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1. Introduction

The Standard Model of particle physics summarises today’s grasp of the building blocks of
nature and the interactions between them. Huge efforts have been made to build larger and
larger machines to investigate the fundamental particles of our world.

However, there are still many unanswered questions. Humans have always wondered how
the Universe works and what it is composed of. Undiscovered particles like the Higgs boson
or super-symmetric particles, the existence of extra dimensions or the nature of the mysterious
dark matter are just a few keywords for the riddles which fascinate scientists today. There-
fore, the construction of the Large Hadron Collider is in progress — a tool which allows to
solve some of the questions which are still open. With the Large Hadron Collider higher en-
ergies than ever before can be reached. Pushing technological limits onward, the realm of the
Terascale (up to 14 TeV) will be reached. The commissioning of such a complex machine is
neither trivial nor optional. Data calibration methods are needed for the calibration, align-
ment and data selection for instance. One standard candle for calibration comes from top
quark physics: the invariant mass of a top quark is the most precisely measured quark mass
(Miop = 172.6 £ 0.8 (stat) £ 1.1 (syst) GeV/c?) [1]. Hence, developing data calibration methods
using top quark events gives a good possibility to calibrate a detector and to prepare it for data
taking.

In this thesis a data calibration method — the kinematic fit — is presented. It is a powerful
tool which is applied to the example of top quark physics. The kinematic fit offers the possibility
to calibrate the calorimeter of a particle detector. It uses fundamental laws of nature like energy-
and momentum conservation to establish a model of a physics process. Therefore, it contains
the potential to be sensitive to the Jet Energy Scale of a calorimeter.

In the presented studies the kinematic fit is applied to the semi-leptonic decay of a tf system.
A next-to-leading-order signal sample of simulated ¢ events with respect to the ATLAS detector
is examined. Certain assumptions are made for the decay pattern, yielding constraints which
are included into the fit model. Thereby, physical information is integrated into the fit which
results in an improvement of the relative energy resolution of the involved particle energies.
Consequently, the kinematic fit provides an estimation of the true particle energies. This allows
to evaluate the assignment of the detector signals to the partons of the decay. Hence, the method
also contains the potential of the explicit reconstruction of the event topology. Additionally, the
determination of the energy of an undetectable particle (the neutrino) is also realised.

In this thesis the x? method is used in order to realise the kinematic fit. It is extended by the
method of Lagrangian multipliers to take the constraints into account. The focus of the presented
studies is on the calibration of the jet energy scale, the improvement of the energy resolution and
the reconstruction of the event topology. As further applications, the identification efficiency of
b quark jets and the reconstruction of the invariant mass of the top quark are investigated. The
consideration of the transverse momentum of the ¢¢ system is also examined.

Since the application of the kinematic fit results in an improvement of the relative energy
resolution it offers the potential for physics beyond detector resolution.




1. Introduction

In the following chapter, the Standard Model of particle physics is introduced. The top
quark is discussed in more detail, since the presented data calibration method relies on top
quark physics. Its signature and background processes are also described.

Chapter 3 introduces the experimental setup to which the used data is referred, namely the
ATLAS detector along with the Large Hadron Collider. The components of the ATLAS detector
are presented, among which the calorimeter is discussed more precisely.

In Chapter 4 the mathematical concept of the kinematic fit is demonstrated by deriving the
x? method from a more general principle, the Likelihood method. Subsequently, the method is
extended by the method of the Lagrangian multipliers.

The kinematic fit is applied to the simple example of the decay of a pion into two photons
in Chapter 5. This is done in order to verify of the concept of the x? method and to test its
performance. Therefore, the Lagrange function of the decay is established and its parameter
space is analysed for a single event, before the energy resolution is tested for an ensemble of
particles.

Eventually, in Chapter 6 the method is applied to the decay of a tt system via the semi-
leptonic channel. Firstly, the corresponding Lagrange function is developed. For a systematic
investigation of the method, different data sources are used. They are described, before the
kinematic fit is applied to the data. The motivation is to test the method with simple events on
parton level and subsequently, with more realistic data, simulated with respect to the properties
of the ATLAS detector. The results of the kinematic fit are presented for each data set sepa-
rately. Various modifications of the method are carried out in order to study systematic effects.
The same investigations as for the pion decay are performed. However, multiple additional as-
pects are examined: the calibration and variation of the jet energy scale, the efficiency of the
reconstruction of the event topology and the b-tagging, the reconstruction of the top quark mass
and the introduction of the transverse momentum into the kinematic fit. Finally, the energy
resolution of light quark and b quark jets are investigated considering jet combinatorics.

A conclusion and an outlook can be found in Chapter 7. The appendix contains references,
a notation index, detailed calculations and acknowledgments.




2. Physics

The Standard Model of particle physics (SM) is introduced in this chapter. Since the studies
presented in this thesis are applied to top quark physics, an emphasis is placed on the top
quark, its properties, production- and decay processes. Additionally, background processes are
mentioned concerning the signature which is subject of the presented studies.

2.1. The Standard Model of Particle Physics

The SM describes the properties of all known particles and the interaction between them [2—4].
There are four fundamental interactions based on certain gauge symmetries: the electromagnetic
force (U(1)), the weak force (SU(2)), the strong force (SU(3)) and gravitation. The latter one is
not described in the SM due to its relative weak strength. The first three forces are described by
quantum field theories. The theory describing the electromagnetic interaction is called Quantum
Electro Dynamics (QED). It is unified with the weak force resulting in the electroweak force.
The strong interaction is described by Quantum Chromo Dynamics (QCD).

The forces between the particles are believed to be mediated by gauge bosons. Gauge bosons
are particles with an integer spin. The mediator for the electromagnetic force is the photon ()
and for the weak force there are the neutral Z% and charged W*-bosons. The strong force is
mediated by eight gluons (g). Thus, there are 12 gauge bosons in total.

The SM of particles physics also predicts a particle called Higgs-boson (H) which has not yet
been discovered [5]. Its corresponding Higgs field is held responsible for the mass of all particles
via a spontaneous breaking of the gauge symmetry. In the Higgs-mechanism a Higgs field is
introduced which interacts with the fields of the other gauge bosons and with itself. Table 2.1
gives a short summary of the four fundamental forces and some of their properties.

Table 2.1.: The fundamental forces, their mediators and some of their properties. Gravitation
is not included in the SM.

Force Mediator Rel. strength | Range Mass

Strong 8 gluons g 1 107" m 0 GeV

Electromagnetic photon ~ 1072 00 0 GeV
Weak w*, z0 106 107 m | ~ 80 GeV,~ 91 GeV

Gravitation graviton G <107%0 00 0 GeV

There are three families of particles, each consisting of one doublet of leptons and one doublet
of quarks. A doublet contains two particles which differ in their so-called weak isospin. The
isospin is an abstract quantum number. Via the Isospin formalism transitions of particles can

be described for instance.

! An up- and a down quark can be interpreted as the same particle in a different state, characterized by the isospin.
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For the leptons there are the electron (e) and its neutrino (v ), the muon (1) and its neutrino
(v4) and the tau (7) and its neutrino (v;). The quark doublets consist of up- (u) and down
quark (d), charm- (¢) and strange quark (s) and bottom- (b) and top quark (¢). The quarks
are carriers of an abstract color charge which can be red, green or blue. Leptons and quarks are
called fermions. Each fermion has an anti-particle with opposite charge (12 leptons, 36 quarks).
Consequently, with the gauge bosons and the Higgs boson, there are 61 particles altogether.

Processes in which a certain quark flavour (e.g. an up-quark) changes into another flavour
(e.g. a down-quark) have been observed. Processes between different families are rare but have
been measured too. The Cabbibo-Kobayashi-Maskawa matrix (CKM matrix) describes the
mixing of all known quark flavours within a 3 x 3 matrix, whereas its squared entries |me|2 give
a measure for the transition probability of flavour z to flavour y. A schematic representation of
the fermions of the SM and their isospin doublets is given in Table 2.2.

Table 2.2.: Schematic representation of the fermions of the SM and their isospin doublets.
They are grouped in three families. The mass of the fermions increases with increasing family
number.

Family : 1 II 111

aus: (3 () ()
apons: () (%) (%)

All quarks and leptons are spin-half particles and therefore underlie the Pauli Principle. The
Pauli Principle postulates that two identical fermions can not occupy the same quantum state
simultaneously. Experiments have shown that the spatial extension of fermions is smaller than
10~ m. Their masses increase with increasing family number. The masses of the W- and
Z-bosons with my =~ 80 GeV/c? and my ~ 91 GeV/c? are large compared to the mass of an
up quark for instance m, =~ 2 MeV/c? [6]. Thus in scattering processes, they exist only for a
very short period of time as virtual particles?, according to the Heisenberg uncertainty principle
which postulates that one can not measure two non-commutative observables — like time and
energy e.g. — with arbitrary precision. Therefore, the range of the weak force is small (about
10718 m).

