory course (see [23] for applications the matching asymptotic method in the case
of the Laplace equation).
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Chapter 1

Scattering problems: generalities

1.1 Introduction

This chapter intends to give a quick overview on the physical and mathematical settings of
scattering problems in harmonic regime. Classical references on mathematical studies of
scattering problems are the Colton-Kress books [13, 12]. We shall adopt here the variational
point of view in studying the existence and uniqueness of solutions to the forward problem,
which is more suited to the asymptotic analysis introduced in next chapters. Further
reading on this approach in the case of scattering problems can be found in [25, 24].

1.1.1 Wave equations

The model problem that will be later introduced can be seen as a simplified version of more
complex ones hereafter described. These models are associated with three main categories
of wave phenomena.

Acoustic waves: These waves propagate within fluids (gas, liquids, . . .) and are generated
by pressure variations p(x, t). The simplest mathematical model associated with these
waves is the scalar wave equation obtained after linearization of the Euler equations:

∂2p

∂t2
+ γ(x)

∂p

∂t
− c(x)2ρ0(x)div

1

ρ0(x)
∇p = s(x, t)

c(x) : the sound speed
ρ0(x) : the reference density
γ(x) : an absorption coefficient
s(x, t) : a source term.
The couple (x, t) denotes the (space, time) coordinates in R3 × R.

Electromagnetic waves: These waves, composed of an electric field and a magnetic field,
are generated by electron movements and propagate everywhere. The propagation of
these waves is governed by Maxwell’s equations. The simplest form of these equations
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8 CHAPTER 1. SCATTERING PROBLEMS: GENERALITIES

is the one associated with dielectric materials and can be expressed in terms of electric
field E(x, t) (vectorial unknown) as

ε(x)
∂2E

∂t2
+ σ(x)

∂E

∂t
+ curl

1

µ(x)
curlE = J(x, t)

ε(x) : electric permittivity
µ(x) : magnetic permeability
σ(x) : electric conductivity
J(x, t) : a source term

Elastic waves: These waves propagate within solids and are generated by displacement
variations u(x, t) (vectorial field). The simplest mathematical model is the linearized
elastodynamic equation

ρ(x)
∂2u

∂t2
+ γ(x)

∂u

∂t
− div σ(u) = f(x, t)

ρ(x) : density
γ(x) : an absorption coefficient
σ(u): the stress tensor whose linear dependence in terms of u is given by the Hooke
law. For isotropic materials

σ(u) = λ tr(ε)δi,j + 2µ εi,j

where εi,j := 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

λ, µ : the Lame coefficients
f(x, t) : a source term

1.1.2 The scalar model problem

Our model problem is the scalar wave equation. The unknown u(x, t) (that plays for
instance the role of the pressure variation) satisfies

1

c(x)2

∂2u

∂t2
+
γ(x)

c(x)2

∂u

∂t
−∆u = s̃(x, t), (1.1)

where (x, t) denotes the (space, time) coordinates in RN × R with N denoting the space
dimension (N = 1, 2 or 3). The coefficients c(x) and γ(x) are non negative quantities and
are equal to those associated with the free space outside a bounded region B:

c(x) = c0 > 0 and γ(x) = 0 x /∈ B.
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The domain B may also contain sound-soft or sound-hard obstacles that occupy a sub-
domain D. On the boundary of a connected component of D the solution u satisfies either
of the boundary conditions

u = 0 or
∂u

∂n
= 0 on ∂D (1.2)

where n denotes the unitary normal to ∂D directed to the interior of D.

Exercise 1.1

• Prove that for elastic waves, u = div u satisfies a similar equation as (1.1).

• Prove that for electromagnetic waves, if the medium and the solutions are invariant
along x3 direction then u = E3 also satisfies a similar equation as (1.1).

Incident waves: Incident waves ui(x, t) are defined (in general) as solutions to the prob-
lem when the medium does not contain any inhomogeneities or obstacles. They
satisfy

1

c20

∂2ui

∂t2
−∆ui = s̃(x, t). (1.3)

Scattered wave: Denoted by us(x, t), this field is defined by us(x, t) := u(x, t)− ui(x, t).
It therefore corresponds to the wave generated by any perturbation of the free space.
Taking the difference between (1.1) (1.3) one gets

1

c(x)2

∂2us

∂t2
+
γ(x)

c(x)2

∂us

∂t
−∆us = −

(
1

c(x)2
− 1

c20

)
∂2ui

∂t2
− γ(x)

c(x)2

∂ui

∂t
. (1.4)

We observe that the diffracted field satisfies a wave equation with a source term
generated by the incident field and whose support is contained into B.

We shall consider problems with an established harmonic regime, i.e. when the sources
and the solutions have harmonic dependence with respect to t. More precisely we assume
that

s̃(x, t) = <e(s(x) exp(−iωt)),
u(x, t) = <e(u(x) exp(−iωt)),
ui(x, t) = <e(ui(x) exp(−iωt)),
us(x, t) = <e(us(x) exp(−iωt)),

where ω > 0 is the pulsation that we shall (abusively) also refer to as the frequency.
Formally, the new unknown u(x) can be interpreted as the Fourier transform of t 7→ u(x, t)
evaluated at the frequency ω. Notice that the unknowns are now complex valued functions
and that getting the “physical” solution u(x, t) requires both the real and imaginary parts
of u(x).
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Substituting in (1.1), (1.3) and (1.4) we observe that the incident field ui(x) satisfies
(the Helmholtz equation),

−κ2ui −∆ui = s(x) in RN \D (1.5)

where κ := ω/c0 is the wavenumber, while the total field u satisfies

−κ2q(x)u−∆u = s(x) in RN \D (1.6)

where

q(x) :=
c20

c(x)2

(
1 + i

γ(x)

ω

)
(1.7)

is referred to as the medium index. Notice that n = 1 outside B and that =m(n) ≥ 0.
The diffracted field satisfies

−κ2q(x)us −∆us = −κ2(1− q(x))ui in RN \D, (1.8)

These equations are supplemented with the boundary conditions (1.2).

1.1.3 On the radiation condition

The above equations are not sufficient to uniquely determine the scattered wave (assuming
that ui is given). To guarantee the uniqueness of solutions one needs to supplement these
equations with a criterion that selects physical solutions, namely the Sömmerfeld radia-
tion condition. In order to understand the origin and physical meaning of this radiation
condition we propose to consider the simplified problem where we seek the wave generated
in the free space by a source term f(x) of compact support. We are then interested in
physical solutions us satisfying

−κ2us −∆us = f(x) in RN . (1.9)

One possible way to compute those solutions is to first define the “physical” fundamen-
tal solution GN satisfying

−κ2GN −∆GN = δ in RN . (1.10)

Then the “physical” solution of (1.9) is simply obtained by convolution:

us(x) = (GN ∗ f)(x) x ∈ RN

Exercise 1.2 Prove that the (spherically invariant) solutions to (1.10) are given by

G̃q(x) = αGq(x) + (1− α)GN(x) (1.11)

α ∈ C, where

G2(x) =
i

4
H

(1)
0 (κ|x|), G3(x) =

eiκ|x|

4π|x|
(1.12)
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with H
(1)
0 denoting the cylindrical Hankel function of the first kind of order zero1.

Verify that GN ∈ L1
loc(R3).

Let us set
ΦN(x, y) := GN(x− y), x, y ∈ R, x 6= y

so that we can express the solutions to (1.9) in the form

us(x) = α

∫
B

Φ(x, y)f(y)dy + (1− α)

∫
B

Φ̄(x, y)f(y)dy = αu1
s(x) + (1− α)u2

s(x)

where B is a bounded domain containing the support of f .

Exercise 1.3 Prove that

ΦN(x, y) =
eiκ|x|

CN |x|(N−1)/2

(
e−iκx̂·y +O

(
1

|x|

))
(1.13)

uniformly with respect to x̂ := x/|x| and with respect to y in B, where CN is a constant.

Indication: use the identity |x− y| = |x|
√

1− 2x̂ · y
|x| +

|y|2
|x|2 = |x|(1− x̂ · y

|x| +O( 1
|x|2 )).

The expansion (1.13) shows that

u1
s(x) = eiκ|x|

CN |x|(N−1)/2

(
u1
∞(x̂) +O

(
1
|x|

))
u2

s(x) = eiκ|x|

CN |x|(N−1)/2

(
u2
∞(x̂) +O

(
1
|x|

)) (1.14)

uniformly with respect to x̂, where

u1
∞(x̂) =

∫
D

e−iκx̂·yf(y)dy and u1
∞(x̂) =

∫
D

eiκx̂·yf(y)dy.

Coming back to the time-domain solutions, we observe that

u1
s(x, t) ∼ <e

{
u1
∞(x̂)

eiκ(|x|−c0t)

CN |x|(N−1)/2

}
,

u2
s(x, t) ∼ <e

{
u2
∞(x̂)

e−iκ(|x|+c0t)

CN |x|(N−1)/2

}
,

(1.15)

for large |x|.
The asymptotic behavior of u1

s corresponds to an outgoing spherical wave (positive
phase velocity) while the one associated with u2

s corresponds to an incoming spherical
wave (negative phase velocity). Hence only u1

s(x, t) is a physically acceptable solution and

us(x) = u1
s(x) =

∫
D

Φ(x, y)f(y)dy.

1We refer to the first chapter of [13] for a quick and self-contained presentation of spherical Bessel and
Hankel functions. See also the Wikipedia web page http://en.wikipedia.org/wiki/Bessel functions
and the classical reference [29]
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Exercise 1.4 Prove that if we have chosen a temporal harmonic dependency like exp(iωt)
then u2

s will correspond to physical solution.

We shall now derive the radiation condition that will enable us to select u1
s and withdraw

other solutions. Similarly to (1.13) one easily verify that

∇ΦN(x, y) =
iκeiκ|x|

CN |x|(N−1)/2

(
e−iκx̂·yx̂+O

(
1

|x|

))
(1.16)

uniformly with respect to x̂ := x/|x| and with respect to y in B. Therefore

∂ru
1
s(x) =

iκeiκ|x|

CN |x|(N−1)/2

(
u1
∞(x̂) +O

(
1

|x|

))
∂ru

2
s(x) = − iκeiκ|x|

CN |x|(N−1)/2

(
u2
∞(x̂) +O

(
1

|x|

)) (1.17)

uniformly with respect to x̂. Consequently

|x|(N−1)/2(∂ru
1
s(x)− iκu1

s(x)) = O(1/|x|)

while

(∂ru
2
s(x)− iκu2

s(x)) = −2iκeiκ|x|
(
u2
∞(x̂) +O

(
1

|x|

))
.

It seems therefore natural to require that “physical” solutions should satisfy the radiation
condition

lim
r→∞

|x|(N−1)/2(∂rus(x)− iκus(x)) = 0 (1.18)

uniformly with respect to x̂ . This is the so-called Sömmerfeld radiation condition. As
later shown, this condition is sufficient to guarantee uniqueness of the scattering problem
solutions.

Remark 1.1 • The weaker formulation of (1.18)

lim
R→∞

∫
SR

|∂rus − iκus|2 ds = 0 (1.19)

where SR denotes the sphere of radius R in RN , is also sufficient guarantee uniqueness
of the scattering problem solutions. This is the form we shall later use.

• To a time dependency in exp(iωt) one should associate the radiation condition

lim
R→∞

∫
SR

|∂rus + iκus|2 ds = 0

Remark 1.2 (Limiting absorption principle) Let ε > 0 be a small parameter.
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• The “physical” solution u1
s can also be defined as the L2

loc(RN) limit as ε→ 0+ of the
unique L2(RN) solution to (1.9) when κ2 is replaced with κ2(1+iε), which corresponds
to adding a small absorption coefficient γ = ωε.

• The solution u2
s is obtained by a limiting absorption process when κ2 is replaced with

κ2(1 − iε). However the latter correspond to non physical absorption since in that
case γ = −ωε < 0.

1.1.4 Some mathematical properties of radiating solutions

We summarize here some of the key properties of radiating solutions. These properties are
left as an exercise to the reader. The details of the proof can be found in [13].

Definition 1.1 Let B be a bounded set of RN . We denote by radiating solution to the
Helmholtz equation in R3 \B any function u ∈ H2

loc(RN \B) satisfying

∆u+ κ2u = 0 in R3 \D.

together with the radiation (1.19), namely

lim
R→∞

∫
SR

|∂ru− iκu|2 ds = 0.

Notice that x 7→ Φ(x, y) is a radiating solution to the Helmholtz equation in R3 \ {y}.
Let B be a bounded regular domain of RN and u be a radiating solution to the Helmholtz
equation in R3 \B:

1. There exists a constant c independent of R such that

∫
SR

|u|2 ds ≤ c for all R large

enough.

2. Let v be another radiating solution to the Helmholtz equation in R3 \B then∫
∂B

(u∂nv − v∂nu) ds = 0.

3. Let x ∈ B then ∫
∂B

(u∂nΦ(·, x)− Φ(·, x)∂nu)ds = 0.

4. Let x /∈ D then

u(x) =

∫
∂B

(u∂nΦ(·, x)− Φ(·, x)∂nu)ds.
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5. There exists an analytic function u∞ defined on the unit sphere SN−1 of RN , called
the far-field, such that

u(x) =
eiκ|x|

CN |x|(N−1)/2

(
u∞(x̂) +O

(
1

|x|

))
.

6. The far-field is given by

u∞(x̂) =

∫
∂B

(u(y)∂ne
−iκx̂·y − e−iκx̂·y∂nu(y) ds(y).

7. As a complementary statement to the first point one has

lim
R→∞

∫
SR

|u|2 ds =

∫
SN−1

∣∣∣∣u∞(x̂)

CN

∣∣∣∣2 ds(x̂).
1.2 Study of the scattering problem

Let B a bounded set of RN and D ⊂ B an open set with Lipschitz boundary. Let q be a
complex bounded function of RN \D such that

=m(q(x)) ≥ 0 for x /∈ D and q(x) = 1 for x /∈ B. (1.20)

Let ΓD be the (open) part of ∂D where the Dirichlet condition holds and ΓN := ∂D \ ΓD

the part where the Neumann boundary condition holds. We shall introduce the notation
for m > 0, and a set O containing D,

Hm(O) := {u ∈ H1
loc(O \D) ∩Hm

loc(O \D); u|ΓD
= 0} (1.21)

B

BR

DD

D

Figure 1.1: Description of the problem geometry
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1.2.1 Uniqueness

We shall first prove that the radiation condition is sufficient to ensure the uniqueness of
the solutions. This uniqueness result will also be used to prove existence of solutions.

Theorem 1.1 Any function u ∈ H2(RN) satisfying

∆u+ κ2qu = 0 in RN \D,

∂u/∂n = 0 on ΓN ,

lim
R→∞

∫
SR

|∂ru− iκu|2 ds = 0,

(1.22)

must be identically zero in RN \D.

The first ingredient to the proof is the Rellich Lemma. From now on, BR will denote the
open ball of radius R.

Lemma 1.1 (Rellich) Let a > 0 and u ∈ H2
loc(RN \ Ba) satisfying ∆u + κ2u = 0 in

(RN \Ba). Then, either of the following holds

• the function u is identically 0 for |x| ≥ a.

• there exists a constant c > 0 such that

∫
a<|x|<R

|u|2dx > cR for all R > a.

This Lemma indicates that any non trivial solution to the Helmholtz equation cannot decay
faster than 1/|x| for large |x|. A proof of this lemma can be found in [13].

Exercise 1.5 Prove the Rellich lemma when u is spherically symmetric.

The Rellich Lemma can be used in different ways and the one that we shall later apply is
the following immediate corollary.

Corollary 1.1 Let a > 0 and u ∈ H2
loc(RN \Ba) satisfying ∆u+ κ2u = 0 in RN \Ba.

If lim
R→∞

∫
SR

|u|2 ds = 0, then u is identically 0 for |x| ≥ a.

Remark 1.3 Another immediate consequence of the Rellich Lemma is obtained after com-
bining Corollary 1.1 with the statement number 7 of Section 1.1.4: For any radiating so-
lution u to the Helmholtz equation in RN \Ba, u∞ = 0 implies u = 0 in R3 \Ba.

The second ingredient to the uniqueness proof is the unique continuation principle.

Lemma 1.2 (Unique continuation principle) Let O be an open set and u ∈ H2(O)
such that there exists a constant C for which

|∆u(x)| ≤ C(|∇u(x)|+ |u(x)|) for a.e. x ∈ O.

If u vanishes a.e. in a neighborhood of a point x0 ∈ O then u vanishes a.e. in O.
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Proof of Theorem 1.1. Let R > 0 be such that B ⊂ BR. Multiply the first equation of
(1.22) by ū then integrate over BR and apply the Green formula to get

−
∫

BR\D
|∇u|2dx+ κ2

∫
BR\D

q|u|2dx+

∫
SR

∂ru ū ds = 0.

Hence

=m
∫

SR

∂ru ū ds = −κ2

∫
BR\D

=m(q)|u|2dx ≤ 0.

Since |∂ru− iκu|2 = |∂ru|2 + κ2|u|2 − 2k=m(∂ru ū), one deduces∫
SR

|u|2ds ≤ 1

κ2

∫
SR

|∂ru− iκu|2ds→ 0

as R → ∞. Corollary 1.1 therefore implies that u = 0 in RN \ Ba where Ba is a ball
containing B. Now observe that

|∆u(x)| ≤ κ2|q|∞|u(x)| for a.e. x ∈ RN \D.

Hence according to Lemma 1.2, u must vanish in RN \D. �

1.2.2 Existence of solutions: variational approach

The construction of solutions using a variational approach will be done in three steps:

• Introduce the so-called Dirichlet-to-Neumann (DtN) map for the exterior problem.

• Use the DtN map to write an equivalent formulation of the scattering problem in a
bounded domain.

• Write the variational formulation associated with the problem in a bounded domain
and apply the Fredholm alternative to prove existence and uniqueness of solutions.

Definition 1.2 (DtN map for the exterior problem) Let R be a given positive real.
We define the DtN map TR as

TR : H
1
2 (SR) −→ H− 1

2 (SR)
ϕ 7−→ TR(ϕ) = ∂rw|SR

where w ∈ H1
loc(RN \BR) ∩H2

loc(RN \BR) is the unique solution to

∆w + κ2w = 0 in RN \BR,

w = ϕ on SR,

lim
R→∞

∫
SR

|∂rw − iκw|2 ds = 0.

(1.23)
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Let us denote by 〈 , 〉SR
the duality product between H− 1

2 (SR) and H
1
2 (SR) that coincides

with L2(SR) scalar product for regular functions.

Theorem 1.2 The DtN map TR is well defined and is a continuous map from H
1
2 (SR)

into H− 1
2 (SR). Moreover,

=m 〈TR(ϕ), ϕ〉SR
≥ 0 and <e 〈TR(ϕ), ϕ〉SR

≤ 0 for all ϕ ∈ H
1
2 (SR).

The proof of this theorem can be found in [25]. It is based on the construction of
solutions to (1.23) by using the separation of variables (and therefore is dependent on the
space dimension). For ϕ ∈ L2(SR) we define

ϕ̂`(x̂) =


1

2π

∫ 2π

0

ϕ(Rŷ)e−i`θ(ŷ)dθ(ŷ) ei`θ(x̂) for N = 2,

∑̀
−`

∫
SN−1

ϕ(Rx̂)Y m
−`(x̂)ds(x̂) Y

m
` (x̂) for N = 3,

where θ(x̂) denotes the cylindrical angle associated with x̂ and where Y m
` , m = −`, . . . , `

denote the spherical harmonics of order `.

Lemma 1.3 The solution to (1.23) is given by

w(x) =
∞∑
−∞

ψ`(k|x|)/ψ`(kR) ϕ̂`(x̂) for |x| ≥ R,

and the DtN map is given by

TR(ϕ)(Rx̂) =
∞∑
−∞

k ψ′`(kR)/ψ`(kR) ϕ̂`(x̂) for x̂ ∈ SN−1,

where ψ` denotes the Hankel function (cylindrical for N = 2 and spherical for N = 3) of
the first kind of order `.

Exercise 1.6 Show that property =m 〈TR(ϕ), ϕ〉SR
≥ 0 is independent from the explicit

expression of TR and only depends on the radiation condition.

Formulation of the scattering problem in a bounded domain

Let R > 0 large enough so that BR contains B. The data of the scattering problem will
be some incident field ui satisfying

∆ui + κ2ui = s in RN

where s is some possible source term. To simplify the exposure we shall assume that
s ∈ L2(RN) (see remark below) and therefore ui ∈ H2

loc(RN).
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The scattering problem can then be formulated as finding u ∈ H1(RN) satisfying

∆u+ κ2qu = s in RN \D,

∂u/∂n = 0 on ΓN ,

u = ui + us in RN \D,

lim
R→∞

∫
SR

|∂rus − iκus|2 ds = 0.

(1.24)

We observe that if u is a solution to (1.24) then us|RN\BR
is a solution to (1.23) with

ϕ = us|SR
. Therefore

∂rus|SR
= TR(us|SR

),

and ũ := u|BR
∈ H1(BR) is a solution of the problem

∆ũ+ κ2qũ = s in BR \D,

∂ũ/∂n = 0 on ΓN ,

∂rũ− TR(ũ) = g on SR,

(1.25)

where

g := (∂rui)|SR
)− TR(ui|SR

). (1.26)

Conversely, let ũ ∈ H1(BR) satisfying (1.25) and define ũs to be the solution of (1.23) with
ϕ = (ũ− ui)|SR

. One easily verifies that the function

u =

{
ũ in BR

ũs + ui in RN \BR

is in H1(RN) and satisfies (1.24). The fact that u ∈ H2(RN) follows from standard elliptic
regularity. We therefore have shown the equivalence between the two formulations: (1.24)
and (1.25), of the scattering problem. Consequently, as an immediate consequence of the
uniqueness result of Theorem 1.1, we can state

Theorem 1.3 Any function u ∈ H1(BR) satisfying
∆u+ κ2qu = 0 in BR \D,

∂u/∂n = 0 on ΓN ,

∂ru− TR(u|SR
) = 0 on SR,

must be identically zero in BR \D.
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Variational study of the problem in a bounded domain

We shall now study the existence of solutions u ∈ H1(BR) satisfying
∆u+ κ2qu = f in BR \D,

∂u/∂n = 0 on ΓN ,

∂ru− TR(u|SR
) = g on SR,

(1.27)

where f ∈ L2(BR \D) and g ∈ H− 1
2 (SR) are some given data. The equivalent variational

formulation of this problem consists into seeking u ∈ H1(BR) such that

−
∫

BR\D
∇u∇ v̄ dx+ κ2

∫
BR\D

q u v̄ dx+
〈
TR(u|SR

), v
〉

SR
=

∫
BR\D

f v̄ dx− 〈g, v〉SR

for all v ∈ H1(BR). This formulation can be written of the form

α(u, v) + β(u, v) = l(v) for all v ∈ H1(BR), (1.28)

where we have set

α(u, v) =

∫
BR\D

∇u∇ v̄ dx+

∫
BR\D

u v̄ dx−
〈
TR(u|SR

), v
〉

SR
, (1.29)

β(u, v) = −
∫

BR\D
(κ2q + 1)u v̄ dx, (1.30)

l(v) = −
∫

BR\D
f v̄ dx+ 〈g, v〉SR

. (1.31)

It is easily verified that:

• The sesquilinear form α is a continuous and coercive onH1(BR)×H1(BR). Therefore,
using the Lax-Milgram theorem, the operator A : H1(BR) → H1(BR) defined by

(A(u), v)H1(BR) = α(u, v) ∀v ∈ H1(BR) (1.32)

is an isomorphism.

• The sesquilinear form β is a continuous on L2(BR)×H1(BR). Therefore, due to the
compact embedding of H1(BR) into L2(BR \D) the operator B : H1(BR) → H1(BR)
defined by

(B(u), v)H1(BR) = β(u, v) ∀v ∈ H1(BR) (1.33)

is compact.

• The antilinear l is continuous on H1(BR)
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Existence and uniqueness of solutions to (1.28) is therefore equivalent to the invertability
of the operator A−B. According to the Fredholm alternative, the continuous invertibility
is equivalent to the injectivity of this operator. Since the latter is a direct consequence of
Theorem 1.3, we are now in position to state:

Theorem 1.4 The problem (1.27) has a unique solution u ∈ H1(BR). Moreover, there
exists a constant C independent of u and f and g such that

‖u‖H1(BR\D) ≤ C
(
‖f‖L2(BR\D) + ‖g‖

H− 1
2 (SR)

)
.

Exercise 1.7 We propose as an exercise slight extensions of the previous theorem when
more general conditions, namely impedance boundary conditions, hold on ΓN .

• Prove Theorem 1.4 when the Neumann condition is replaced by

∂nu− Z u = g on ΓN , (1.34)

where Z is a bounded function on Γ such that

Re(Z) ≤ 0 and Im(Z) ≥ 0

and where n denotes the normal to Γ directed to the interior of D

• Prove the same result when only

Im(Z) ≥ z0 > 0

where z0 is a constant.



Chapter 2

Generalized Impedance Boundary
Conditions for Strongly Absorbing
Obstacles: The scalar Case

2.1 Introduction

The concept of Generalized Impedance Boundary condition (GIBC) is now a rather classi-
cal notion in the mathematical modeling of wave propagation phenomena (see for instance
[20] and [28]). Such tool is particularly used in electromagnetism for diffraction problems,
in the time harmonic regime, by obstacles that are partially or totally penetrable. The
general idea is, as soon as it is possible and desirable, to replace the use of an “exact
model” inside (the penetrable part of) the obstacle by approximate boundary conditions
(also called equivalent or effective conditions) on the boundary of the scatterer. This idea
is pertinent in practice when the boundary condition appears to be easy to handle from
the numerical point of view, which would be the case if it can be expressed with the help
of differential operators. The same type of idea, even though the purpose was different, led
to the construction of local absorbing boundary conditions for the wave equation ([15, 11])
or more recently to the construction of On Surface Radiation Conditions ([4, 3]) for pure
exterior problems.

The diffraction problem of electromagnetic waves by perfectly conducting obstacles coated
with a thin layer of dielectric material is a prototype problem for the use of impedance
conditions. Indeed, due to the small (typically with respect to the wavelength) thickness
of the coating, the effect of the layer on the exterior medium is, as a first approximation,
local (see for instance [28, 20, 16, 9, 7, 6, 1, 2])

Another application, the one we have in mind here, is the diffraction of waves by strongly
absorbing obstacles, typically highly conducting bodies in electromagnetism. This time, it
is a well-known physical phenomenon, the so-called skin effect, that creates a “thin layer”
effect . The conductivity limits the penetrable region to a boundary layer whose depth is

21



22 CHAPTER 2. GIBC: THE SCALAR CASE

inversely proportional to the conductivity of the medium. Then, here again, the effect of
the obstacle is, as a first approximation, local. The numerical results presented in Figures
2.2-2.5 of section 2.2.3 illustrate this skin effect phenomena.

As a matter of fact, the research on effective boundary conditions for highly absorbing
obstacles began with Leontovich before the apparition of computers and the development
of numerical methods. He proposed an impedance boundary condition, that is nowadays
known as the Leontovich boundary condition (and that correspond with the condition of
order 1 in this paper). This condition only “sees” locally the tangent plane to the frontier.
Later, Rytov [26, 28] proposed an extension of the Leontovich condition which was already
based on the principle of an asymptotic expansion. More recently, Antoine-Barucq-Vernhet
[5] proposed a new derivation of impedance boundary conditions based on the technique of
expansion of pseudo-differential operators (following there the original ideas of Engquist-
Majda [15] for absorbing boundary conditions).

We shall present in this chapter the approach proposed in [18] in deriving and analyzing
GIBCs for the scattering of waves by highly absorbing obstacles. This approach based
on scaled asymptotic expansion has the advantage of leading to sharp error estimates for
the approximate solutions.It permits in particular to give a sense to the order of a given
GIBC, a notion whose meaning is not always clear (at least not always the same) in the
literature (it is sometimes related to the order of the differential operators involved in the
condition, sometimes linked to the truncation order of some Taylor expansion,...): a GIBC
will be of order k if it provides an O(εk+1) error. A point deserves to be emphasized in this
introduction: for a given order k there is not uniqueness of the GIBC. We shall illustrate
this fact here by presenting several GIBCs of order 2 and 3 ; for the same order, different
GIBCs only differ by (maybe important) other features such as their adaptation to a given
numerical methods.