Neutrino oscillations have been observed recently [7-9] — a phenomenon which only occurs
when a mass difference between neutrinos of different flavours exists. The mixing of neutrinos can
be described by the Pontecorco-Maki-Nakagawa-Sakata matrix (PMNS matrix). Consequently,
at least two neutrinos must have a finite mass. The masses of the electron, muon and tau also
increase with increasing family number. The mass hierarchy of the neutrinos has not yet been
verified.

2A virtual particle does not need to fulfill the relation E? — p? = m?, where E is the energy, p the momentum
and m the mass of the particle, respectively.
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2.2. Top Quark Physics

The top quark is the weak isospin partner of the bottom-quark. It has been discovered in 1995
at the CDF and DO experiments at the Fermi National Accelerator Laboratory (FNAL) [10, 11].
One noticeable property is its large mass. This implies the very short lifetime of about 4.2-10725 s
of the top quark.? As the hadronisation time scale is about 10723 s, no hadrons made of top
quarks have been observed yet.

Except for these characteristics of the top quark there are further motivations to study top
quark physics: the prediction for the value of the Higgs mass strongly depends on the top quark
mass (Figure 2.1). This is due to the fact that the Higgs boson couples most strongly to the
top quark because the coupling to fermions is proportional to their masses and the top quark is
the most massive fermion. There are also studies in which top quark events form background
processes for physics beyond the SM. Therefore, understanding top quark physics also means
being better prepared for the discovery of new physics.

The top quark mass also provides a standard candle for particle detectors: it offers the
possibility to calibrate a particle detector.

In the following, the production- and decay processes of the top quark as well as some
background processes are described.

March 2008
T

1 —LEP2 and Tevatron (prel.)
80.54 -~ LEP1 and SLD

68% CL

150 175 200
m, [GeV]

Figure 2.1.: W boson mass vs. top quark mass with lines of constant Higgs masses. The solid
line shows the measurements by LEP2 and preliminary results from the Tevatron experiments,
whereas the dashed line marks electroweak precision measurements made by LEP1 and SLD
(both at 68% CL) [12, 13].

3This value results from an assumed top quark mass width of T'top = 1.55 GeV [4].
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2.2.1. Top Quark Production via Strong Interaction

The top quark is mainly produced in tt-pairs via the strong interaction. Two production
processes exist in Leading Order (LO): gluon-gluon-fusion (gg-fusion) and quark-antiquark-
annihilation (¢g-annihilation). Feynman diagrams of these processes are depicted in Figure 2.2.

q t
g
7 i
g t g t g t
t + t + S
g ¢ g 7 g i

Figure 2.2.: LO Feynman diagrams of the strong t¢ production. Top: quark-antiquark anni-
hilation. Bottom: gluon-gluon fusion. At the LHC the ratio of gg-fusion and gg-annihilation is
approximately 85%/15% at a centre-of-mass energy of about /s = 14 TeV.

At a centre-of-mass energy of about /s = 14 TeV gg-fusion dominates with approximately 85%
whereas the gg-annihilation contributes only 15% (at the Tevatron the ratio is roughly reversed).
The ratio depends on /s which can be explained with the parton model (Figure 2.3).

-
§ up-Quark
-
/ M7 down-Quark
pI / 7 strange-Quark
S 2
t‘ (O Antiquark
4
.x; H of  euon
g 7 spini2
1 Spin 1
—

Figure 2.3.: Left: LO Feynman diagram of a scattering process of two partons coming from
different protons, releasing a ¢t pair. Right: illustration of one proton with its partons. The
spin of the quarks (spin 1/2) and gluons (spin 1) are marked with arrows.

Let p1 and py be the four-momenta of two incoming protons with a squared centre-of-mass
energy of

s=(p1+p2)° =2 pips, (2.1)
where the mass of the proton is neglected. According to the parton model, a collision of two

protons means that (at least) two partons — one from each proton — interact. They carry frac-
tions x1 and x9 of the four-momentum of the proton.
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Thus the centre-of-mass energy of this colliding parton system v/§ is given by

§ = (z1p1 + 2ap2)? = 2 Ty P12 (2.2)

The expectation value of the two fractions x1 and x5 is the same. Lets assume x1 =~ 29 =: z. A
tt-pair can be produced if
Vs > 2my, (2.3)
with m; being the top quark mass. It follows
!
§=2.xmopipo A %2 - pipa = 2% - 5 > 4m (2.4)
2
= TR % (at threshold). (2.5)
Assuming a top quark mass of 175 GeV /c2, Equation (2.5) yields = &~ 0.025 at /s = 14 TeV for
the LHC. For the Tevatron the equation yields z &~ 0.18 with /s = 1.96 TeV.
Parton Distribution Functions (PDFs) describe the probability = f(z)dz of a parton to have
a certain fraction of the proton momentum between = and x + dz as a function of z (Figure 2.4).
It increases with decreasing x. Thus, at higher centre-of-mass energies more partons fulfill
Equation (2.3). The PDFs for quarks and gluons are not identical. For smaller x the PDF for
gluons increases stronger than the PDF for quarks. Consequently, for an increasing centre-of-
mass energy more and more gluons fulfill Equation (2.3) compared to the quarks. This shifts
the ratio of the production processes.

2

—~
N t . —~
a -;DEZEQI':S X N [ [reroama
X s P . Qxx2= 175 GeVis2 Cj 3 _
= [T\ . 18 Qxx2= 175 GeVxx2
O \ — MRSTZ008NNLO ERE —wp MRST2006NNLO
e\ | -~~~ down  MRSTZOOBNNLO 16 L ___ down  MRST2006NNLO
[ bottom  MRSTZOOBNNLO [ bottom MRST2006NNLO
14 ", ---- gluon  MRST2006NNLOx 0.1 14 b . gluon  MRST2006NNLOX 0.1
12 oL
1 L
08 - N 08 [
06 - .
04 | . 04 [
02 | o2 I
o Ll Ll vaol o ‘ ‘ R
107t 107 102 10! 0.02 003  0.04 0.05 006 0.070.08.09.1 0.2
X X

Figure 2.4.: Parton distribution functions for the up quark (black solid line), down quark
(red dashed line), bottom quark (green dotted line) and gluon (blue dotted line) at Q% =
175 GeV/c2. The gluon function is divided by a factor of 10. Left: momentum fraction region
0.0001 < x < 0.8. Right: momentum fraction region 0.02 < x < 0.2. The plots are created with
the MRST2006NNLO generator [14, 15].

The total cross section for the ti-production has been measured at CDF [16] and DO [17]:

o =73 £0.5 (stat) £0.6 (syst)=0.4 (lumi)pb CDF Run II (/s = 1.96 TeV),
o = 7.42 £ 0.53 (stat) £ 0.46 (syst) & 0.45 (lumi) pb DO Run II (y/s = 1.96 TeV).
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For DO the [ + jets channel is quoted from results of March 2008 at a luminosity of 910 pb~!
and for CDF the combined result until April 2008 at a luminosity of 760 pb~! is taken. At the
LHC the expected total cross section is about [18]

o = 833 752 pb LHC (v/s = 14 TeV), (2.6)

where this value originates from a Next-to-Leading Order (NLO) + Next-to-Leading Logarithmic
(NLL) accuracy calculation with only scale uncertainty.

2.2.2. Top Quark Production via the Electroweak Interaction

Top quarks can also be produced by the electroweak interaction. Within such an event, a single
top quark is released. Figure 2.5 shows the LO Feynman diagrams of the weak production
processes.

q t qg b w

q’ b b g t

Figure 2.5.: LO Feynman diagrams for single top quark production via the electroweak force.
Left: s-channel. Middle: t-channel. Right: Wt associated production.

The cross section of single top quark production has been calculated in NLO [18] for the LHC
setting

t — channel : o =246 125 pb (Vs =14 TeV), (2.7)
s — channel : o = 10.65 7103 pb (Vs = 14 TeV). (2.8)

Although the cross section is expected to be of the same order of magnitude as the cross
section of the strong top production, single top quark events are very hard to detect. Their
signature is very similar to that of other processes (the semi-leptonic decay channel of a tt-pair
for instance) and thus it is difficult to separate these events from the background. Evidence for
the single top quark production was recently found at the Tevatron [19-22]. The value of the
cross section for the combined results of the [ + jet channel of CDF (March 2008, [21]) and of
D@ (March 2008, [22]) are:

o =47+13pb D@ Run II (/s =1.96 TeV),
o4 =22+0.7pb CDF Run II (y/s = 1.96 TeV).

Measuring the single top quark production cross section also means to be sensitive to the

CKM-mixing-matrix element |[Vy|. So far, it could only be calculated indirectly by the as-
sumption of a unitary CKM-matrix and by using the elements |Vis| and |Vi4].

2.2.3. Top Quark Decay

The top quark decays mostly into a W boson and a b quark. This is because ]th]2 ~ 1 which
gives a measure for the coupling of the - with the b-flavour. The branching ratio is calculated
to be BR(t — Wb) > 0.998.
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Top quarks can not be measured directly but only via their decay products. The signature
of a tt events depends on the decay channel of the involved W bosons. The W boson can
decay into a pair of quarks or into a charged lepton and its corresponding (anti-)neutrino. The
branching ratios of the W boson are summarised in Table 2.3. There are three decay channels

Table 2.3.: Branching ratios of the W boson decay [6].

Process Branching ratio
W — ev, (10.75 £ 0.13)%
W — uy, (10.57 £ 0.15)%
W — 1, (11.25 + 0.20)%
W — hadrons | (67.60 £ 0.27)%

for a tt event: the di-leptonic channel (both W bosons decay leptonically), the semi-leptonic
channel (one W decays leptonically, one hadronically) and the full-hadronic channel (both W
bosons decay hadronically). Figure 2.6 (left) shows a pie chart of the branching ratios in LO.
The studies presented in this thesis are based on the semi-leptonic decay channel (Figure 2.6,
right).

elec + jets (12/81)

M muon + jets (12/81)
tau + jets (12/81)
elec + elec (1/81)

W muon + muon (1/81)
tau + tau (1/81)

Melec + muon (2/81)
muon + tau (2/81)

Mtau + elec (2/81)
fully hadronic (36/81)

Figure 2.6.: Left: pie chart of the branching ratios of the t¢-decay. The fractions come from
theoretical predictions. Right: illustration of the semi-leptonic decay of a tt-system.

The branching ratio of a specific lepton flavour can be calculated as:

BR(tt — | + jets) = BR(tt — WTW ~bb — qq'bblv;)
= [BR(t — Wb)]*-2- BR(W — q¢') - BR(W — li).

Including the values for the different leptons of Table 2.3 this yields

BR(tf — e + jets) = (14.48 + 0.23)%,
BR(tf — pu+ jets) = (14.23 + 0.26)%,
BR(tf — 7 + jets) = (15.15 4 0.33)%.
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Due to confinement a single quark hadronizes and develops a jet of particles which can
be measured in a detector. Consequently, the signature of the semi-leptonic decay of a tt
system results in four jets — two light quark jets and two b quark jets — and one lepton. Since
neutrinos almost never interact with matter, they cannot be detected and contribute to the
missing transverse energy. For the reconstruction of the kinematics the semi-leptonic channel
has the advantage that only one neutrino is emitted (not two as in the case in the di-leptonic
channel) and that the jet combinatorics is easier than in the full-hadronic case (four jets instead
of six).

2.2.4. Background Processes

A background process is a physics process which leads to the same signature in a detector as
the signal process. For the semi-leptonic decay of a tt system there are mainly two background
processes, as measurements at the Tevatron have confirmed: QCD-processes, meaning multijet
events, and W +jets events.

In multijet events a jet can be misidentified as an electron. In order to misidentify a muon
for a hadron, the hadron must reach the outer muon chambers which is of low probability.
However, b quarks release muons and it is possible that the isolation criteria for the muon is
fulfilled, although the muon is actually part of a jet. Furthermore, missing transverse energy
(MET) can be faked by inefficiencies of the calorimeter or neutrinos coming from weakly decaying
quarks (in particular from b quarks).

Another source of background for ¢t events is W boson production. If the W boson decays
leptonically and additional jets are found in the event (e.g. from initial state radiation), the final
state resembles the semi-leptonic t¢-decay.

LO Feynman diagrams for W + 1 jet and W + 2 jets are sketched in Figure 2.7 and 2.8
respectively.

g q 7 W

q w q g

Figure 2.7.: LO Feynman diagrams of W + 1 jet production.
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q w q w
q q
8 g g q
q q
g q
q w q w
q 4 q 4
g q q g
%% q

Figure 2.8.: LO Feynman diagrams of W + 2 jets production.
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3. Experimental Setup

In the studies presented in this thesis the kinematic fit is applied to simulated data. These
come from MC simulations of the ATLAS (A Torodial LHC ApparatuS) experiment. ATLAS
is a general-purpose detector which is scheduled to start operations in mid-2008. It is one of six
particle detectors at the Large Hadron Collider (LHC). The LHC is about to start up within
the year 2008. It will run at a nominal centre-of-mass energy of 14 TeV at an aimed luminosity
of 103 cm~2s~!. An upgrade is planed for around 2015 leading to an intended luminosity of
2-10% cm~2s7! [23]. In the following, the LHC and the ATLAS experiment are introduced.
The presented studies rely on the calorimeter performance. The calorimeter is thus described
more precisely.

The following right-handed coordinate system is used: the z-axis is defined by the beam
direction, the positive z-axis points from the interaction point to the centre of the LHC, whereas
the positive y-axis points upwards. The transverse momentum is defined in the z-y-plane as

pr = /P2 + Pl (3.1)

and the missing transverse energy is denoted as E}mss, respectively. ¢ is defined as the azimuthal
angle measured around the beam axis with 8 being the polar angle from the beam axis. For
relativistic energies it is useful to define the pseudo-rapidity!

0
n:=—1In (tan 5) . (3.2)
Furthermore, the distance AR in the n-¢-plane is defined as

AR := /A2 + A¢?. (3.3)

3.1. The Large Hadron Collider

The LHC [24-26] is a ring-shaped proton-proton accelerator with a circumference of 27 km. It
is installed in a tunnel of 3.8 m diameter, 45 m to 170 m below ground at the CERN Laboratory
(European Organization for Nuclear Research), Geneva, Switzerland (Figure 3.1). Two beams
of protons are injected from the Super Proton Synchrotron (SPS) at 450 GeV. They travel
in opposite directions in separate beam pipes at an ultrahigh vacuum of 107!° mbar. The
acceleration of the particles is induced by Radio Frequency (RF) cavities which are located
intermittently along the beam pipe. Passing the electric field of a RF cavity, some of its energy
is transferred to the particles. 1,232 dipole magnets made of niobium-titanium of 15 m length
each and with magnetic fields of about 8.4 T, bend the beam around the ring. The focusing of
the beam is realised by 392 quadrupole magnets of 5 m to 7 m length.

!Pseudo-rapidity differences are invariant under Lorentz- transformations
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3. Experimental Setup

Figure 3.1.: Principle view of the LHC below ground near Geneva, Switzerland. The largest
four experiments are labeled. Lake Geneva and the Jura Mountains can be recognized as well
as the border between France and Switzerland.

The strong magnetic fields can only be generated by coils operating in a superconducting
state. Therefore, a cooling of the magnets down to 1.9 K is required which is realised by a
distribution system of liquid helium. The refrigeration power of the cryogenic system is larger
than 140 kW. Each beam contains accelerated protons with an energy of 7 TeV which will be
stored for 10 to 20 hours. There are 2808 well-defined bunches of 1.1 - 10! protons. Every
25 ns a bunch crossing occurs, each causing 19 collisions in an event on average (at a luminosity
of 103* cm™2s~!) such that 760 billion collisions are expected in one second. The total proton-
proton cross section at 7 TeV per beam is approximately 100 mb (inelastic: 60 mb, elastic 40 mb)
[24]. The size of the bunches varies along the ring. They get squeezed in the z-y-direction to
about 16 pm at the interaction point in order to increase the probability of an interaction.

At the LHC, there are four different interaction points where four experiments are built:
ATLAS with LHCf, CMS with TOTEM, ALICE and LHCb. In the following these experiments
are briefly introduced.

ATLAS — A Toroidal LHC ApparatuS
ATLAS is a general-purpose detector. It will be discussed in the next section in more detail.

CMS — Compact Muon Solenoid

The CMS [27, 28] detector is the second general-purpose experiment of the LHC. Its design is
dominated by a huge superconducting solenoid. It has the shape of a cylindrical coil made of
superconducting cable that will generate a magnetic field of about 4 T. A tracking system, a
massive scintillating crystal electromagnetic calorimeter and a sampling calorimeter for hadron
detection are placed inside the magnet. CMS has a size of 21 m in length and about 16 m in
diameter. With a weight of 12,500 tons it is relatively compact compared to the ATLAS exper-
iment.

14



3.2. The ATLAS Detector

ALICE — A Large Ion Collider Experiment

ALICE [29] is a special-purpose experiment, built for studying heavy-ion collisions in which
a quark-gluon plasma is produced. Therefore, lead-ions are injected into the LHC which will
collide at a centre-of-mass energy of 5.5 TeV. The quark-gluon plasma resembles the state of
the universe shortly after the Big Bang where the gluons and quarks were not confined.