2.2 Model settings

We shall adopt here the same notation as in Section 1.2. We assume that the medium B
contains a strongly absorbing inclusion characterized by a large value of the imaginary part
of the inclusion index. Let Ω be the domain occupied by this inclusion. We assume that
Ω is simply connected with a regular (C∞) boundary Γ. Without affecting the generality
of our analysis we assume that D = ∅.
The wave speed cin inside Ω is assumed to be constant and the absorption coefficient γε of
the medium is assumed to be of the form

γε =

{
γ(x) x /∈ Ω,

cin/(kinε
2) x ∈ Ω,

(2.1)

where ε is a small parameter that can be arbitrarily close to zero, kin := ω
cin

is the wavenum-
ber inside Ω and γ is a bounded non negative function that vanishes outside B. The index



2.2. MODEL SETTINGS 23

of the medium qε can then be written in the form

qε =


q(x) x /∈ Ω

κ2
in

κ2
(1 +

i

κ2
inε

2
) x ∈ Ω

where q is a bounded function with non negative imaginary part and equal to 1 outside B.
We shall denote by qr the real part of qε, which is a bounded function independent of ε.

As explained in Section 1.2.2, the scattering problem can be formulated inside a ball BR

of radius R (large enough to enclose the domain B) with the aid of the DtN map TR (see
(1.23) as the problem of seeking uε ∈ H1(BR) such that{

∆uε + κ2qεuε = f in BR,

∂ru
ε − TR(uε

|SR
) = g on ∂BR,

(2.2)

where f ∈ L2(BR) and g ∈ H− 1
2 (∂BR) are source terms that may be linked with some

incident field and are independent of ε. We shall further assume that the support of f is
compactly embedded into BR \ Ω.

BR

B Γ = ∂Ω

γε = ci/(kiε
2)

Ω

Figure 2.1: Geometry of the medium

Remark 2.1 The parameter ε (that has the dimension of a length) is commonly denoted
by the skin depth. It represents the width of the penetrable (boundary) region inside Ω.

Roughly speaking, the goal of deriving GIBCs is to be able to approximate the restriction
uε

e of uε to the exterior domain BR \ Ω without having to solve the (singular perturbed)
equations inside Ω. In order to do so, it is useful to rewrite problem (2.2) as a transmission
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problem between uε
in = uε

|Ω and uε
e = uε

|BR\Ω:

(i) ∆uε
e + κ2q uε

e = f, in BR \ Ω,

(ii) ∆uε
in + κ2

in u
ε
in +

i

ε2
uε

in = 0, in Ω,

(iii) ∂ru
ε
e − TR(uε

e) = g, on ∂BR,

(vi) uε
in = uε

e, on Γ,

(v) ∂nu
ε
in = ∂nu

ε
e, on Γ,

(2.3)

where n denotes here and all over this chapter a unitary normal field on Γ directed to the
interior of Ω.

2.2.1 Existence-Uniqueness-Stability

This section is devoted to some basic theoretical results relative to problem (2.2). These
results form the basis of our subsequent asymptotic analysis.

Theorem 2.1 There exists a unique solution uε ∈ H1(BR) to problem (2.2). Moreover,
there exits a constant C > 0 independent of ε (and uε, f and g) such that

‖uε‖L2(BR) ≤ C
(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
. (2.4)

Proof. The existence and uniqueness proof has been already given in Section 1.2.
According to Theorem 1.4, there exists a constant Cε independent of u and f and g such
that

‖uε‖L2(BR) ≤ Cε
(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
.

We shall prove that we can choose the constant Cε to be bounded with respect to ε. If
the latter is not possible, then there exists f and g such that ‖uε‖L2(BR) → ∞ as ε → 0.
Setting

ũε := uε/ ‖uε‖L2(BR) , f̃ ε := f/ ‖uε‖L2(BR) , and g̃ε := g/ ‖uε‖L2(BR) ,

one has in particular ‖ũε‖L2(BR) = 1 while ‖f̃ ε‖L2(BR) → 0 and ‖g̃ε‖
H− 1

2 (∂BR)
→ 0 as ε→ 0.

Moreover, equation (2.2) yields ∆ũε + κ2qεũε = f̃ ε in BR,

∂rũ
ε − TR(ũε) = g̃ε on ∂BR,

(2.5)

Consequently (after multiplying the first equation by ũε, integrate over BR and use the
Green formula)

−
∫

BR

|∇ũε|2 dx+ κ2

∫
BR

qε |ũε|2 dx+ 〈TR(ũε), uε〉∂BR
=

∫
BR

f̃ ε ũε dx− 〈g̃ε, ũε〉∂BR
(2.6)
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Taking the real part of (2.6) yields∫
BR

(|∇ũε|2 + |ũε|2) dx−Re 〈TR(ũε), uε〉∂BR

=

∫
BR

(κ2qr + 1)|ũε|2 dx−Re
(∫

BR

f̃ ε ũε dx− 〈g̃ε, ũε〉∂BR

)
Since Re 〈TR(ϕ), ϕ〉∂BR

≤ 0, one easily deduces from the previous identity and trace the-
orems that ũε is a bounded sequence in H1(BR). Hence one can assume that, up to the
extraction of a subsequence, ũε → ũ weakly in H1(BR) and strongly in L2(BR).

We first have that ‖ũ‖L2(BR) = 1. Taking the limit in (2.5), restricted to BR \ Ω, yields ∆ũ− κ2q̃ u = 0, in BR \ Ω,

∂rũ− TR(ũ) = 0, on ∂BR.
(2.7)

On the other hand, taking the imaginary part in (2.6) shows in particular that

1

ε2
‖ũε‖2

L2(Ω) ≤ Im
(∫

BR

f̃ ε ũε dx− 〈g̃ε, ũε〉∂BR

)
.

Thus ũε → 0 in L2(Ω) as ε→ 0. Hence ũ = 0 in Ω and in particular

ũ = 0 on ∂Ω.

Combined with (2.7) and the uniqueness result of Theorem 1.3, this condition shows that
ũ = 0 in BR \ Ω. We then obtain that ũ = 0 in BR which contradicts ‖ũ‖L2(BR) = 1. �

Corollary 2.1 there exits a constant C > 0 independent of ε (and uε, f and g) such that(
‖uε‖L2(BR) +

1

ε
‖uε‖L2(Ω)

)
≤ C

(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
.

Proof. This corollary is a direct consequence of energy balance

−
∫

BR

|∇uε|2 dx+ κ2

∫
BR

qε |uε|2 dx+ 〈TR(uε), uε〉∂BR
=

∫
BR

f uε dx− 〈g̃ε, uε〉∂BR

and the stability result of Theorem 2.1. �

Corollary 2.1 shows in particular that the solution converges to 0 like O(ε) inside Ω, at
least in the L2 sense. This O(ε) L2-interior estimate is in fact not optimal. A sharper
result, later given by Lemma 2.1, shows that ‖uε‖L2(Ω) is O(ε3/2) (see Remark 2.11).
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2.2.2 Exponential convergence to 0 inside Ω

It is shown that the norm of the solution in a domain strictly interior to Ω goes to 0 faster
than any power of ε. This is a first way to express how the interior solution concentrates
near the boundary Γ. Let us indicate that this result will also be a consequence of the
asymptotic analysis performed in next sections, however the methodology is more complex.
The proof given here is a direct one and is independent of the subsequent analysis. The
precise result is the following:

Theorem 2.2 For any ν̄ > 0 small enough so that Ων̄ := {x ∈ Ω;B(x, ν̄) ⊂ Ω} is a
non-empty set, where B(x, ν̄) denotes the closed ball of center x and radius ν̄, there exist
two positive constants Cν̄ and cν̄ independent of ε such that

‖uε‖H1(Ων̄) ≤ Cν̄ exp(−cν̄/ε)
(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
.

Proof. One possible proof of this estimate can be obtained by using the integral
representation of the solution inside Ω and the result of Corollary 2.1 . We shall present
here an alternative variational approach has the advantage of also applying to the case of
variable coefficients.

Let us introduce a cut-off function φν̄ ∈ C∞(BR) such that

φν̄(x) = 0 in BR \ Ω , φν̄(x) = β ν̄ in Ων̄ ,

where the constant β ν̄ > 0 is chosen such that

‖∇φν̄‖2
∞ <

1

4
. (2.8)

We set vε = exp(φν̄(x)/ε)u
ε. Straightforward calculations show that

∆uε = exp(−φν̄(x)/ε)

(
∆vε − 1

ε
(2∇φν̄ · ∇vε + ∆φν̄ v

ε) +
|∇φδ|2

ε2
vε

)
.

Hence vε satisfies ∆vε − 2

ε
∇φν̄ · ∇vε +

(
κ2qε − ∆φν̄

ε
+
|∇φν̄ |2

ε2

)
vε = f in BR

∂nv
ε − TR(vε) = g on ∂BR.

(2.9)

Multiplying the first equation in (2.9) by vε, integrating by parts in BR yields, using the
fact that vε = uε in BR \ Ω,∫

Ω

|∇vε|2 dx+
2

ε

∫
Ω

∇φν̄ · ∇vε v̄ε dx+

∫
Ω

(
−κ2

in +
∆φν̄

ε
− |∇φν̄ |2 − i

ε2

)
|vε|2 dx

= −
∫

BR

f ūε dx+

∫
BR\Ω

(
κ2q|uε

e|2 − |∇uε|2
)
dx+ 〈TR(uε) + g, uε〉∂BR

(2.10)
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Let us denote by Lε the right hand side of the previous equality. According to Corollary 2.1,
there exists a constant C independent of ε such that

|Lε| ≤ C
(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
.

On the other hand, thanks to inequality (2.8), using |b− a| ≥ |b| − |a|, we have the lower
bound: ∣∣∣∣ |∇φν̄ |2 − i

ε2
−
(

∆φν̄

ε
− κ2

in

) ∣∣∣∣ ≥ 1

ε2
− |∆φν̄ |

ε
− κ2

in.

Therefore, taking the modulus of (2.10) yields∣∣∣∣∣∣∣∣
‖∇vε‖2

L2(Ω) − 2

ε
‖∇φν̄‖L∞ ‖∇v

ε‖L2(Ω) ‖v
ε‖L2(Ω)

+

(
1

ε2
− ‖∆φν̄‖∞

ε
− κ2

in

)
‖vε‖2

L2(Ω) ≤ |Lε|.

Thanks to the inequality,

2

ε
‖∇φν̄‖L∞ ‖∇v

ε‖L2(Ω) ‖v
ε‖L2(Ω) ≤

1

2
‖∇vε‖2

L2(Ω) +
2

ε2
‖∇φν̄‖2

L∞ ‖v
ε‖2

L2(Ω) ,

and inequality (2.8), one gets

1

2
‖∇vε‖2

L2(Ω) +

(
1

2ε2
− ‖∆φν̄‖∞

ε
− κ2

in

)
‖vε‖2

L2(Ω) ≤ |Lε|. (2.11)

Finally, for ε small enough so that
1

2ε2
− ‖∆φν̄‖∞

ε
− κ2

in ≥
1

4ε2
, inequality (2.11) yields

1

2
‖∇vε‖2

L2(Ω) +
1

4ε2
‖vε‖2

L2(Ω) ≤ |Lε| ≤ C
(
‖f‖L2(BR) + ‖g‖

H− 1
2 (∂BR)

)
.

This proves the Theorem with cν̄ = β ν̄ since ‖uε‖L2(Ων̄) ≤ exp (−β ν̄/ε) ‖vε‖L2(Ω) ,

‖∇uε‖L2(Ων̄) ≤ exp (−β ν̄/ε) ‖∇vε‖L2(Ω) .

�

2.2.3 A numerical illustration of the boundary layer effect

As an illustration of the boundary layer effect we here present the results some 2-D nu-
merical simulations. More precisely, we consider the scattering of an incident plane wave
propagating along the x1 axis in the direction x1 > 0 by an absorbing disk Ω of center 0
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and radius 1 (this scattering problem corresponds to f = 0 and g given by (1.26) with the
incident wave being a plane wave). The total field is then of the form

uε(x) = exp iκx1 + uε
s(x),

where uε
s satisfies the Sömmerfeld radiation condition. We used a wavenumber κ = κin = 4π

which corresponds to a wavelength λ = 0.5. The numerical computation has been done us-
ing higher order finite element method with curved elements. The domain of computation
is reduced to the disk of radius 2 thanks to the DtN map TR (evaluated using an integral
representation of the solution, as used in [21]).

Figures 2.2 to 2.5 represent the real part of the solution u. One clearly observe how
the penetrable region inside the absorbing disk decreases as the absorption coefficient γε

increases. The skin effect is clearly illustrated in Figure 2.6 where the modulus of the total
field is represented along line x2 = 0, showing the exponential decay of the solution inside
Ω.

2.3 Expressions of the GIBCs, stability and error es-

timates

Before going to technical details behind the derivation and analysis of GIBCs, this section
intends to give an overview of obtained various approximations and a discussion of their
stability with respect to the small parameter. These approximate problems are made of
the standard Helmholtz equation in the exterior domain BR \Ω coupled with appropriate
radiation condition on ∂BR: ∆uε,k + κ2q uε,k = f in BR \ Ω,

∂ru
ε,k − TR(uε,k) = g on ∂BR,

(2.12)

all together complemented with a GIBC on the interior boundary Γ. The integer k used
in the notation uε,k of the approximate solution refers to the order of the GIBC. The
precise mathematical meaning of this order will be later clarified with some error estimates
(see Theorem 2.3). Roughly speaking, a GIBC of order k is a boundary condition that
will provide a (sharp) O(εk+1) error (in an appropriate sense) between uε,k and the exact
solution uε

e.

Let us mention that, for a given integer k, there are many different possible GIBCs of
order k. These GIBCs have the form of a linear relationship between the Dirichlet and
Neumann boundary values, uε,k and ∂nu

ε,k on Γ involving local surface (differential) oper-
ators.