LHCb Large Hadron Collider beauty experiment

The focus of LHCb [30] is the measurement of the interaction of b-hadrons for determining the
parameters of the Charge Parity (CP) violation. The detector consists of a series of subdetectors
for detecting mainly particles radiated in forward direction. Therefore, it forms a single arm
forward spectrometer of 20 m length.

LHCf — Large Hadron Collider forward experiment

LHCf [31] is a special-purpose experiment and affiliated to ATLAS. Particles in the very forward
region in hadronic interactions will be measured. Therefore, it consists of two detectors, 140 m
on both sides of an interaction point. At LHCT highly energetic collisions and cascades will be
investigated similar to particle showers of the earth’s atmosphere. Investigating these events
will help scientists to interpret and calibrate large-scale cosmic-ray experiments.

TOTEM — TOTal cross section and Elastic scattering Measurement experiment
TOTEM [32] is affiliated to CMS. Its purpose is to measure the effective total proton-proton
cross section with an absolute error of 1 mb by using a luminosity independent method. Fur-
thermore, elastic scattering and hard diffractive dissociation processes will be studied. Particles
which are very close to the LHC beam will be measured using Roman pots [33].

3.2. The ATLAS Detector

The ATLAS detector [34] is one of two general-purpose detectors at the LHC. It covers the
widest possible range of particle signals to ensure sensitivity to new physics. It will search for
the Higgs boson, super-symmetric particles, extra dimensions, dark matter and other physics
processes. The design of the detector differs considerably from the design of the CMS detector.
Different concepts are used to measure the same type of physics, which opens the opportunity
to complement the results.

The ATLAS detector is 44 m long, 25 m in diameter and weights about 7,000 tons. It has
an onion-like structure of concentric cylinders built around the interaction point (Figure 3.2).
Every layer has its own purpose. The detector consists of several sub-systems: the tracking
system, calorimeter system, muon system and magnet system. In the following, these systems
are discussed in more detail as well as the trigger system and Data AcQuisition (DAQ).

3.2.1. Tracking System

The purpose of the tracking system [36-38], or Inner Detector (ID), is to measure the tracks and
the momentum of charged particles produced in proton-proton collisions. Therefore, their paths
are reconstructed from the signals arising from their penetration through the tracking system
(Figure 3.3, left). The ID is a combination of the pixel detector, the Semi-Conductor Tracker
(SCT) and the Transition Radiation Tracker (TRT) (Figure 3.3, right).
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Figure 3.2.: Sliced 3D view of the ATLAS detector. The individual components are labeled.
To illustrate the size of the detector a few humans are sketched for comparative reasons [35].
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Figure 3.3.: Left: sketch of the elements of the tracking system in the barrel region. It is
traversed by a charged track of pr = 10 GeV. The track passes the beryllium beam-pipe, the
three silicon-pixel layers, the four cylindrical double layers of the SCT, and on average 36 axial
straw tubes of the TRT. Right: cut-away view of the ATLAS inner detector. The pixel detector
is located in the innermost region (yellow) enveloped by the SCT with its end-cap disks. The
TRT forms the outermost part of the tracker system [35].

This configuration has been chosen to achieve a high momentum and vertex resolution: at
smaller radii the high granularity of the pixel detector ensures a good spatial resolution, while for
larger radii the TRT contributes with a large number of hit points to the track reconstruction.
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3.2. The ATLAS Detector

The first two components are based on the ionization of silicon when a charged particle passes
through. The TRT, however, uses the phenomenon of the transition radiation which occurs
when a charged particle passes materials with different dielectric constants. Approximately
1,000 particles will be produced every 25 ns within |n| < 2.5 and penetrate the detector leading
to a high track density. On the one hand the tracking components must thus be radiation hard,
especially at small radii. On the other hand they must not influence the particle track.

The ID is located in a magnetic field of 2 T generated by the central solenoid. It extends over
a length of 6.2 m with a diameter of 2.1 m. The pixel detector and the SCT cover a region of
In| < 2.5 and the TRT of |n| < 2.0, respectively. In the barrel region the ID is arranged around
the beam axis in concentric cylinders. In the end-cap regions disks are located perpendicular to
the beam axis.

In the following, the performance of the ID, the pixel detector, the SCT and the TRT are
discussed in more detail.

Performance
A good pattern recognition and high precision in both R-¢ and z coordinates is achieved by the
combination of high precision trackers at small radii with the TRT at a larger radius. In general
the relative momentum resolution for the transverse momentum p7 of a tracking system is given
by
Opr _ Oz PT [GeV] 720 (3.4)
pr 03-12-B[T]V N+4’ '
where B is the magnetic field, o, the spacial resolution, [ the length of the track and N the
number of track points. Charged particles are bent within the ID due to the magnetic field of
the solenoid. The bending radius  in a magnetic field B is given by:

pr [GeV /c]
r [m] = 03 BT (3.5)
Pixel Detector
Since the pixel detector is the innermost component of the ID, it has the highest granularity
compared to the other tracking components. It consists of 1,744 identical silicon pixel modules
with a minimum pixel size of 50 x 400 pym. They are arranged in three barrel layers and two
end-caps each with three disk layers. To avoid holes between single modules, they are built in
tile-like shingled arrays, leading to small overlap regions between them. Each module has 47,232
pixels with 46,090 readout channels. The pixel detector has approximately 80.4 million readout
channels in total. In the barrel region the intrinsic spatial resolution are 10 pym in R-¢-direction
and 115 ym in z-direction while in the disks they are 10 ym in R-¢-direction and 115 pym in
R-direction.

SCT — Semi-Conductor Tracker

The SCT consists of four cylindrical double strip layers. The strips are parallel to the beam axis.
In the barrel region, half of them have a small stereo angle of 40 mrad for measuring both R and
¢ coordinate. The SCT consists of 15,912 strip sensors of 6.4 cm length with a pitch of 80 pm
in the barrel region. There are nine disks on each side with one set of strips radially arranged
and another set of strips at an angle of 40 mrad in the end-cap region. The total number of
readout channels in the SCT is approximately 6.3 million. Both the barrel and the disks have
an intrinsic resolution of 17 ym (R — ¢—direction) and 580 um (z—direction) for a single module.
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3. Experimental Setup

TRT — Transition Radiation Tracker

The TRT consists of 4 mm diameter straw tubes filled with a Xe/CO4/0O2 gas mixture. This gas
is ionized by penetrating particles as well as by photons coming from the transition radiation
of these particles. A gold wire in the centre of the tubes measures the electric pulse, coming
from the ionization. The intensity of the transition radiation depends on the type of the particle
which allows to distinguish between them. In the barrel region the straw tubes are arranged
parallel to the beam axis. At about n = 0 the wires are divided into two halves of 67 cm length
each. The total number of TRT readout channels is approximately 351,000. The intrinsic reso-
lution per straw tube is about 130 pum in the barrel. In the end-cap region the straw tubes are
arranged radially in wheels and have a length of 37 cm. Although the granularity of the TRT is
not as high as for the pixel detector, it contributes significantly to the momentum measurement
due to the large number of hits per track (typically 36) and because it is located at larger radii
than the pixel detector.

3.2.2. Calorimeter System

The purpose of the calorimeter system is to measure the energy of particles from their inter-
action with the material of the calorimeter [39-42]. Electrons and photons are stopped in the
electromagnetic calorimeter, hadrons in the hadronic calorimeter. Muons deposit a very small
fraction of their energy in the calorimeter and penetrate the whole detector including the muon
chambers. Neutrinos hardly ever interact with matter and cannot be measured with the ATLAS
detector.

The calorimeter system consists of four parts: the Liquid Argon Electromagnetic Calorimeter
(LAr EM Cal), the Hadronic Tile Calorimeter (HTC), The Hadronic Liquid Argon End-cap
Calorimeter (LAr HEC Cal) and the Liquid Argon Forward Calorimeter (LAr FCal). Altogether
they cover a range of n| < 4.9. A cut-away view of the calorimeter system is given in Figure 3.4.
The granularity of the EM Cal is much finer than that of other components because the signals
of electromagnetic particles are more collimated compared to hadronic jets and because the LAr
EM Cal is closer to the interaction point.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electiromagnetic
end-cap (EMEC)

LAr electromagnetic
barrel

Figure 3.4.: Cut-away view of the ATLAS calorimeter system. It envelopes the tracking
system. The components of the calorimeter are labeled. [35].
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3.2. The ATLAS Detector

A high precision of the energy resolution, a good containment for electromagnetic and
hadronic showers and the limitation of a punch-through into the muon system are important
properties of a calorimeter. Therefore, the depth of the calorimeter is an important criterion.
The radiation length X is defined as the thickness in which the energy of a particle shower is
reduced to 1/e of its original energy on average. For electrons the LAr EM Cal has a radiation
length of Xy > 22 in the barrel region and Xy > 24 in the end-cap region. The interaction length
A is defined as the mean free path of a particle before interacting with matter. For hadrons,
the approximate interaction length of the hadronic calorimeter is A &~ 9.7 for the barrel and
A = 10 for the end-caps. Both the large n coverage and the thickness of the calorimeter are im-
portant for the measurement of EQ’?”SS, which is of crucial relevance for many physics signatures,
especially SUSY particle searches.

In the following, the components of the calorimeter are introduced in more detail and the
calorimeter energy resolution and the jet energy scale are discussed.

LAr EM Cal — Liquid Argon Electromagnetic Calorimeter

The LAr EM Cal is the innermost component of the calorimeter system. It consists of two parts:
the barrel part which covers a range of || < 1.475 and an end-cap part covering 1.375 < |n| < 3.2.
A presampler detector is installed to correct for energy lost by electrons and photons upstream
of the calorimeter in a range of || < 1.8. The barrel calorimeter is built of two identical half-
barrels which are separated by a 4 mm gap. It is segmented into three sections in the longitudinal
direction.

The end-caps are divided into two wheels, the inner one covering a range of 1.373 < |n| < 2.5
and the outer one 2.5 < |n| < 3.2, respectively. The end-cap inner wheel is segmented into two
longitudinal sections which have a coarser lateral granularity than the rest of the calorimeter.

The shape of the EM calorimeter has an accordion-like geometry in order to provide a
complete ¢ symmetry without azimuthal cracks. The scintillating material is the liquid argon.
Lead plates are assembled over the whole coverage of the LAr calorimeter as absorber material.
Their thickness has been optimized as a function of 7 by means of calorimeter performance in
energy resolution. The LAr EM Cal contains a LAr layer with a thickness of 1.1 cm (0.5 cm) in
the barrel (end-cap) region. Particle showers in the argon liberate electrons that are collected
and recorded.

Both the barrel and the end-caps have their own cryostat. The cryostats are needed to
ensure that the argon stays liquid at a temperature of about 85 K. The LAr calorimeter and
the central solenoid share a common vacuum vessel, eliminating two vacuum walls.

HEC Cal — Hadronic LAr End-cap Calorimeter

The HEC Cal consists of two independent wheels per end-cap. It is located directly behind
the end-caps of the LAr EM Cal. There is an overlap between the HEC and the forward
calorimeter at around 3.1 < |n| < 3.2 in order to prevent the drop in material density at the
transition between them. Likewise, the HEC overlaps with the tile calorimeter in the region of
1.5 < |n| < 1.7. Each wheel contains 32 identical wedge-shaped modules and is divided into
two longitudinal segments. In total there are four layers per end-cap. The wheels are made of
parallel copper plates. The innermost has a thickness of 25 mm and those further away have a
thickness of 50 mm.
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LAr FCal — Liquid Argon Forward Calorimeter
The FCal is integrated into the end-cap cryostats. Thus the uniformity of the coverage and a
reduced radiation background level in the muon spectrometer is preserved. It consists of three
modules in each end-cap. The first one is made of copper and optimised for electromagnetic
measurements. The other two are made of tungsten and will be used predominantly to measure
the energy of hadronic showers. Each module consists of a metal matrix. There are regularly
spaced longitudinal channels filled with an electrode structure which consists of rods and tubes.
The LAr in the gap between the rod and the tube is the sensitive medium.

The FCal is approximately ten interaction lengths deep. It is recessed by about 1.2 m with
respect to the LAr EM Cal front face. This is due to the reduction of diffusely reflected neutrons
(albedo) in the inner detector cavity.

HTC — Hadronic Tile Calorimeter
The HTC consists of one barrel in the centre region of || < 1.0 and two extended barrels which
cover 0.8 < |n| < 1.7. It is located directly outside the EM calorimeter envelope at an inner
radius of 2.28 m and an outer radius of 4.25 m. The barrel and extended barrels are divided
azimuthally into 64 modules and longitudinally into three layers of 1.5, 4.1 and 1.8 interaction
lengths.

Steel is used as absorber material whereas the scintillating tiles build the active material.
The scintillating tiles are read out by wavelength shifting fibers on each side, which go into two
separate photomultiplier tubes.

Energy Resolution

The intrinsic energy resolution of a calorimeter follows from Poisson statistics: the number of
ionized particles N is proportional to the deposited energy E. The error oy for the counted par-
ticles N follows from Poisson statistics o = v/N. This leads to the intrinsic energy resolution

of
O,intr o 1 a
BN = (3.6)
E N VN VE
where a is a detector specific proportionality factor for the relative energy resolution, the sam-
pling term. Solving Equation (3.6) for the sampling term, yields a (quasi-)relative energy reso-

lution which is of relevance for later studies

intr (El — Etrue)

o

a= A /Etrue - A /Etrue !

with E'%¢ being the true energy value which is known from the simulation of the events and
E' being the measured energy value. For the measurement of electrons via the LAr EM Cal
the relative energy resolution is close to 10%/+/E [GeV] and for the measuring of pions via the
hadronic Cal 50%/+/E [GeV], respectively [43].

However, considering calibration effects a local constant term ¢ must be added to the energy
resolution as well as a term proportional to % which takes instrumental effects into account.
The energy resolution of a calorimeter is thus given by

(3.7)

2 2
o _ JE LY el gt
= \Vgtmte —.\/EEBEEBC. (3.8)
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3.2. The ATLAS Detector

JES — Jet Energy Scale

The JES of a calorimeter defines the correspondence between the energy of a particle and
a measured signal E'. Due to instrumental noise, large fluctuations in particle showering or
non-linear response of the calorimeter (especially for hadrons) for instance, the JES must be
estimated for every detector. A corrected energy FEci
Energy E’ using the relation

can be calculated from a measured

E — Ey
Rjet S ’
with Ep being an offset energy including the instrumental noise for example. Rj.; represents
the calorimeter response to jets which corrects the absolute energy scale and S is the showering
correction which corrects for energy emitted outside the jet cone. Investigating the sensitivity of

the kinematic fit to the JES in later studies (Section 6.7.2), the absolute energy scale is varied
according to

Ecalib — (39)

!

Eedib — o (3.10)

with « being the constant of proportionality.

3.2.3. Muon System

The muon system [44] is the outermost detector component of the ATLAS detector. It surrounds
the calorimeter and measures muon tracks and their momentum with a precision of

TP~ 10%  (at 1 TeV). (3.11)
pr

in a range of |n| < 2.7. Additionally, it performs the muon triggering within a region of || < 2.4.
To achieve these two main requirements different types of muon chambers are used: chambers
with a short response time for the triggering and chambers with a higher resolution for the track
reconstruction.

In Figure 3.5 the layout of the muon system is shown. In the barrel region three cylindrical
muon chamber shells extend from a radius of 4.25 m to approximately 11 m. Each end-cap
is formed by three wheels which are perpendicular to the beam axis at distances of approxi-
mately 7.4 m, 10.8 m and 14 m to the interaction point. In the centre of the detector (at about
|n| < 0.08) there is a gap in the muon system for services of other detector components (solenoid
magnet, calorimeters and inner detector).

There are four different chamber types: Monitored Drift Tubes (MDTs), Cathode Strip
Chambers (CSCs), Resistive Plate Chambers (RPCs) and Thin-Gap Chambers (TGCs).

The MDTs consist of three to eight layers of drift tubes which have an average resolution of
80 pm per tube yielding a resolution of about 35 pum per chamber. The drift tubes are filled with
an Ar/COq gas mixture which is ionized by muons passing through. A tungsten-rhenium wire is
situated in the centre of each drift tube. The electrons from an ionization process are collected
there: Because of a high voltage which is impressed between tube and wire, an electric field
causes them to drift towards the wire. By measuring the time which the electrons need to drift
to the wires, it is possible to reconstruct muon tracks according to a drift-time-space-relation.

The CSCs are inserted in the forward region (2 < |n| < 2.7). They are multiwire proportional
chambers with a resolution of approximately 5 um per chamber in the transverse plane (z-y-
plane) and 40 pym in the bending plane (R-z-plane).

RPCs are located in the region |n| < 1.05, whereas the TGCs in the end-cap cover a region
of 1.05 < |n| < 2.4. Both RPCs and TGCs are used to trigger muons.
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Figure 3.5.: Cut-away view of the muon system of the ATLAS detector. The components are
labeled [35].

3.2.4. Magnet System

The magnet system of the ATLAS detector [45-48] consists of two main components: the
solenoid magnet and the toroid magnet. Charged particles are bent in the magnetic field.
Their momentum and the sign of their charge can be deduced from the curvature of their path
(Equation (3.4)). Therefore, the magnet system is essential for the identification and the mo-
mentum determination of particles. The solenoid provides the magnetic field for the ID and the
toroid for the muon system, respectively.