The asymptotic method used for deriving these approximate models naturally leads to
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Figure 2.2: Total field for an ab-
sorbing disc: γε = 45.

Figure 2.3: Total field for an ab-
sorbing disc: γε = 156.

Figure 2.4: Total field for an ab-
sorbing disc: γε = 400.

Figure 2.5: Total field for an ab-
sorbing disc: γε = 2500.
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Figure 2.6: Plot of x1 7→ |u(x1, 0)|
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Neumann-to-Dirichlet (NtD) GIBCs. These are the ones that we choose to present first in
section 2.3.1. It will be clear in section 2.4 that we can derive, at least formally, a GIBC
of any order. However, the algebra becomes more and more involved as k increases, and it
is perhaps impossible to write a general theory (existence, stability and error analysis) for
any k. That is why we shall restrict ourselves to GIBCs of order k = 0, 1, 2 and 3.

In section 2.3.2 we shall indicate how one can easily obtain from (NtD) GIBCs some mod-
ified GIBCs that are of Dirichlet-to-Neumann (DtN) nature (as more commonly presented
in the literature) or of mixed type.

It is not evident to determine which GIBC would be better (from practical point of view)
for a given order. Several criteria has to be taken into account:

• the adequacy to a particular numerical method,

• the robustness of the GIBC,

• numerical accuracy.

It seems that only a detailed numerical study would fully answer this question. The second
point will hereafter be slightly discussed from a theoretical point of view.

2.3.1 Neumann-to-Dirichlet GIBCs

Neumann-to-DirichletGIBC can be seen as a (local) approximation of the exact Neumann-
to-Dirichlet condition that can be written on Γ as

uε
e +Dε∂nu

ε
e = 0, on Γ, (2.13)

where Dε : H− 1
2 (Γ) 7→ H

1
2 (Γ) is the boundary operator defined by:

Dεϕ = uε
in(ϕ),

where uε
in is the unique solution of the interior boundary value problem: ∆uε

in(ϕ) + κ2
in u

ε
in(ϕ) +

i

ε2
uε

in(ϕ) = 0 in Ω,

∂nu
ε
in(ϕ) = −ϕ on Γ.

(2.14)

The boundary condition (2.13) is nothing but a different formulation of the interface con-
ditions (2.3-(vi)) and (2.3-(v)) and the obvious relation uε

in +Dε∂nu
ε
in = 0 on Γ.

The absorbing nature of the interior medium is equivalent to the following absorption
property of the operator Dε (this follows from Green’s formula):

∀ ϕ ∈ H− 1
2 (Γ), Im 〈 Dεϕ, ϕ〉Γ =

1

ε2

∫
Ω

|uε
in(ϕ)|2 dx ≥ 0. (2.15)
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It is well known that the operator Dε is a non-local pseudo-differential operator whose
explicit expression is not known (except in some special simplified cases: see Remark 2.3
below). Nevertheless, as ε → 0, this operator becomes “almost local” (even differential),
which is more or less intuitive according to the exponential interior decay of the solution
with respect to ε−1.

The expression of the Neumann-to-Dirichlet GIBC of order k that will obtained through
the asymptotic analysis can be written in the form:

uε,k +Dε,k∂nu
ε,k = 0 on Γ, (2.16)

where, for k = 0, 1, 2, and 3 the operator Dε,k is given by:

Dε,0 = 0, (2.17)

Dε,1 =
ε

α
, (2.18)

Dε,2 =
ε

α
− iHε2, (2.19)

Dε,3 =
ε

α
− iHε2 − α ε3

2

(
3H2 −G+ κ2

in + ∆Γ

)
, (2.20)

where, in expressions (2.17) to (2.20),

• α :=
√

2
2
− i

√
2

2
denotes the complex square root of −i with positive real part,

• H and G respectively denotes the mean and Gaussian curvatures of Γ,

• ∆Γ := divΓ∇Γ denotes the Laplace-Beltrami operator on Γ.

We refer to Chapter 3 for the definition of the above indicated geometrical quantities.

Remark 2.2 It is worthwhile noticing that:

• One recovers of course the Dirichlet condition in the case k = 0 (the limit of Dε,k

when ε→ 0 is 0 for any k): the Dirichlet condition appears as the GIBC of order 0.

• The first three conditions are exactly of the same nature and correspond to a purely
local impedance condition. The geometry of Γ only appears in the third condition
through the mean curvature H. Since the numerical approximation of the three con-
ditions would therefore have the same cost (provided that H is easily computable)
condition (2.19) would be preferred to (2.18).

• Condition (2.20) is more complicated. It involves a tangential differential operator
along the boundary. This additional complexity will have of course consequences on
the numerical approximation but also, as later shown, on the mathematical analysis.
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Remark 2.3 The operators Dε,k are of the form
∑

j≤k ε
j Dj and thus appear as some

truncated Taylor expansions of Dε. This is particularly clear in the (very special) case
where Ω is the half-space x3 < 0. In that case, the symbol of Dε can be computed explicitly.
More precisely, if one uses Fourier transform in the variables (x2, x2), one gets:

D̂εϕ(ξ) = Dε(ξ)ϕ̂(ξ), Dε(ξ) := (|ξ|2 − κ2
in − i/ε2)−

1
2 , ImDε(ξ) > 0.

It is then straightforward to recover conditions (2.17) to (2.20) from successive Taylor
expansions (for small ε) of Dε(ξ).

The main theoretical results of the asymptotic and stability analysis related to these con-
ditions are summarized in the following theorem.

Theorem 2.3 Let k = 0, 1, 2 or 3. Then, for sufficiently small ε, the boundary value
problem ((2.12), (2.16)) has a unique solution uε,k ∈ H1(BR \ Ω). Moreover, there exists
a constant Ck, independent of ε, such that

‖uε
e − uε,k‖H1(BR\Ω) ≤ Ck ε

k+1. (2.21)

Remark 2.4 Let us mention that:

• For k ≤ 2, the existence and uniqueness proof via Fredholm’s alternative is trivial.
The uniqueness proof relies on the following inequality (analogous to (2.15)):

∀ ϕ ∈ L2(Γ), Im
∫

Γ

Dε,kϕ · ϕ̄ ds ≥ −β
∫

Γ

|ϕ|2 ds, (for some β ≥ 0), (2.22)

that expresses in particular the absorbing nature of the boundary condition and pro-
vides a sufficient (but not necessary) condition for the uniqueness of the solution.
With this argument, it is easy to see that, for k = 0, 1, the existence and uniqueness
result holds in fact for any ε ≥ 0. For k = 2 one easily checks that (2.22) is true as
soon as:

εH ≤
√

2

2
, a. e. on Γ. (2.23)

Notice that this inequality is algebraic. When Ω is convex, H ≤ 0 along Γ so that
(2.23) induces no constraints on ε.

• In the case k = 3, the proof is more complicated. In particular, there is no clear
equivalent to inequality (2.22) and the uniqueness proof requires some more sophisti-
cated argument (see lemma 2.4). This explains why in this case, one has no explicit
upper bound for ε below which uniqueness is guaranteed.
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2.3.2 Modified GIBCs

Dirichlet to Neumann GIBCs. If we introduce N ε := (Dε)−1, then the exact bound-
ary condition for uε

e can be rewritten as :

∂nu
ε
e +N εuε

e = 0, on Γ, (2.24)

In our terminology a DtN GIBC will be of the form:

∂nu
ε,k +N ε,kuε,k = 0, on Γ, (2.25)

where N ε,k denotes some local approximation of N ε. They can be directly obtained from
Dε,k by seeking local operators N ε,k that formally satisfy:

Dε,k =
(
N ε,k

)−1
+O(εk+1). (2.26)

The expression of N ε,k is derived from formal Taylor expansions of (Dε,k)−1. One gets,

for k = 2, N ε,2 =
α

ε
+H, (2.27)

for k = 3, N ε,3 =
α

ε
+H− ε

2α
(∆Γ +H2 −G+ κ2). (2.28)

The important point here is that the results (existence, uniqueness and error estimates)
stated in theorem 2.3 for problem ((2.12),(2.16)) still hold for problem ((2.12), (2.25)). We
refer to section 2.6.

Remark 2.5 Let us notice that:

• The difference between conditions (2.19) and (2.27) is quite small. In fact (2.27) can
also be seen as a NtD GIBC with Dε,2 = (α

ε
+H)−1 ! Notice however that for k = 2,

the problem ((2.12), (2.25)) is well posed for any value of ε. This is a consequence
of the following (uniform) absorption property

∀ ϕ ∈ L2(Γ), Im
∫

Γ

ϕ · N ε,2ϕ ds ≥
√

2

2ε

∫
Γ

|ϕ|2 ds. (2.29)

• The difference between conditions (2.20) and (2.28) is much more important. This
has consequences on both mathematical and numerical analyses.

Robust GIBCs. As mentioned earlier, an important property of the “exact” impedance
condition is what we shall refer to as absorption property. It can be formally formulated
for Dε (resp. N ε) as:

Im
∫

Γ

Dεϕ · ϕ ds ≥ 0,

(
resp. Im

∫
Γ

ϕ · N εϕ ds ≥ 0

)
, (2.30)

for all ϕ ∈ C∞(Γ) and all ε > 0.
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Definition 2.1 We shall say that a NtD GIBC of the form (2.13) (resp. a DtN GIBC
of the form (2.24)) is robust if the absorption property (2.30) still holds for all ε > 0, when
Dε is replaced by Dε,k (resp. N ε is replaced by N ε,k).

In particular, establishing robustness implies the well-posedness of the approximate prob-
lem for any ε > 0. With this respect, the second order NtD GIBC (2.19) is not robust

since (2.30) is guaranteed only if εH ≤
√

2
2
, a. e. on Γ, which is a constraint for non

convex Ω. However, the second order DtN GIBC (2.27) is robust (thus can be seen as a
robust version of (2.19)). Concerning the third order conditions, neither the NtD GIBC
(2.20) nor the DtN GIBC (2.28) is robust. Indeed, one has the identities:∫

Γ

Dε,3ϕ · ϕ ds =
α ε3

2

∫
Γ

|∇Γ ϕ|2 ds+ εᾱ

∫
Γ

[ 1 +
εH
α

+ i
ε2

2
(3H2 −G+ κ2) ] |ϕ|2 ds,∫

Γ

ϕ · N ε,3ϕ ds =
α ε

2

∫
Γ

|∇Γ ϕ|2 ds+
ᾱ

ε

∫
Γ

[ 1 +
εH
ᾱ
− i

ε2

2
(H2 −G+ κ2) ] |ϕ|2 ds.

from which one easily computes that (recall that α =
√

2
2
− i

√
2

2
):

Im
∫

Γ

Dε,3ϕ · ϕ ds = −
√

2 ε3

4

∫
Γ

|∇Γ ϕ|2 ds+
ε
√

2

2

∫
Γ

ρε
1 |ϕ|2 ds,

Im
∫

Γ

ϕ · N ε,3ϕ ds = −
√

2 ε

4

∫
Γ

|∇Γ ϕ|2 ds+

√
2

2ε

∫
Γ

ρε
2 |ϕ|2 ds.

where the functions ρε
j converge (uniformly on Γ) to 1 when ε tend to 0 (and are thus

positive for ε small enough). The problem then is that the integrals in |∇Γ ϕ|2 come with
the wrong sign.

As we shall now explain, it is possible to construct robust GIBCs of order 3. The idea is
to use some appropriate Padé approximation of the imaginary part of the boundary oper-
ators that formally gives the same order of approximation but restore absorption property.
Consider for instance the NtD GIBC of order 3. Indeed

ImDε,3 = ε

√
2

2

(
1− ε

√
2H +

ε2

2
(3H2 −G+ κ2 + ∆Γ)

)
.

One can therefore formally write

ImDε,3 = ε

√
2

2

(
1 +

ε2

2
(3H2 −G+ κ2)

)(
1− ε

√
2H +

ε2

2
∆Γ

)
+O(ε4).

Note that, as H2−G = 1
4
(c1− c2)2, where c1 and c2 are the two principal curvatures along

Γ (see Chapter 3), we have

(1 +
ε2

2
(3H2 −G+ κ2)) > 0.
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It is then sufficient to seek a positive approximation of (1 − ε
√

2H + ε2

2
∆Γ) which can be

obtained by considering the formal inverse, namely

1− ε
√

2H +
ε2

2
∆Γ =

{
1 + ε

√
2H +

ε2

2
(4H2 −∆Γ)

}−1

+O(ε3).

Therefore,

ImDε,3 = ε

√
2

2
(1 +

ε2

2
(3H2 −G+ κ2)) (1 + ε

√
2H +

ε2

2
(4H2 −∆Γ))

−1 +O(ε4).

A robust NtD-like GIBC of order 3 is obtained by replacing Dε,3 by

Dε,3
r := ε

√
2

2

(
1− ε2

2
(3H2 −G+ κ2 + ∆Γ)

)
+iε

√
2

2
(1 +

ε2

2
(3H2 −G+ κ2)) (1 + ε

√
2H +

ε2

2
(4H2 −∆Γ))

−1.

(2.31)

This expression will be used in practice in the following sense:

Dε,3
r ϕ := ε

√
2

2

(
1− ε2

2
(3H2 −G+ κ2 + ∆Γ)

)
ϕ+ iε

√
2

2
(1 +

ε2

2
(3H2 −G+ κ2))ψ (2.32)

where ψ is solution to:

−ε
2

2
∆Γψ + (1 + ε

√
2H + 2ε2H2)ψ = ϕ. (2.33)

One can easily verify that∫
Γ

Dε,3
r ϕ · ϕ ds = ε

√
2

2
(1 +

ε2

2
(3H2 −G+ κ2))

∫
Γ

(1 + ε
√

2H+ ε22H2)|ψ|2 +
ε2

2
|∇Γ ψ|2 ds.

(2.34)
The right hand side is non negative for all ε whence the absorption property for Dε,3

r .