The bending power Ppe,q can be expressed via the integral Ppe,q = f B ds, where B is the
field component perpendicular to the charged particle direction and ds an infinitesimal small
path element along the track of the particle.

Solenoid magnet

The ATLAS central solenoid has a length of around 5.3 m and a diameter of 2.4 m. It produces
a 2 T axial magnetic field which penetrates the whole ID. The peak magnetic field reaches 2.6 T.
Flat superconducting cables in the centre of an aluminium stabilisator are used for the coils.
The operating current is approximately 7.7 kA. The total mass of the coils is 5.4 tons and the
stored energy is 40 MJ.

Toroid magnet

The ATLAS toroid magnet (Figure 3.6) system consists of one barrel toroid and two end-cap
toroids lined up with the central solenoid. One toroid consists of eight large coils which are ar-
ranged symmetrically around the beam axis. The end-cap toroid is rotated by 22.5° with respect
to the barrel toroid, such that a radial overlap and an optimization of the bending power in the
transition region of the two coil systems is ensured. Each barrel coil consists of a Ni/Ti/Cu-alloy
and is housed in a cryostat for cooling it down to 4 K making it superconducting. A current of
around 21 kA flows through the toroid which is needed to provide the detector with a strong
magnetic field of maximally 3.9 T.

22



3.2. The ATLAS Detector

The stored energy in the whole central toroid is roughly 1.1 GJ. In the barrel region a
bending power of Pyeng = 1.5 Tm up to Pyeng = 5.5 Tm is reached in a pseudo-rapidity range of
In| < 1.4 and in the end-cap Ppepg = 1.0 Tm to Pyepng = 7.5 Tm in the region of 1.6 < |n| < 2.7.

Figure 3.6.: View in the direction of the beam through the ATLAS detector, before the
installation of the ID and the calorimeter. The eight huge coils of the Toroid magnet system are
arranged in 45° distances. An engineer is standing in front of the detector to demonstrate the
size of the detector.

3.2.5. Trigger System and Data Acquisition

The trigger system [49, 50] is needed to reduce the large amount of data which is produced at
a particle physics experiment. Events occur with a rate of 40 MHz. The ATLAS experiment
will produce about 1.6 MB per event from approximately 10® readout channels. Saving all this
data is impossible at present. Approximately 60 TB of data would have to be saved per second
if no trigger existed at the ATLAS experiment. Therefore, only one in 200,000 events will be
selected via the trigger system yielding a saving rate of approximately 300 MB/s. However, it
is essential that no interesting physics processes are rejected.

There are three trigger levels: the Level 1 Trigger (L1T), the Level 2 Trigger (L2T) and the
Event Filter (EF). The L2T and EF together form the High Level Trigger (HLT). The whole
trigger system reduces the total data rate from 40 MHz to 200 Hz. The L1T is a hardware based
trigger whereas the L2T and the EF are software-based and run on a large computer cluster
near the detector.

L1T — Level 1 Trigger

The L1T reduces the data rate from 40 MHz to 100 kHz. Its selection is based on the mea-
surements of a subset of the calorimeter and muon detectors. It searches for high transverse
momentum muons, electrons, photons, jets, 7-leptons decaying into hadrons and for large E}”iss.
The latency of the L1T is about 2 us until reaching its decision (including propagation delays
in the cables). Pipeline memories save the information from the detector. Events that pass the
L1T selection are forwarded to the next stages of the detector electronics and thus to the DAQ.
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Regions of interest (RoI’s) are defined by the L1T in each event, meaning that certain n— ¢-
regions, where interesting features have been identified within the selection process (e.g. where
threshold criteria are fulfilled), are provided to the HLT. Readout buffers store the data for such
events. The information remains until the L2 decision is available.

L2T — Level 2 Trigger

The L2T reduces the data rate from 100 kHz to 3.5 kHz. It uses the Rol’s provided by the L1T
and has an average latency of 40 ms. The L2T exploits the full information of all detectors using
processor farms to refine the selection of candidate objects, made by the L1T.

EF — Event Filter

The EF reduces the data rate from 3.5 kHz to approximately 200 Hz. Its latency is roughly
1 s due to event building which happens at this stage. It uses offline analysis procedures on
fully-built events for its selection. These procedures turn the signal patterns from the detector
into physics objects, e.g. jets, photons or leptons.

DAQ System — Data AcQuisition System

The DAQ system manages the data flow and the configuration, control and monitoring of the
ATLAS detector during data taking. It receives and buffers event data from the readout elec-
tronics at the L1T rate. Each readout buffer contains information of several events for one part
of a subdetector. The event builder reassembles this information into a single memory of the
EF processor.

The DAQ system saves events which have been selected by the EF to permanent storages.
Grid computing will be extensively used for event reconstruction, allowing the use of parallel
computer networks.

In Figure 3.7 a functional view of the trigger system is sketched.

Interaction rate

~1 GHz CALO MUON TRACKING
Bunch crossing
rate 40 MHz -
LEVEL 1 il
TRIGGER
< 75 kH=z
Derandomizers
Regions of Inferest | F;ggg';t drivers
LEVEL 2 = Readout buffers
TRIGGER {ROBs
an a
| Event builder |
EVENT FILTER Fullevz:l'tdbuffsrs
~ 200 Hz processor sub-farms

Data recording

Figure 3.7.: Schematic diagram of the ATLAS trigger system.
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4. Kinematic Fit — The Mathematical
Concept

In this chapter the mathematical concept of the Kinematic Fit (KF) is introduced. It is a method
which uses model assumptions of a physics process for fitting physical measured quantities. In
the presented studies a certain topology of a particle decay is the assumed model. Constraints
can be derived from the decay topology by applying energy- and momentum-conservation. The
integration of the constraints into the KF positively affects its result.

The x? method provides a technique to realise a fit to measured data. It is extended by
the method of Lagrangian multipliers in order to take constraints into account. This extension
allows to perform a KF. The aim is to fit the energies of the decay products of a tt system which
are measured in the calorimeter. Thereby, the values of the measured energies, their assumed
distribution and the constraints build the input for the method. On the one hand, the KF
estimates how well the fitted energies fit to the measured values within their assumed errors.
On the other hand, it takes the constraints into account. A systematical shift of the measured
energies consequently affects the fit of the energies. Therefore, the KF yields a data calibration
method for studying the JES for light quark and b quark jets separately.

The reconstruction of the decay topology can also be realised. A distinction between different
jet assignments can be made, performing a KF for each jet combination. Using the combination
of the best fit, results in an estimated jet assignment.

The implementation is carried out in ROOT [51], a C ™" based object-oriented data analysis
framework. The minimisation of the Lagrange function is performed by MINUIT [52], a tool for
finding the minimum value of a multi-parameter function which is part of ROOT.

In the following, the mathematical concept of the y? method is derived and the method of
the Lagrangian multipliers is introduced. The application of the method to two concrete particle
decays is realised in Chapter 5 for a pion decay as a simple example and in Chapter 6 for the
decay of tt pairs as the central study of this thesis.

4.1. 2 without Constraints

The x?-method (or method of least squares) can be deduced directly from the Likelihood method
under the assumption of Gaussian distributed random variables [53-55]. It yields a x2-function
which gives a measure for the deviation of a theoretical model from a set of random variables
(typically a data set). Minimising this function for the parameters of the model gives a possibility
to estimate the most likely parameter values.

Let 4 := (y1,-.. ,yn)T be a vector of n random variables and ¢ a particular set of measured
data values with components y;, i1=1,2,,...,n and a standard deviation O';. Let furthermore
Ui,© = 1,2,...,n be predictions for the variables y; given by a model f (ac;, @) = ¥, which depends
on n input variables x;" and r parameters a;,7 = 1,2, ...,r. The probability to measure a certain
value y; is denoted by P(y;, a).
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4. Kinematic Fit — The Mathematical Concept

The Likelihood function £ is defined as the probability to obtain a whole dataset § :=
! ! ! T
<ylay2’ e 7yn>

Assuming Gaussian distributed random variables

P(y;’a) =

(4.2)

exp

1
oV 2T B 202

the logarithm of the negative Likelihood function yields

n !

~InL(y,d) = %Z liy — ()

- (o
=1 1

2 n
+Y oV (4.3)
=1

=const.

The y?-function is defined as the negative logarithm of the total probability disregarding the
factor % and neglecting the constant term

, 2
X=) ' B : (4.4)

i=1 i

Minimising the y2-function gives a set of optimal parameter values @ with respect to the mea-
sured data ¢

Va(x?) = 0. (4.5)

Thus the sum of the squared differences between the measured values and the predictions of the
model takes its minimum weighted with the variance J?l (principle of least squares).

Introducing matrix notation Equation (4.4) can be elegantly expressed which is from advan-
tage for later calculations. Define the covariance matrix V as

var(yy) - cov(yyya) o cov(yyuy)
_ COV(?{%%) var‘(yQ) COV(Z/?’yn) (4.6)
ol ty) covlyy) - var(y)
If there is no correlation of the components y;, the covariance matrix becomes diagonal
o2 0 - 0
V= & ‘ (4.7)
0
0 0 o2
Assuming a linear model, f(m;, @) can be written as
3, @) = arfi(w;) + asfo(@) + - + apfy(a;) (4.8)
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4.2.  x? with Linear Constraints — The Method of the Lagrangian Multipliers

and a n X r matrix A, can be defined as

f@) B o fE)
filzy)  falzg) -+ fr(xy)

A= ‘ (4.9)
R D) o 5
Finally the y? function can be rewritten as
T ;2
=Y U J;(f“a)] = (7 — 43"V (7 — Aa). (4.10)
i=1 i

4.2. 2 with linear Constraints — The Method of the
Lagrangian Multipliers

The method of Lagrangian multipliers is a technique to determine a local extremum with simul-
taneous consideration of constraints. Let a model consist of m constraints

fu@y) =0 k=12 ,m, (4.11)

where @ and ﬁ are the true values of r parameters and n variables, respectively. For each con-
straint an additional Lagrangian multiplier is introduced [56]. The Lagrange function L results
from the sum of the x? function and the constraints multiplied with a Lagrangian multiplier Ay,

L=x"+2) [\ f(@3) (4.12)
k=1

The factor 2 is convention and cancels out when L is derived for the parameters @ or for the
variables . The most suitable parameters @ are thus found by minimising the y2-function
considering the constraints fi(d,y) = 0. However, in general equations fi(@,y) = 0 are not
exactly fulfilled, but perform a restraint to the random variables, such that the constraints are
taken into account.

It is useful to introduce matrix notation. Define the vector consisting of the Lagrangian
multipliers as follows

A1
- A2
A= . (4.13)
Am
If one assumes that the constraints are linear they can be written as
fl (av 37)
f2 C_ia g -
@9 _, (BEH— b), (4.14)
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4. Kinematic Fit — The Mathematical Concept

where B is a coefficient matrix of the parameters d, and b are the constant terms of the con-
straints. In the case of non-linear constraints a linearisation via a Taylor expansion is possible.
Then the coefficient matrix has the form

Ofy/0yr 0f /0y -+ Of/0yn
_ afz{ayl 0f2{9y2 af2/:ayn | (4.15)
Ofp/Oyr Ofp/Oys -+ Ofpn/OYn

where the prime symbol denotes a derivative at certain parameter values which represent initial
values for the Taylor expansion

of _ <g)—f> |, = const. ,i=1,2,...,n. (4.16)
Vil =7

yi '

Note that this implies that for every parameter y; a corresponding value y; must exist. Using
the defined matrices the Lagrange function can be finally written as

L= (;f - Aﬁ)T vl (y4 - A@) +2T . (Ba - 5) . (4.17)

~~

x2 Constraints

Assuming the covariance matrix to be diagonal (as it has been done before), it follows that
(V-1)T = v~ is fulfilled and the Lagrange multiplier can be written as a function of the
parameters § and @

=37 @) =vg'BC'e—v;'Ba (4.18)

with Vg := BC'BT, ¢ := ATV~14 and & := ATV~1j. The complete calculation of the
Lagrangian multipliers can be found in the appendix.
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5. Test of the y? Method: 7% — v

In this chapter, the method of the KF is applied to the decay of a pion into two photons. The
motivation is to test the performance of the KF using a simple example and to verify the concept
of the x? method works. Therefore, the Lagrange function of the decay is established in the first
section. Subsequently, the data on which the method is applied is briefly described. Eventually,
the results of the KF are presented.

5.1. Development of the Lagrange Function

In this section the x? method is applied to the decay of a pion into two photons as a simple
example of the KF. The fit parameters are the two energies F1 and E5 of the photons. The
decay topology of a decaying pion is shown in Figure 5.1. The invariant mass of the photon pair
is constrained to the pion mass.

Figure 5.1.: LO Feynman diagram of a 7° — ~+ decay.

Applying the KF, four assumptions (A) must be made:

(A.1) The constraints can be expressed in linear terms.

(A.2) There is no correlation between the measured values.

(A.3) The direction of the particles are exactly known.

(A.4) The fit parameters (photon energies) are Gaussian distributed.

The first assumption can be fulfilled by a linearisation of the constraints (e.g. via a Taylor ex-
tension). The second one is true because the measurement of the photon energy values happens
independently within the detector. It follows that the covariance matrix of the measured values
is diagonal which is essential for the applicability of the method (Section 4.2). The third assump-
tion is legitimate, since the error of the measurement of the direction is much smaller compared
to the resolution of the fitted quantities, the particle energies. The direction is needed for the
reconstruction of the invariant mass of the pion. The last assumption is an approximation of
the energy resolution of a calorimeter which is necessary in order to apply the x? method. In
Section 6.6.1 the bias of this assumption to the KF is investigated.
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5. Test of the x? Method: w0 — ~y

Let E; be the energy of the i-th photon and 0; the corresponding uncertainty of the mea-
surement which is assumed to be Gaussian-like distributed (A.4). Then the x? function is given

by

2= > + > . (5.1)

Note that there is no model f (x/i,c_i) = ¢); for the energies E; which gives a theoretical value
E; for the photon energies. F; are free parameters. Minimisation for F; leads to the measured
values: for F; = E; the x? function becomes minimal, namely 0.

The x? function alone does not improve the overall measurement. Thus constraints have to
be taken into account. If the photons are assumed to originate from a 7%, the invariant mass of
the photon pair must be equal to the invariant mass of the pion. Hence, the following constraint
f can be formulated:

f (B, E2) i= (p1 + pa)® —mZ =0 (5.2)

!

& 2F1 Fy(1 — cos§) — m2, = 0, (5.3)

where the angle between the two photons in the laboratory frame is denoted by 6, the mass of
a photon is m, = 0 and for the pion mass the value m o = 134.9766 MeV is used [6]. Without
loss of generality the square of the invariant masses is taken. This is done due to simplicity.
Otherwise the derivatives (see below) become more complicated. This constraint can be taken
into account by the method of the Lagrangian multipliers (Section 4.2). Using the matrix
notation for this decay this yields

4 (B . (ErY. (1 0y _,. ._<af’ Bf/>.
y o= (Eé)’ a:= <E2>, A= <O 1 =1; B = S 55 ) (5.4)

1
2 - 0
(o O -1 _ [ :
V._<0 0,22><:>V _<0 }2>,
2

where the prime mark denotes a derivative at certain parameter values

of ( of

OF; = \OE;

S

[\
—~
o
(@)
=

= mo,

) , = const. ,i=1,2. (5.6)
Ei = B,

By =

For the Lagrangian multiplier some auxiliary variables are needed (Equation (4.18)):

<L 0
c;:ATV1A2<062 L>Ev1 (5.7)
o2
o ATy—1-4 _ Ei/a’f
= = (k) o
I\ 2 '
_ of , f :
_ 1T gdI Yy 2 o9 2
o= (1) e (1) 5o
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5.2.  Description of the Used Data

Inserting the matrices into Equation (4.18) one gets for the Lagrangian multiplier

af ' af /
- 8_£‘1<E1_E1>+8—£'2<E2_E2)

= — — . (5.10)
0 ’ o ’
<61J;1> Lo + (a};) s
The Lagrange function becomes according to Equation (4.17):
2 (B - E )2
;o i A - | Of of
L(E,E,E,E): AR ¢ A A S N A 5 s 2 D R 0|
b ; o OF, 1V8E2 P (5.11)
- =Bad =
=(7'-Aa)" v-1(¢' - Aq)
where the derivatives are
0
O—Efl =2FE;- (1 —cosb), (5.12)
0
a—gz — 28, - (1— cos ), (5.13)

where 6 is the angle between the two photons in the laboratory frame. Note that the final La-
grange function is identical to the Lagrange function which results from an analytical calculation
without matrix notation, where a Taylor approximation is applied to linearise the constraints.
Minimising this function for the energy parameters results in fitted photon energies which are
— on average — closer to the true energy values of the photons than the measured ones (Section
5.3.2). This improvement arises from the insertion of the constraint into the KF: on the one
hand the Lagrange function evaluates how well the energy parameters fit to the measured values
within their errors 0; and on the other hand it takes the constraints into account.