Of course one can follow a similar procedure to derive robust DtN third order GIBC. The
expression of this condition is based on the approximation:

ImN ε,3 = −
√

2

2ε
(1 +

ε2

2
(H2 −G+ κ2)) {1− ε2

2
∆Γ}−1 +O(ε2). (2.35)

Hence, replacing N ε,3 by

N ε,3
r :=

√
2

2ε

(
1 + ε

√
2H− ε2

2
(H2 −G+ κ2 + ∆Γ)

)
−i
√

2

2ε
(1 +

ε2

2
(H2 −G+ κ2)) {1− ε2

2
∆Γ}−1,

(2.36)
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in (2.28) gives another third order DtN GIBC. This condition is robust in view of the
following identity, where the right hand side is non negative for all ε,

Im
∫

Γ

ϕ · N ε,3ϕ ds =

√
2

2ε

∫
Γ

(1 +
ε2

2
(H2 −G+ κ2))

(
|ψ|2 +

ε2

2
|∇Γ ψ|2

)
ds (2.37)

where ψ is solution to

−ε
2

2
∆Γψ + ψ = ϕ.

Remark 2.6 As one can notice, there is no unique manner to derive GIBC, and even
robust NtD (or DtN) GIBC. Notice also that the proposed third order ones involve a
fourth order surface differential operator. It does not seem easy to derive a robust third
order GIBC with only second order differential operator.

2.4 Formal derivation of the GIBC

2.4.1 Preliminary material

Parametric coordinates. We refer to Chapter 3 for the details and notation related to
this paragraph.
Let n be the inward normal field defined on ∂Ω and let ν̄ be a given positive constant
chosen to be sufficiently small so that

Ων̄ = {x ∈ Ω ; dist(x,Γ) < ν̄}

can be uniquely parameterized by the tangential coordinate xΓ on Γ and the normal coor-
dinate ν ∈ (0, ν̄) through

x = xΓ + νn(xΓ), x ∈ Ων̄ . (2.38)

We recall that if v is a regular scalar function defined in Ων̄ and ṽ the function defined on
Γ× (0, ν0) by

ṽ(xΓ, ν) = v(xΓ + νn),

then (see (3.8))

J3
ν ∆v = Jν divΓ (IΓ + νM)2∇Γ ṽ − (∇Γ Jν) · (IΓ + νM)2∇Γ ṽ

+ 2J2
ν (H + νG) ∂ν ṽ + J3

ν ∂
2
νν ṽ.

(2.39)

The asymptotic ansatz. As it is quite usual, the derivation of the approximate bound-
ary conditions will be based on an ansatz about the solution, that is to say an a priori
particular form of the solution dependence with respect to ε.
To formulate this ansatz, it is useful to introduce a cut off function χ ∈ C∞(Ω) such that
χ = 1 in Ων̄/2 and χ = 0 in Ω \ Ων̄ . In our ansatz we are not interested in describing the
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exact asymptotic development of (1−χ)uε
in since we already know that this part exponen-

tially converges to 0 with ε (this is Theorem 2.2).
For the remaining part of the solution, we postulate the following (polynomial) expansions:

uε
e(x) = u0

e(x) + εu1
e(x) + ε2u2

e(x) + · · · for x ∈ BR \ Ω (2.40)

where u`
e, ` = 0, 1, · · · are functions defined on BR \ Ω and

χ(x)uε
in(x) = u0

in(xΓ, ν/ε) + εu1
in(xΓ, ν/ε) + ε2u2

in(xΓ, ν/ε) + · · · for x ∈ Ων̄ (2.41)

where x, xΓ and ν are as in (2.38) and where u`
in(xΓ, η) : Γ × R+ 7→ C are functions such

that
lim
η→∞

u`
in(xΓ, η) = 0 for a.e. xΓ ∈ Γ. (2.42)

The latter condition is linked with the boundary layer effect. It will ensure that the u`
in’s

are exponentially decreasing with respect to η.

Remark 2.7 Notice that the expansion (2.41) makes sense since the local coordinates
(xΓ, ν) can be used inside the support of χ.

In the next section, we shall identify the set of equations satisfied by (u`
e) and (u`

in) and
the formal expansions (2.40) and (2.41) will be justified in section 2.5.

It is useful to introduce the notation

ũε
in(xΓ, η) := u0

in(xΓ, η) + εu1
in(xΓ, η) + ε2u2

in(xΓ, η) + · · · (xΓ, η) ∈ Γ× R+, (2.43)

so that ansatz (2.41) has to be understood as

χ(x)uε
in(x) = ũε

in(xΓ, ν/ε) +O(ε∞) for x ∈ Ωη. (2.44)

2.4.2 Asymptotic formal matching

This procedure consists into inserting the different ansatz into the problem equations, then
formally equating the same powers or ε.

Let us first consider the exterior field uε
e. It is clear that each of the terms uk

e in the
expansion satisfies the (outgoing) Helmholtz equation in BR \ Ω (simply substitute (2.40)
into (2.3)(i)):  −∆uk

e − κ2quk
e = fk in BR \ Ω,

∂ru
k
e − TR(uk

e) = gk on ∂BR,
(2.45)

where (fk, gk) are the terms of asymptotic expansion of (f, g). Since we assumed that the
latter is independent of ε then

(f 0, g0) = (f, g), and (fk, gk) = (0, 0) for k > 0.
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Concerning the interior field, from (2.3-ii), (2.44) and the substitution ν = εη in (2.39), we
obtain the following equation:

∣∣∣∣∣∣∣∣∣∣∣

− 1

ε2
J3

εη ∂
2
ηηũ

ε
in −

2

ε
J2

εη (H + εηG) ∂ηũ
ε
in

− Jεη divΓ (IΓ + εηM)2 ∇Γ ũ
ε
in +∇Γ Jεη · (IΓ + εηM)2 ∇Γ ũ

ε
in

+ J3
εη(−κ2

in −
i

ε2
) ũε

in = 0

(2.46)

that can be rearranged in the following form after multiplying by ε2:

∣∣∣∣∣∣
(−∂2

ηη − i) ũε
in = (1− J3

εη)(−∂2
ηη − i) ũε

in + 2εJ2
εη(H + εηG) ∂ηũ

ε
in + ε2κ2J3

εηũ
ε
in

+ ε2Jεη divΓ (IΓ + εηM)2∇Γ − ε2 ∇Γ Jεη · (IΓ + εηM)2∇Γ ũ
ε
in.

(2.47)
Considering that Jν is a polynomial of degree 2 in ν, (2.47) can be rewritten as:

(−∂2
ηη − i) ũε

in =
8∑

`=1

ε`A` ũ
ε
in, on Γ× R+, (2.48)
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whereA` are some partial differential operators in (xΓ, η) that are independent of ε. Formal
identification gives, after rather lengthy than complicated calculations,

A1 = 2H ∂η − 6η H (−∂2
ηη − i) (2.49)

A2 = ∆Γ + κ2 + 2η (G+ 4H2)∂η − 3η2 (G+ 4H2)(−∂2
ηη − i) (2.50)

A3 = 2η
[
H∆Γ + divΓ (M∇Γ )−∇ΓH · ∇Γ + 3κ2H

]
+ 4η2 H

[
(3G+ 2H2) ∂η

]
− 4η3 H (3G+ 2H2) (−∂2

ηη − i) (2.51)

A4 = η2
[
G ∆Γ + 4H divΓ (M∇Γ ) + divΓ (M2∇Γ )

]
− η2

[
∇ΓG · ∇Γ + 4∇ΓH · (M∇Γ )− 3κ2(G+ 4H2)

]
+ 4η3 G (G+ 4H2) ∂η − 3η4 G (G+ 4H2) (−∂2

ηη − i) (2.52)

A5 = 2η3
[
G divΓ (M∇Γ ) +H divΓ (M2∇Γ )

]
− 2η3

[
∇ΓG · (M∇Γ ) +∇ΓH · (M2∇Γ )− 2κ2 H (3G+ 2H2)

]
+ 10η4 G2H ∂η − 6η5 G2H (−∂2

ηη − i) (2.53)

A6 = η4
[
G divΓ (M2∇Γ )−∇ΓG · (M2∇Γ ) + 3κ2G(G+ 4H2)

]
+ 2η5 G3∂η − η6 G3(−∂2

ηη − i) (2.54)

A7 = 6η5 κ2G2H (2.55)

A8 = η6 κ2G3 (2.56)

Therefore, by substituting (2.43) in equation (2.48) and equating the terms of same order
in ε, we obtain an induction on k that allows us to recursively determine the uk

in’s as
functions of η. With the convention uk

in ≡ 0 for k < 0, one can write this induction in the
form

(−∂2
ηη − i) uk

in =
8∑

`=1

A` u
k−`
in , on Γ× R+, (2.57)

for all k ≥ 0. For any k ≥ 0, one assumes that the fields ul
in and ul

e are known for
l < k so that (2.57) can be seen as an ordinary differential equation in η for η ∈ [0,+∞[
whose unknown η 7→ uk

in(xΓ, η) (the variable xΓ plays the role of a parameter). Since this
equation is of order 2, in addition to the condition at infinity (2.42), the solution of (2.57)
with respect to η requires one initial condition at η = 0. This condition will be provided
by one of the two interface conditions (2.3-vi) and (2.3-v).

We choose here to use the condition (2.3-v) which provides us a non homogeneous Neumann
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condition at η = 0 whose right hand side will be given by the exterior field uk−1
e , namely

(substitute (2.40)-(2.41) into (2.3-v) and identify the series after the change of variable
ν = εη)

∂ηu
k
in(xΓ, 0) = ∂nu

k−1
e |Γ(xΓ), xΓ ∈ Γ. (2.58)

With such a choice, the other condition (2.3-vi) will serve as a non homogeneous Dirichlet
boundary condition for the exterior field uk

e , to complete (2.45):

uk
e |Γ(xΓ) = uk

in(xΓ, 0), xΓ ∈ Γ. (2.59)

Remark 2.8 Choosing (2.58) as the boundary condition for (2.57) will naturally lead to
NtD GIBCs. The alternative choice (2.59) would naturally lead to DtN GIBCs. Our
choice seems to be more natural because, thanks to the shift of index in (2.58), the right
hand side really appears as something known from previous steps. Condition (2.59) appears
more as a coupling condition!

2.4.3 Expression of interior field inside the boundary layer

We are interested in getting analytic expression for the “interior fields” uk
in by solving the

boundary problem (in the variable η) constituted by equations (2.57), (2.58) and (2.42).
To simplify the notation, we shall set:

duk
in(xΓ) := ∂ηu

k
in(xΓ, 0), xΓ ∈ Γ. (2.60)

Using standard techniques for linear differential equations, it is easy to prove that the
solution uk

in is of the form:

uk
in(xΓ, η) = P k

xΓ
(η) e−α η (2.61)

for all k ≥ 0, where P k
xΓ

is a polynomial with respect to η of degree k whose coefficients

are proportional to du0
in, · · · , duk−1

in (recall that α =
√

2
2
− i

√
2

2
). More precisely, these

polynomials satisfy an (affine) induction of order 8, of the form:

P k
xΓ

(η) = − 1

α
duk−1

in (xΓ) + Lk

(
P k−1

xΓ
(η), ..., P k−7

xΓ
(η)
)

where Lk is a linear form on C7 whose coefficients are linear in the dul
in(xΓ)’s. We shall not

give here the expression of Lk for any k but restrict ourselves to the first four functions uk
in
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(this is sufficient for GIBCs up to order 3)

u0
in(xΓ, η) = 0 (2.62)

u1
in(xΓ, η) = − 1

α
du0

in(xΓ) e
−αη (2.63)

u2
in(xΓ, η) =

{(
− 1

α
du1

in(xΓ) +
H
α2

du0
in(xΓ)

)
+ η

H
α
du0

in(xΓ)

}
e−αη (2.64)

u3
in(xΓ, η) =

{
− 1

α
du2

in(xΓ) +
H
α2

du1
in(xΓ)

− 1

2α3
(3H2 −G+ κ2) du0

in(xΓ)−
1

2α3
∆Γ[du0

in](xΓ)

+ η [
H
α
du1

in(xΓ)−
1

2α2
(∆Γ −G+ 3H2 + κ2) du0

in(xΓ) ]

+ η2 1

2α
(G− 3H2) du0

in(xΓ)

}
e−αη (2.65)

2.4.4 Construction of the GIBCs

Let us first inductively check that, starting from u0
in = 0 and u0

e solution of the exterior
Dirichlet problem the fields uk

e and uk
in are well defined.

Assume that u`
e and u`

in are known for ` ≤ k − 1.
The du`

in’s are known by (2.60), uk
in is determined by the explicit expression (2.61) (and

more precisely (2.62) to (2.65) for k = 0, 1, 2, 3).
Then, uk

e ∈ H1(BR\Ω) is determined as the unique solution of the boundary value problem
∆uk

e + κ2q uk
e = fk, in BR \ Ω,

∂ru
k
e − TR(uk

e) = gk, on ∂BR,

uk
e = uk

in|η=0 , on Γ.

(2.66)

Remark 2.9 Since f is compactly supported in BR \ Ω, we (inductively) deduce from
standard elliptic regularity that uk

e is a smooth function in a neighborhood of Γ and also
that xΓ 7→ uk

e(xΓ, 0) is a smooth function on Γ.

The GIBC of order k is obtained by considering the truncated expansion:

ũε,k :=
k∑

`=0

ε`u`
e (2.67)

as an approximation of order k of uε
e.
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For example, for k = 0, we have ũε,k = u0
e and from equations (2.59) and (2.62), we deduce

that ũε,k = 0 on Γ. In this case we set uε,k = ũε,k and, as emphasized in Remark 2.2, the
Dirichlet condition:

uε,k = 0, on Γ, (2.68)

is a the GIBC of order 0.

For larger k, another approximation is needed. The procedure main steps are the following.
Using the second interface condition, namely (2.3-iv), one has

ũε,k|Γ(xΓ) =
k∑

`=0

ε`u`
in(xΓ, 0) for xΓ ∈ Γ. (2.69)

Substituting expressions (2.62)-(2.65) into (2.69) leads to a boundary condition of the form

ũε,k +Dε,k ∂nũ
ε,k = εk+1 gε

k on Γ, (2.70)

where Dε,k is some boundary operator and where ‖gε
k‖Hm(Γ) is uniformly bounded with

respect to ε for any real m and for ε small enough.
The GIBC of order k that defines uε,k (which is in general different from ũε,k) is then
obtained by neglecting the right hand side of (2.70).

Obtaining (2.70) is the pure algebraic part of the work and we shall not give the details
of the computations which are straightforward and could be automatized. Notice however
that their complexity increases rapidly with k.

Exercise 2.1 Prove that for k ≤ 3, the operators Dε,k are the ones announced in section
2.3.1 and that the reminders gε

k are given by:

gε
1 =

1

α
∂nu

1
e,

gε
2 =

1

α
∂nu

2
e − i H ∂n(u1

e + εu2
e),

gε
3 =

1

α
∂nu

3
e − i H∂n(u2

e + εu3
e)

− 1

2
[ ∆Γ∂n + (3H2 −G+ κ2)∂n ]

(
u1

e + εu2
e + ε2u3

e

)
.

(2.71)

2.5 Error analysis of NtD GIBCs

Our goal in this section is to estimate the difference

uε
e − uε,k (2.72)
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where uε,k is the solution of the approximate problem ((2.12), (2.16)), whose well-posedness
will be shown in section 2.5.2 (Lemma 2.4).
It is not evident how one can derive error estimates by working directly with the difference
uε

e − uε,k. The route we shall follow make use of the truncated series ũε,k introduced in
Section 2.4.4 as an intermediate quantity. Therefore, the error analysis is split into two
steps:

1. Estimate the difference uε
e−ũε,k ; this is the object of Section 2.5.1, and more precisely

of Lemma 2.1 and Corollary 2.2.

2. Estimate the difference ũε,k − uε,k ; this is the object of Section 2.5.2 and more
precisely of Lemma 2.6.

Estimates of theorem 2.3 are then a direct consequence of corollary 2.2 and Lemma 2.6.

Remark 2.10 Notice that step 1 of the proof is completely independent on the GIBC and
will be valid for any integer k. Also, for k = 0, the second step is useless since ũε,k = uε,k.

2.5.1 Error analysis of the truncated expansions

Let us introduce the function ũε,k
χ (x) : BR 7→ C such that

ũε,k
χ (x) =



k∑
`=0

ε`u`
e(x), for x ∈ BR \ Ω,

χ(x)
k∑

`=0

ε`u`
in(xΓ, ν/ε) for x ∈ Ω,

(2.73)

where χ, xΓ and ν are as in section 2.4.1. The main result of this section is:

Lemma 2.1 For any integer k, there exists a constant Ck independent of ε such that

‖uε − ũε,k
χ ‖H1(BR) ≤ Ck ε

k+ 1
2 ,

‖uε − ũε,k
χ ‖L2(Ω) ≤ Ck ε

k+ 3
2 ,

‖uε − ũε,k
χ ‖L2(Γ) ≤ Ck ε

k+1.

(2.74)

As an immediate corollary of this Lemma we obtain an O(εk+1) H1(BR \Ω)-error estimate
for the “exterior field”.

Corollary 2.2 For any integer k, there exists a constant C̃k independent of ε such that:

‖uε − ũε,k‖H1(BR\Ω) ≤ C̃k ε
k+1. (2.75)
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Proof. Simply write
uε − ũε,k = uε − ũε,k+1 + εk+1uk+1

e

which yields, since uε,k+1 = uε,k+1
χ in BR \ Ω,

‖uε − ũε,k‖H1(BR\Ω) ≤ ‖uε − ũε,k+1
χ ‖H1(BR\Ω) + εk+1 ‖uk+1

e ‖H1(BR\Ω),

that is to say, thanks to the first estimate of Lemma 2.1:

‖uε − ũε,k‖H1(BR\Ω) ≤ Ck ε
k+ 3

2 + εk+1 ‖uk+1
e ‖H1(BR\Ω) ≤ C̃k ε

k+1.

�

Remark 2.11 For k = 0, since ũε,0
χ = 0 inside Ω (cf (2.63)), one deduces from the second

estimate of (2.74) that: ‖uε‖L2(BR\Ω) ≤ C ε
3
2 .

We shall prove first a technical trace lemma (Lemma 2.2) and a fundamental stability
estimate (Lemma 2.3) that constitute the basic ingredients to the proof of Lemma 2.1.

Lemma 2.2 Let O be a bounded open set of RN with C1 boundary, then there exists a
constant C depending only on O such that

‖u‖2
L2(∂O) ≤ C

(
‖∇u‖L2(O) ‖u‖L2(O) + ‖u‖2

L2(O)

)
, for all u ∈ H1(O). (2.76)

Proof. Assume first that O = RN
+ := {x = (x′, xN) ∈ RN−1×R+} and let u in C∞(RN

+ )
with compact support. Obviously

|u(x′, 0)|2 = −2

∫ ∞

0

u
∂u

∂xN

dxN .

Therefore, using the Schwarz inequality,

‖u(·, 0)‖2
L2(RN−1) ≤ 2‖∇u‖L2(RN

+ ) ‖u‖L2(RN
+ ). (2.77)

Using the denseness of C∞(RN
+ ) functions with compact support into H1(RN

+ ), we deduce
that the previous inequality holds for all u ∈ H1(RN

+ ). Now let O be bounded open set of
Rn and let χ a C∞(BR) cut off function such that

χ(x) = 1 if dist(x, ∂O) < ν̄/2 and χ(x) = 0 if dist(x, ∂O) > ν̄

for a sufficiently small ν̄ > 0. Using local parametric representations of suppχ, we deduce
from (2.77) the existence of a constant C depending on ∂O and ν̄ such that

‖u‖2
L2(∂O) ≤ C ‖∇(χu)‖L2(O)‖χu‖L2(O),

whence the result of the Lemma with a different constant C. �
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Lemma 2.3 Let vε ∈ H1(BR) satisfying{
∆vε + κ2q vε = 0, in BR \ Ω,

∂rv
ε − TR(vε) = 0, on ∂BR,

(2.78)

and verifying the a priori estimate∣∣∣∣∫
BR

(
|∇vε|2 − κ2qr|vε|2

)
dx − i

ε2

∫
Ω

|vε|2 dx
∣∣∣∣

≤ A
(
εs+ 1

2‖vε‖L2(Γ) + εs ‖vε‖L2(Ω)

)
,

(2.79)

for some non negative constants A and s independent of ε. Then there exists a constant
C independent of ε such that

‖vε‖H1(BR) ≤ C εs+1, ‖vε‖L2(Ω) ≤ C εs+2, ‖vε‖L2(Γ) ≤ C εs+ 3
2 , (2.80)

for sufficiently small ε.

Proof. We first prove by contradiction that ‖vε‖L2(BR) ≤ C εs+1. This is the main step
of the proof. Let wε = vε/‖vε‖L2(BR) and assume that λε := ε−s−1‖vε‖L2(BR) is unbounded
as ε→ 0. Estimate (2.79) (notice it is not homogeneous in vε) yields∣∣∣∣∫

BR

(
|∇wε|2 − κ2qr|wε|2

)
dx − i

ε2

∫
Ω

|wε|2 dx
∣∣∣∣

≤ A

λε

(
ε−

1
2‖wε‖L2(Γ) + ε−1 ‖wε‖L2(Ω)

)
,

(2.81)

For sake of conciseness, we will denote by C a positive constant whose value may change
from one line to another but remains independent of ε. For instance, (2.81) yields in
particular, since 1/λε is bounded,

‖wε‖2
L2(Ω) ≤ C ε

3
2‖wε‖L2(Γ) + C ε‖wε‖L2(Ω).

Next, we use Lemma 2.2 with O = Ω to get

‖wε‖2
L2(Ω) ≤ C ε

3
2‖wε‖

1
2

L2(Ω)

(
‖wε‖

1
2

L2(Ω) + ‖∇wε‖
1
2

L2(Ω)

)
+ C ε‖wε‖L2(Ω),

which yields, after division by ‖wε‖
1
2

L2(Ω),

‖wε‖
3
2

L2(Ω) ≤ C1 ε‖wε‖
1
2

L2(Ω) + C2 ε
3
2‖∇wε‖

1
2

L2(Ω). (2.82)

Using Young’s inequality ab ≤ 2/3 a3/2 + 1/3 b3 with a = K−1ε and b = K ‖wε‖
1
2

L2(Ω)

(where K is a positive constant to be fixed later) we can write

ε‖wε‖
1
2

L2(Ω) ≤
2

3
K− 3

2 ε
3
2 +

K3

3
‖wε‖

3
2

L2(Ω). (2.83)
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Choosing C1K
3 = 3/2 and substituting (2.82) into (2.83), we deduce a first main inequality,

‖wε‖
3
2

L2(Ω) ≤ C ε
3
2

(
1 + ‖∇wε‖

1
2

L2(Ω)

)
. (2.84)

Now, observe that another consequence of (2.81) is, since ‖wε‖L2(BR) = 1,

‖∇wε‖2
L2(BR) ≤ C

(
1 + ε−

1
2‖wε‖L2(Γ) + ε−1‖wε‖L2(Ω)

)
. (2.85)

On the other hand, using Lemma 2.2 once again, we have

ε−
1
2‖wε‖L2(Γ) ≤ C ε

1
2

{
ε−1‖wε‖L2(Ω)

}
+ C

{
ε−1‖wε‖L2(Ω)

} 1
2 ‖∇wε‖

1
2

L2(Ω),

which, for ε bounded, implies, using (2.85),

‖∇wε‖2
L2(BR) ≤ C + C

{
ε−1‖wε‖L2(Ω)

}(
1 + ‖∇wε‖

1
2

L2(Ω)

)
. (2.86)

Coming back to (2.84), we deduce that

ε−1‖wε‖L2(Ω) ≤ C
(
1 + ‖∇wε‖

1
3

L2(Ω)

)
, (2.87)

that we use in (2.86) to obtain

‖∇wε‖2
L2(BR) ≤ C

(
1 + ‖∇wε‖

2
3

L2(Ω)

)
.

This implies in particular that ‖∇wε‖L2(BR) is uniformly bounded with respect to ε and
therefore wε is a bounded sequence of H1(BR). Up to an extracted subsequence, one can
therefore assume that wε converges weakly in H1(BR) and strongly L2(BR) to some w with
‖w‖L2(BR) = 1.

From (2.84), we deduce that w = 0 in Ω. On the other hand, taking the weak limit in the
equations satisfied by wε in BR \ Ω and on ∂BR, then using that w ∈ H1(BR) one gets

∆w + κ2q w = 0, in BR \ Ω

∂rw − TR(w) = 0 on ∂BR,

w = 0 on Γ.

(2.88)

Therefore w = 0 in BR \ Ω (by using Lemma 1.3). Hence w = 0 in BR which contradicts
‖w‖L2(BR) = 1. Consequently

‖vε‖L2(BR) ≤ C εs+1. (2.89)

Estimate (2.79) and Lemma 2.2 yields

‖vε‖2
L2(Ω) ≤ C

(
εs+ 5

2‖∇vε‖
1
2

L2(Ω)‖v
ε‖

1
2

L2(Ω) + εs+2‖vε‖L2(Ω)

)
, (2.90)
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and, using (2.89)

‖∇vε‖2
L2(BR) ≤ C

(
ε2s+2 + εs+ 1

2‖∇vε‖
1
2

L2(Ω)‖v
ε‖

1
2

L2(Ω) + εs‖vε‖L2(Ω)

)
. (2.91)

Therefore, combining these two estimates, it is not difficult to obtain

‖vε‖2
L2(Ω) + ε2‖∇vε‖2

L2(BR) ≤ C
(
ε2s+4 + εs+2

(
‖vε‖L2(Ω) + ε‖∇vε‖L2(BR)

))
,

which yields

‖vε‖L2(Ω) + ε‖∇vε‖L2(BR) ≤ Cεs+2.

This corresponds to the first two estimates of (2.80). The third one is a direct consequence
of these two estimates by the application of Lemma 2.2 to Ω. �

Remark 2.12 Notice that since we simply used in the first step of the proof the fact that
1/λε is bounded, we have proved in fact that

lim
ε→0

ε−(s+1) ‖vε‖L2(BR) = 0.

Proof of Lemma 2.1. Let us set eε
k = uε − ũε,k

χ . The idea of the proof is to show that eε
k

satisfies an a priori estimate of the type (2.79) and then to use the stability Lemma 2.3.
To prove such an estimate, we shall use the equations satisfied by eε

k, respectively in Ω and
BR \ Ω as well as transmission conditions across Γ.

The exterior equation. By construction, ũε,k
χ satisfies in BR \ Ω the non homogeneous

Helmholtz equation with the radiation boundary condition on ∂BR and right hand sides
f and g (this is a direct consequence of (2.45) for each k). Hence, eε

e,k := eε
k|BR\Ω satisfies

the homogeneous equation: ∆eε
e,k + κ2q eε

e,k = 0, in BR \ Ω,

∂re
ε
e,k − TR(eε

e,k) = 0, on ∂BR.
(2.92)

The interior equation. The truncated series ũε,k
χ do not exactly satisfies the same Helmholtz

equation inside Ω as the exact solution. They verify this equation with a small right hand
side. To see that, let us set:

ũε,k
in =

k∑
`=0

ε` u`
in, so that, ũε,k

χ = χ ũε,k
in in Ω. (2.93)

Indeed

∆ũε,k
χ + κ2

in ũ
ε,k
χ +

i

ε2
ũε,k

χ = χ{∆ũε,k
in + κ2

in ũ
ε,k
in +

i

ε2
ũε,k

in }+ 2∇χ · ∇ũε,k
in + ∆χ ũε,k

in .
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Inside the support of χ the local coordinates (xΓ, ν = εη) can be used to make the identi-
fication (cf. 2.48)

∆ + κ2
in +

i

ε2
≡ 1

J3
ν ε

2

(
∂2

ηη + i+
8∑

`=1

ε`A`

)
. (2.94)

From equation (2.57), after multiplication by the correct power of ε and summation, it is
easily seen (the calculations are long but not difficult) that(

∂2
ηη + i+

8∑
`=1

ε`A`

)
ũε,k

in = εk+1

8∑
`=1

`−1∑
p=0

εp A`−p−1u
k+p+1−`
in . (2.95)

Therefore, thanks to (2.94) and (2.95),

∆ũε,k
χ + κ2qinũ

ε,k
χ +

i

ε2
ũε,k

χ = f ε
in,k in Ω, (2.96)

where the function f ε
in,k is given by (with obvious notation)

gε
in,k = εk−1 χ

8∑
`=1

`−1∑
p=0

εp A`−p−1u
k+p+1−`
in (., ν/ε) + 2∇χ · ∇ũε,k

in + ∆χ ũε,k
in . (2.97)

From expression (2.61) and the identity∫ +∞

0

( ν

ε

)`

e
− ν√

2ε dν = C` ε, ∀ ` ∈ N ,

where C` is a constant independent of ε, it is not difficult to verify that( ∫
Ων̄

|u`
in(xΓ, ν/ε)|2 dx

) 1
2

≤ C`(ν̄) ε
1
2 (2.98)

for some constant C`(ν̄) that depends on ν̄ and the boundary terms of uk
e , k ≤ `, but is

independent of ε. In the same way, one easily shows that:( ∫
Ων̄ \ Ω

ν̄
2

{ |ũε,k
in |2 + |∇ũε,k

in |2 } dx
) 1

2

≤ C(ν̄) exp(−ν̄/ε) . (2.99)

Regrouping estimates (2.98) and (2.99) into (2.97), yields the existence of a constant C
independent of ε such that

||f ε
in,k||L2(Ω) ≤ C εk− 1

2 . (2.100)

Notice of course that, by taking the difference between (2.96) and (2.3)(ii), eε
in,k := eε

k |Ω
satisfies

∆eε
in,k + (κ2

in +
i

ε2
)eε

in,k = f ε
in,k in Ω. (2.101)
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The transmission conditions. From the interface condition (2.59) it is clear that ũε,k
χ , and

thus eε
k, is continuous across Γ. However, from (2.58), due to the shift of index between

left and right hand sides, the normal derivative of ũε,k
χ is discontinuous across Γ, so is the

normal derivative of eε
k). More precisely, straightforward calculations lead to the following

transmission conditions  eε
e,k − eε

in,k = 0, on Γ,

∂n e
ε
e,k − ∂n e

ε
in,k = εk ∂n u

k
e , on Γ.

(2.102)

Error estimates. We can now proceed to the final step of the proof. Multiplying equation
(2.92) by eε

e,k and integrating over BR \ Ω, we obtain by using Green’s formula,∫
BR\Ω

|∇eε
e,k|2 dx− κ2

∫
BR\Ω

q|eε
e,k|2 dx−

〈
TR(eε

e,k), e
ε
e,k

〉
∂BR

=
〈
∂ne

ε
e,k, e

ε
e,k

〉
Γ
. (2.103)

In the same way, multiplying equation (2.101) by eε
in,k and integrating over Ω, one gets∫

Ω

|∇eε
in,k|2 dx− κ2

∫
Ω

qr|eε
in,k|2 dx−

i

ε2

∫
Ω

|eε
in,k|2 dx

= −
〈
∂ne

ε
e,k, e

ε
e,k

〉
Γ
−
∫

Ω

f ε
in,k e

ε
in,k dx .

(2.104)

(recall that by definition, κ2
in = κ2qr inside Ω) Adding together (2.104) and (2.103) and

using (2.102) and (2.100), gives (using the properties of TR and q)∣∣∣∣∫
BR

|∇eε
k|2 − κ2

∫
BR

qr|eε
k|2 −

i

ε2

∫
Ω

|eε
k|2
∣∣∣∣

≤ Ck

(
εk ||eε

k||L2(Γ) + εk− 1
2 ||eε

k||L2(Ω)

)
,

(2.105)

where Ck is a constant independent of ε. Ones deduces the desired error estimates by
applying Lemma 2.3. �

2.5.2 Error estimates for the GIBCs

Existence and uniqueness results for the approximate problems. We shall check
here that the approximate solutions uε,k are well defined. This is our next result.

Lemma 2.4 For k = 0, 1, 2, 3, the boundary value problem:
∆uε,k + κ2q uε,k = f, in BR \ Ω,

∂ru
ε,k − TR(uε,k) = g, on ∂BR,

uε,k +Dε,kuε,k∂n = 0 on Γ,

(2.106)

admits a unique solution in uε,k ∈ H1(BR \ Ω) provided that ε H ≤
√

2/2 if k = 2 or ε is
small enough if k = 3.
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Proof. Since the proof for k = 0, 1, 2 has already been given in Chapter 1, we shall
concentrate here on the case k = 3. We start by reformulation problem (2.106) as a
system.

New formulation of the problem. Introducing ϕε = ∂nu
ε,3|Γ as a new unknown, problem

(2.106) is equivalent, for k = 3, to find (uε,3, ϕε) ∈ H1(BR \ Ω)×H1(Γ) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆uε,3 + κ2q uε,3 = f, in BR \ Ω,

∂ru
ε,3 − TR(uε,3) = g, on ∂BR,

∂nu
ε,3 = ϕε, on Γ,

−∆Γ ϕ
ε +

2i

ε2
θ3(ε) ϕ

ε = −2iα

ε3
uε,3 on Γ,

(2.107)

where we have set θ3(ε) = 1− εH
α

+ i
ε2A(κin)

2
with A(κ) = 3H2 −G+ κ2.

Next we show that problem (2.107) is of Fredholm type. For this, we first notice that
(2.107) is equivalent to the variational problem:

Find (uε,3, ϕε) ∈ H1(BR \ Ω)×H1(Γ) such that ∀ (v, ψ) ∈ H1(BR \ Ω)×H1(Γ),

a1

(
(uε,3, ϕε), (v, ψ)

)
+ aε

2

(
(uε,3, ϕε), (v, ψ)

)
= −

∫
BR\Ω

fv dx+ 〈g, v〉∂BR

(2.108)
where we have set:

a1 ((u, ϕ), (v, ψ)) =

∫
BR\Ω

(∇u · ∇v + u v) dx− 〈TR(u), v〉∂BR

+

∫
Γ

(∇Γ ϕ · ∇Γ φ+ ϕ ψ) ds

aε
2 ((u, ϕ), (v, ψ)) = −

∫
BR\Ω

(κ2q + 1)u v dx−
∫

Γ

[ 1− 2i

ε2
θ3(ε) ]ϕ ψ ds

+
2iα

ε3

∫
Γ

u ψ ds −
∫

Γ

ϕ v ds.

One next remarks that a1(·, ·) is coercive in H1(BR \ Ω) × H1(Γ) while aε
2(·, ·) is weakly

compact in H1(BR \ Ω)×H1(Γ):

(un, ϕn) ⇀ (u, ϕ) in H1(BR \ Ω)×H1(Γ) =⇒ aε
2 ((un, ϕn)(un, ϕn)) → aε

2 ((u, ϕ)(u, ϕ)) .

Therefore, formulation (2.108) satisfies the Fredholm alternative: existence and uniqueness
of solutions is equivalent to uniqueness of solutions to(2.107) (or (2.108)).
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Uniqueness proof. We prove the uniqueness result for ε small enough by contradiction. If
uniqueness fails then, up to the extraction of a sequence of values of ε tending to 0, one
can assume that here exists a non trivial solution (uε,3, ϕε) of the homogeneous problem
associated with (2.107), that we can normalize in such a way that:

‖uε,3‖L2(BR\Ω) = 1. (2.109)

We multiply the Helmholtz equation by the complex conjugate of uε,3 and after integration
by parts, we replace, in the boundary term on Γ, the trace of uε,3 by its expression as a
function of ϕε from the last equation of (2.107). This leads to∫

BR\Ω

(
|∇uε,3|2 − κ2q|uε,3|2

)
dx+

ᾱ ε3

2

∫
Γ

|∇Γ ϕ
ε|2 ds

+ εα

∫
Γ

θ3(ε) |ϕε|2 ds− 〈TR(u), u〉∂BR
= 0.

We now take the real part of the last equality (contrary to what is more usual, taking the
imaginary part does not provide the desired estimate, the term in |∇Γ ϕ

ε|2 comes with the
wrong sign) and use (2.109) to get that∫

BR\Ω
|∇uε,3|2 dx+

ε3
√

2

4

∫
Γ

|∇Γ ϕ
ε|2 ds+ ε

∫
Γ

Re(αθ3(ε))|ϕε|2 ds ≤ C, (2.110)

where C is a constant independent of ε.
Since Re(αθ3(ε)) tends to

√
2/2 as ε goes to 0, we deduce from previous estimate that

uε,3 is bounded in H1(BR \ Ω). Therefore, up to the extraction of a subsequence, we can
assume that: 

uε,3 → u, weakly in H1(BR \ Ω),

uε,3 → u, strongly in L2(BR \ Ω),

∆uε,3 → ∆u, weakly in L2(BR \ Ω),

the latter property being deduced from the Helmholtz equation. By trace theorem, ∂nu
ε,3|Γ

(resp. ∂nu
ε,3|∂BR

) converges to ∂nu|Γ (resp. ∂nu|∂BR
) in H− 1

2 (Γ) (resp. H− 1
2 (∂BR)). Of

course, at the limit, we have: ∆u+ κ2q u = 0, in BR \ Ω,

∂ru− TR(u) = 0, in ∂BR.
(2.111)

while, passing to the (weak) limit in the last boundary equation of (2.107) after multipli-
cation by ε3, we obtain

u = 0, on Γ. (2.112)

From Lemma 1.3 we then obtain that u = 0 in BR \ Ω, which is in contradiction with
‖u‖L2(BR\Ω) = 1. �
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Analysis of the difference uε,k−ũε,k. We now proceed to step 2 of the sketch announced
in Section 3. From now on, we shall set for k = 0, 1, 2, 3,

eε,k = uε,k − ũε,k. (2.113)

The starting point of the error analysis is to remark that eε,k is a solution of a homogeneous
Helmholtz equation with outgoing absorbing condition on ∂BR, ∆eε,k + κ2q eε,k = 0 in BR \ Ω,

∂re
ε,k − TR(eε,k) = 0 on ∂BR,

(2.114)

and satisfies a non homogeneous GIBC boundary condition on Γ with small right hand
side. This comes directly from the construction of the GIBC itself and is obtained by
making the difference between (2.70) and (2.16). Let us formulate this as a lemma:

Lemma 2.5 For k = 1, 2, 3, there exists a smooth function gε
k such that

eε,k +Dε,k ∂ne
ε,k = εk+1 gε

k, (2.115)

and such that
||gε

k||H 1
2 (Γ)

≤ Ck, for k = 1, 2, 3, (2.116)

where Ck is a positive constant independent of ε.

This result can be seen as a consistency result for the boundary condition. Combined with
a stability argument, it is then possible to obtain the following estimates.

Lemma 2.6 For k = 1, 2, 3, there exists a positive constant Ck independent of ε such that

‖uε,k − ũε,k‖H1(BR\Ω) ≤ Ck ε
k+1. (2.117)

Proof. From (2.114) and (2.115) and Green’s formula,∣∣∣∣∣∣∣∣
∫

BR\Ω
( |∇eε,k|2 − κ2q|eε,k|2 ) dx−

〈
TR(eε,k), eε,k

〉
∂BR∫

Γ

Dε,k ∂ne
ε,k · ∂neε,k ds = εk+1

∫
Γ

gε
k ∂neε,k ds.

(2.118)

Setting ϕε
k = ∂ne

ε,k|Γ, and introducing the functions θ1(ε) = 1, θ2(ε) = 1− εH
α

, (θ3(ε) has
been defined in the proof of Lemma 2.4), one can derive the following general identity by
using the explicit expression of Dε,k,∣∣∣∣∣∣∣∣

∫
BR\Ω

( |∇eε,k|2 − κ2q|eε,k|2 ) dx−
〈
TR(eε,k), eε,k

〉
∂BR

+ εα

∫
Γ

θk(ε) |ϕε
k|2 ds+ νk

ᾱ ε3

2

∫
Γ

|∇Γ ϕ
ε
k|2 ds = εk+1

∫
Γ

gε
k ∂neε,k ds ,

(2.119)
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where νk = 0 for k = 0, 1, 2 and ν3 = 1. Taking the real part,∫
BR\Ω

( |∇eε,k|2 − κ2qr|eε,k|2 ) dx−Re
〈
TR(eε,k), eε,k

〉
∂BR

+ ε

∫
Γ

Re(αθk(ε)) |ϕε
k|2 ds

+ νk

√
2 ε3

4

∫
Γ

|∇Γ ϕ
ε
k|2 ds = εk+1 Re

∫
Γ

gε
k ∂neε,k ds .

(2.120)
In particular, since νk ≥ 0 and Re(αθk(ε)) tends to

√
2 as ε tends to 0, we obtain the

following estimate, for ε small enough,∣∣∣∣∣∣
∫

BR\Ω
( |∇eε,k|2 − κ2qr|eε,k|2 ) dx ≤ εk+1 ‖gε

k‖H
1
2 (Γ)

‖∂ne
ε,k‖

H− 1
2 (Γ)

≤ Ck ε
k+1 ‖eε,k‖H1(BR),

(2.121)

where the latter inequality comes from (2.116) and the fact that eε,k is solution the
Helmholtz equation inside BR \Ω. The remaining part of the proof in then rather straight-
forward. We first prove by contradiction that

‖eε,k‖L2(BR\Ω) ≤ Ck ε
k+1 . (2.122)

If (2.122) is not true, then µε
k = ε−(k+1)‖eε,k‖ would blows up (for a subsequence) as ε goes

to 0. Then, introducing
wε,k = eε,k / ‖eε,k‖L2(BR\Ω),

ones derives from (2.121)∫
BR\Ω

|∇wε,k|2 dx ≤ κ2 + Ck (µε
k)
−1 ‖wε,k‖H1(BR) ≤ Ck (1 + ‖wε,k‖H1(BR)). (2.123)

Therefore, wε,k is bounded in H1(BR) and thus, up to the extraction of a subsequence,
converges weakly in H1(BR \Ω) but strongly in L2(BR \Ω) to some wk ∈ H1(BR \Ω) that
satisfies ‖wk‖L2(BR\Ω) = 1 as well as ∆wk + κ2wk = 0, in BR \ Ω,

∂rw
k − TR(κwk) = 0, on ∂BR.

(2.124)

Finally, passing to the limit (in the weak sense) in the boundary condition

wε,k +Dε,k ∂nw
ε,k = gε

k/ ‖eε,k‖L2(BR\Ω) = (µε
k)
−1 (gε

k/ ε
k+1) , (2.125)

we see (gε
k/ ε

k+1 is bounded and (µε
k)
−1 tends to 0) that wk also satisfies

wk = 0, on Γ. (2.126)

System ((2.124),(2.126)) implies that wk = 0, which contradicts ‖wk‖L2(BR) = 1. Therefore,
(2.122) holds. The Lemma estimate is now a direct consequence of (2.122) and (2.121). �
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2.6 About the analysis of modified GIBCs

The error analysis of modified GIBCs can be done in a similar way as for the NtD GIBCs.
We shall restrict ourselves to stating the results and indicating the needed modifications
in previous section proofs.

2.6.1 Analysis of DtN GIBCs

Theorem 2.4 Let k = 1, 2 or 3, then, assuming ε beeing sufficiently small when k = 3,
the boundary value problem ((2.12), (2.25)) has a unique solution uε,k ∈ H1(BR \ Ω).
Moreover, there exists a constant Ck, independent of ε, such that

‖uε
e − uε,k‖H1(BR\Ω) ≤ Ck ε

k+1. (2.127)

Proof. We shall only treat here the case k = 3 (the others are easy) and start with the
proof of estimate (2.127) assuming the existence and uniqueness of the solution (whose
verification is left as an exercise).

Of course, we only need to consider the difference uε,3−ũε,3, namely to prove the equivalent
to Lemma 2.6.

Rather curiously, it appears that treating the boundary condition directly in its DtN form
(2.25) does not lead immediately to the optimal error estimate. This is why we shall
rewrite it as an NtD condition by introducing the inverse of the operator N ε,3 (note that,
by Lax-Milgram’s lemma, N ε,3 is an isomorphism from Hs+2(Γ) onto Hs(Γ)).

We repeat here the approach of Lemma 2.6. One first checks that the error eε,3 satisfies the
homogeneous Helmholtz equation in BR \Ω together with the non homogeneous boundary
condition:

eε,3 +
(
N ε,3

)−1

∂ne
ε,3 = ε4 gε

3, (2.128)

where gε
3 is a smooth function satisfying:

||gε
3||H 1

2 (Γ)
≤ Ck, for k = 1, 2, 3, (2.129)

Proceeding as in the proof of Lemma 2.6, we obviously get∣∣∣∣∣∣∣∣
∫

BR\Ω
( |∇eε,k|2 − κ2q|eε,3|2 ) dx−

〈
TR(eε,3), eε,k

〉
∂BR

+

∫
Γ

(
N ε,3

)−1

∂neε,3 · ∂ne
ε,3 ds = εk+1

∫
Γ

gε
3 ∂neε,3 ds.

(2.130)

The key point is that, at least for ε small enough, for any ψ smooth enough,

Re
∫

Γ

(
N ε,3

)−1

ψ · ψ dx ≤ 0. (2.131)
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This is a consequence of

Re
∫

Γ

N ε,3ϕ · ϕ dx ≤ 0, for any ϕ smooth enough,

that follows from the identity (proven in section 2.3.2)∫
Γ

ϕ · N ε,3ϕ ds =
α ε

2

∫
Γ

|∇Γ ϕ|2 ds+
ᾱ

ε

∫
Γ

[ 1 +
εH
ᾱ
− i

ε2

2
(H2 −G+ κ2) ] |ϕ|2 ds,

and the observation that
Re α = Re ᾱ =

√
2/2,

lim
ε→0

[ 1 +
εH
ᾱ
− i

ε2

2
(H2 −G+ κ2) ] = 1.

Therefore we have shown that, as soon as ε is small enough,∫
BR\Ω

( |∇eε,k|2 − κ2qr|eε,3|2 ) dx ≤ 0, (2.132)

and the conclusion of the proof is identical to the one of Lemma 2.6. �.

Remark 2.13 Proceeding as in Section 2.4.4 (for deriving formulas (2.71)), one first gets:

∂ne
ε,3 +N ε,3eε,3 = ε3 hε

3,

where hε
3 (as gε

3 in formula (2.71)) depends polynomially with respect to ε. It is a polynomial
of degree 3 whose coefficients are smooth functions of xΓ, that can be explicitly expressed
in terms of u1

e, u
2
e and u3

e. In particular:

hε
3 = O(1), in any Sobolev norm.

One then deduces (2.128) with:

gε
3 = (εN ε,3)−1 hε

3 .

One finally obtains (2.129) after having noticed that (cf (2.28):

(εN ε,3)−1 =
1

α

{
1 +

ε

α
H− i

ε2

2
(∆Γ +H2 −G+ κ2)

}−1

= O(ε).
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2.6.2 Analysis of robust GIBCs

Theorem 2.5 For any ε > 0, the boundary value problem associated with (2.12) and the
boundary condition:

uε,3 +Dε,3
r ∂nu

ε,3 = 0, on Γ, (2.133)

where Dε,3
r is given by (2.31), has a unique solution uε,3 ∈ H1(BR \ Ω). Moreover, there

exists a constant C3, independent of ε, such that

‖uε
e − uε,3‖H1(BR\Ω) ≤ C3 ε

4. (2.134)

The same result holds if one replaces (2.133) by:

∂nu
ε,3 +N ε,3

r uε,3 = 0, on Γ, (2.135)

where N ε,3
r is given by (2.36).

The proof of this theorem is almost identical to the one of Theorem 2.4 or Lemma 2.6 and
is left as an exercise. Let us simply indicate that the existence and uniqueness result is
valid for any positive ε due to properties (2.34) and (2.37). The main difference lies in
the fact that the algebra to obtain the equivalent to identities (2.5) and (2.128) is slightly
more complicated and the calculations for obtaining the equivalent to property (2.131) are
longer.



Chapter 3

Rudiments of differential geometry

We recall in this appendix some well known facts on differential geometry and some results
in connection with surface operators. To simplify the presentation we shall consider C2

surfaces Γ that can be extended to a boundary of a simply connected domain and we
denote by n a C1 unitary normal field defined on Γ (this implies in particular that the
surface Γ is located on one side of its normal n).

Local coordinates. Let ν̄ be a positive real. We define the tubular neighborhood Ων̄
Γ of

Γ by

Ων̄
Γ := {x ∈ R3 ;x = xΓ + ν n(xΓ) for some (xΓ, ν) ∈ Γ× (−ν̄, ν̄)}.

Then, for a sufficiently small positive constant ν0 (see condition (3.4) below) the application
(xΓ, ν) 7→ x defined by

x = xΓ + ν n(xΓ) (3.1)

is a bijection from Γ × (−ν0, ν0) onto Ων0
Γ . The couple (xΓ, ν) defined by (3.1) is denoted

by the parametric local coordinates of x with respect to Γ. Notice that xΓ is nothing but
the orthogonal projection of x on Γ, i.e. xΓ is the point on Γ that minimizes y 7→ |x − y|
for y ∈ Γ.

xΓ

n(xΓ)
Ων0

Γ

Γ

Tangential (or surface) differential operators. In what follows we deal with various
fields defined on Γ: scalar fields ϕ (with values in C), vector fields V (with values in C3)
and matrix (or tensor) fields A (with values in L(C3)). By definition:

57
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• A vector field V is tangential if and only if V · n = 0 (as a scalar field along Γ).

• A matrix field A is tangential if and only if A n = 0 (as a vector field along Γ).

For simplicity, we assume that these fields have at least C1 regularity, but this can be
removed by interpreting the derivatives in the sense of distributions.

We recall that the surface gradient operator ∇Γ is defined by:

∇Γ ϕ(xΓ) = ∇ϕ̂(xΓ), ∀ϕ : Γ → R,

where ϕ̂ is the 3-D vector field defined locally in Ων0
Γ by ϕ̂(xΓ + ν n) = ϕ(xΓ). Note that

∇Γ ϕ is a tangential vector field. We can define in the same way the surface gradient of
a vector field as a tangential matrix field whose columns are the surface gradients of each
component of the vector field.

We denote by −divΓ the L2(Γ)- adjoint of ∇Γ : −divΓ maps a tangential vector field into
a scalar field. More generally, if A(xΓ) is a tangential matrix field on Γ, we define the
operator A∇Γ for a scalar field ϕ(xΓ) by

(A∇Γ )u := A(∇Γ u).

In the same way, we define the operator (A∇Γ )· acting on a tangential vector field V (xΓ)
as:

(A∇Γ ) · V :=
3∑

i=1

(A∇Γ Vi)i,

where the subscript i denotes the ith component of a vector in the canonical basis of R3.

We then define the surface curl of a tangential vector filed V (xΓ) and the surface vector
curl of a scalar function ϕ(xΓ) as

curlΓ V := divΓ (V × n) and ~curlΓ ϕ := (∇Γ ϕ)× n.

Of course, the various operators ∇Γ , divΓ , A∇Γ , curlΓ and ~curlΓ applies in principle to
functions defined on Γ. However, they can obviously be understood as (partial) differential
operators acting on fields defined in the (3-D) domain Γ × (−ν0, ν0). For instance, if
φ ∈ C1(Γ × (−ν0, ν0)), we define ∇Γ φ ∈ C0(Γ × (−ν0, ν0))

3 as follows (with obvious
notation):

∀ ν ∈ (−ν0, ν0),
[
∇Γ φ

]
(·, ν) := ∇Γ

[
φ(·, ν)

]
.

We apply similar rules to divΓ , A∇Γ , curlΓ and ~curlΓ . The extension of these definition
in the sense of distributions is also elementary (as soon as Γ is C∞).
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Geometrical tools. In what follows, and for the sake of the notation conciseness, we
shall most of time not explicitly indicate the dependence on xΓ of the functions, except
when we feel it necessary. We shall be more precise in mentioning the possible dependence
with respect to the normal coordinate ν.

A particularly fundamental tensor field is the curvature tensor C, defined by C := ∇Γn.
We recall that C is symmetric and C n = 0. We denote c1, c2 the other two eigenvalues of
C (namely the principal curvatures) associated with tangential eigenvectors τ1, τ2 (τ1 · n =
τ2 · n = 0). We also introduce

g := c1c2 and h :=
1

2
(c1 + c2) (3.2)

which are respectively the Gaussian and mean curvatures of Γ, and also introduce the
associated matrix fields:

H = h IΓ and G = g IΓ, (3.3)

where IΓ(xΓ) denotes the projection operator on the tangent plane to Γ at xΓ.

Let us introduce (this is the Jacobian of the transformation (xΓ, ν) → x - see (3.1))

J(ν)
(

= J(ν, xΓ)
)

:= det(I + ν C) = 1 + 2νh+ ν2g,

and we choose ν0 sufficiently small in such a way that

∀ |ν| < ν0, ∀ xΓ ∈ Γ, J(ν, xΓ) = 1 + 2νh(xΓ) + ν2g(xΓ) > 0. (3.4)

Thus, for |ν| < ν0, there exists a tangential matrix field xΓ → Rν(xΓ) such that

(I + ν C(xΓ)) Rν(xΓ) = IΓ(xΓ).

More precisely, there exists a tangential matrix field on Γ, M(xΓ) , such that:

IΓ + νM := J(ν) Rν , ∀ xΓ ∈ Γ, ∀ |ν| < ν0. (3.5)

One easily sees (using for instance the eigenbasis (τ1, τ2, n) of C) that

M = 2H− C and MC = G.

Expression of common derivative operators in local coordinates We refer to [17]
for a detailed proof of the following expressions.

The gradient operator Let v be a regular scalar function defined in Ων0
Γ and ṽ the

function defined on Γ× (−ν0, ν0) by

ṽ(xΓ, ν) = v(xΓ + νn),

then
∇v = Rν∇Γ ṽ + ∂ν ṽ n. (3.6)

where ∇Γ is the surface gradient on Γ. If one sets

Jν := det(I + ν C) = 1 + 2νH + ν2G,
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The Laplace operator The following expression of the Laplace operator can be easily
deduced from the expression of the gradient operator and the Green formula:

∆v =
1

Jν

divΓ (RνJνRν)∇Γ ṽ +
1

Jν

∂νJν∂ν ṽ. (3.7)

Using (3.5), this expression can also be written in the form,

∆v =
1

Jν

divΓ

(
1

Jν

(IΓ + νM)2

)
∇Γ ṽ +

1

Jν

∂νJν∂ν ṽ.

or, also in the equivalent form

J3
ν ∆v = Jν divΓ (IΓ + νM)2∇Γ ṽ − (∇Γ Jν) · (IΓ + νM)2∇Γ ṽ

+ 2J2
ν (H + νG) ∂ν ṽ + J3

ν ∂
2
νν ṽ.

(3.8)

The latter expression would be more convenient for the asymptotic matching proce-
dure used in deriving GIBCs, since the right hand side coefficients depend polyno-
mially on the normal coordinate ν.

The curl operator The curl of a regular 3-D vector field V : Ων0
i → R3 is given in

parametric coordinates by:

curl V =
[
(Rν∇Γ ) · (Ṽ × n)

]
n+

[
Rν∇Γ (Ṽ · n)

]
× n− (RνCṼ )× n− ∂ν(Ṽ × n),

where V and Ṽ (defined on Γ× (−ν0, ν0)) are related by

Ṽ (xΓ, ν) = V (xΓ + ν n).

As for the Laplace operator, this formula can be written in a more convenient form,
after multiplication by J(ν):∣∣∣∣∣∣∣

J(ν) curl V =
[(

(I + νM)∇Γ

)
· (Ṽ × n)

]
n+

[
(I + νM)∇Γ (Ṽ · n)

]
× n

−
[
(C + νG)Ṽ

]
× n− J(ν) ∂ν(Ṽ × n),

or, in an equivalent form,

J(ν) curl V =
(
CΓ + ν CM

Γ

)
Ṽ − J(ν) ∂ν(Ṽ × n) (3.9)

where we have introduced the notation
CΓṼ =

(
curlΓ Ṽ

)
n+ ~curlΓ (Ṽ · n)− CṼ × n

CM
Γ Ṽ =

(
curl M

Γ Ṽ
)
n+ ~curl Γ

M (Ṽ · n)− GṼ × n

~curl Γ
M u := (M∇Γ u)× n and curl M

Γ Ṽ = (M∇Γ ) · (Ṽ × n).

(3.10)

This is the expression used in the asymptotic matching procedure when deriving
GIBCs for electromagnetic problems.
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