The measured energy values represent initial values for the KF. This is pointed out when
the Lagrange function is established analytically, including Taylor expansion of the constraints
which is equivalent to the matrix notation as was mentioned before. For Taylor expansion an
initial value is needed within the two-dimensional parameter space of the function. The Lagrange
function can not be set up if there exist no initial value for all parameters.

The same holds for the error of a parameter: For the evaluation of Lagrangian multipliers
an error is needed for every parameter (Equation (5.10)). Changing the error strongly affects
the result of the KF.

5.2. Description of the Used Data

Events in which neutral pions decay into two photons are generated using the following al-
gorithm: first, the momenta of the two photons in the rest frame of the pion are randomly
generated in the z-y-plane, conserving the invariant mass of a 7°. The mass of the pion is fixed
to myo = 134.966 GeV [6] and for the photons m., = 0 GeV, respectively. Secondly, the two
photons are boosted into the y-direction with a gamma-factor of ten. Finally the energies of the
photons are smeared according to a Gaussian resolution. Let

E; 1
.- <Ej> _|Pie| _ g 0959 =12 (5.14)
s Diy sin 6
0 0
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5. Test of the x? Method: w0 — ~y

be the four-momentum of the i-th photon in the rest frame of the decaying pion. One photon
is generated uniformly distributed in a cone of 90° while the other one is exactly back-to-back
p1 = —po (Figure 5.2).

yﬂ

/P,

Figure 5.2.: Sketch of the decay 7° — v in the 7% rest frame. The 70 decays at the origin.
The photons are released back-to-back in the z-y-plane, each within an angular range of 90°.

The simulated measured energy results from the energy resolution introduced in Chapter 3.2.2,
Equation 3.6

/ <E’ _ Etrue)
Ji N 7 7 N a-g I atrue o true

Ezzﬁrue - Ez - \/W g Ez - Ez +a g E@ ) (515)
with a = 10% GeV'/2 beeing the assumed detector specific resolution parameter for the mea-
surement of the photon energy and g being a Gaussian distributed random number with a mean
at zero and a width of one. These simulated measured energies are also called smeared energies
in this thesis.

5.3. Studies with the KF

As an example, the parameter space of the Lagrange function is investigated for a single event
with and without an invariant mass constraint. Subsequently, the relative energy resolution of
50,000 events before and after the KF are compared.

5.3.1. Parameter Space of the Lagrange Function of a Single Event

In case of the pion decay, the parameter space of the Lagrange function is two-dimensional
(Equation (5.11)): one dimension for the energy of each photon. The parameter space is scanned
by varying the photon energy parameters F; and Fs and evaluating the Lagrange function.
Figure 5.3 (left) shows the value of the x?-terms of the Lagrange function (Equation (5.1)). The
invariant mass constraint is not included here.

The peak marks the energy values of the photons for which the Lagrange function becomes
minimal. These are the estimated energy values of the fit. Every other choice of the photon en-
ergies would lead to a larger value of the Lagrange function. The parameter space is continuous.
It has only a global minimum, which yields the estimated energy values.

32



5.3. Studies with the KF

E, [GeV]

E, [GeV ]

Figure 5.3.: Left: y? terms of the Lagrange function of a pion decay as a function of the two
photon energies for one single event. The fitted energy values are marked as a peak. Right:
Lagrange function of a pion decay as a function of the two photon energies for one single event.
Thereby the value of the Lagrange function is color-coded. Solid line: fitted energy value.
Dashed line: true energy value. Dotted line: measured energy value. The anti-correlation of the
two photon energies F/; and E5 can be recognized.

The parabolic character of the quadratic x? terms can be recognized in the shape of the plot
in Figure 5.3. The Lagrange function depends more strongly on the energy F; which can be
recognized in the shape along the F1-axis: the parabola is narrower than along the Fs-axis. This
is because in this particular event the energy F is smaller than the energy Fo. Consequently,
the error 0,1 is smaller than 0,2 and E; has a larger weight in the Lagrange function (Equation
(5.1)).

The Lagrange function for the same event including the invariant mass constraint is shown
in Figure 5.3 (right). The value of the Lagrange function is color-coded and the fitted, true and
simulated measured energy values are marked.

An anti-correlation of the two photon energies can be recognized. This tendency results from
the constraint. Inserting Equations (5.12) and (5.13) into Equation (5.11) yields the linearised
constraint f :

F=2(1—cosh) (Ey- Ey + Ey - By) —m2 = 0. (5.16)
If the energy of the first photon increases the energy of the second one must decrease in order
to provide the invariant mass of the pion. Note that including a distinct value for m, o an
absolute reference value is introduced into the KF. Consequently, this constraint performs a
strong restraint to the fit and establishes the relationship to an absolute energy scale (compare
the investigations for the JES, Section 6.7.2). In this particular event plotted in Figure 5.3 the
fitted energy values are closer to the true energy values than the measured ones. Thus for this
single event the fit result yields an improvement of the measured energies. If this tendency holds
on average for an ensemble of events, the KF positively affects the energy resolution. This is
investigated in the next section.

5.3.2. Studies of the Energy Resolution

The characteristic calorimeter resolution parameter for the energy resolution is chosen to be
a = 10% GeV'/2 (Section 5.2). In Figure 5.4 (left) the energy resolution of the simulated mea-
sured energies of one photon is plotted.
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Figure 5.4.: Left: energy resolution of one photon before the KF. The characteristic energy
resolution parameter is assumed to be a = 10%. The width of the gauss fit correspond to this
parameter and is o1 = (0.09976 + 0.00031) GeV'/2 ~ a. Right: energy resolution for the two
photons after the KF. The width of the gauss fit yields o1 = (0.08444 + 0.00027) GeV1/2 which
is an improvement of the resolution of about 15.4%.

The width of the Gauss fit of this distribution directly reflects the characteristic energy
resolution parameter ’a’ of the detector. For this sample oy = (0.09976 & 0.00031) GeV'/2 for
one photon. This is in accordance with the implemented resolution of a = 10% GeV /2.

The same quantity is plotted for the photon energy obtained from the fit in Figure 5.4 (right).
The corresponding width of the distribution is o1 = (0.08444 4 0.00027) GeV'/2. Similar results
follow for the second photon. Table 5.1 summarises the widths of the energy resolutions and

—olt|

!
. . . g,
their relative improvement ‘17/2

9

Table 5.1.: Widths o of the Gaussian fit to the energy resolutions of the two photons. The
widths of the measured values represents the characteristic energy resolution parameter of the
detector. “Rel. impr.” denotes the relative improvement of the width due to the fit. The error
is the error of the mean of the Gaussian fit.

object ‘ o' [GeV]1/2 ‘ ofit[GeV]l/2 ‘ rel. impr. [%]

photon 1 | 0.09976 4+ 0.00031 | 0.08444 4+ 0.00027 | 15.357 £+ 0.003

photon 2 | 0.09981 4+ 0.00032 | 0.08443 4+ 0.00027 | 15.409 + 0.003

Regarding an ensemble of particles the consideration of the invariant mass constraint yields
an improvement of the energy resolution: without the constraint the fitted energy values are
identical to the smeared ones and no improvement of the energy resolution can be performed.
Insertion of the constraint results in fitted energies which, on average, are closer to the true
energy values than the smeared ones. This is reflected in the relative improvement of the energy
resolution of more than 15%. Thus the KF is successful and it positively affects the fit result.
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6. Application of the y* Method:
tt — qqbber,

In this chapter the method of the KF is applied to the decay of a tt system via the semi-leptonic
channel. Firstly, the Lagrange function of the decay is established. Subsequently, the data on
which the method is applied is briefly described. The studies performed in this thesis are fully
based on simulated MC data. Thereby, the KF is applied to different data sources for studying
systematical effects. Eventually, the results of the KF are presented separately for every data
source.

6.1. Development of the Lagrange Function

In this section the x? method is applied to the semi-leptonic decay of a tf system. The fit
parameters are the energies Eq, Eg, Ev, ., Ep,, and Ejp of the two light quark jets, the two b
quark jets and the released lepton, respectively.

In this case, the same assumptions are made as for the decay of a pion (Section 5.1, assump-
tions A.1 to A.4). The following notation is used: let p, be the four-vector for the momentum
of particle «

E,
pa x ECV
= ’ = . . 61
Pa Pa,y ( Pa ) ( )
Pa,z

The index « labels the final state particle: light quark (¢), anti-light quark (g), bottom quark
(bhaq) of the hadronically decaying top quark (tpqq), bottom quark (bep,) of the leptonically
decaying top quark (¢,), lepton (lep) and the corresponding neutrino (v). The x? function for

, 2
, (B~ Ea) )
X = Z T y & = Q7Q7bhadablep7lep- (62)
o

«

the tt system is

Note that the sum does not include the neutrino, since it is not measured. However, the unknown
energy of the neutrino is replaced by exploiting a constraint (see below).
Three constraints can be formulated from the decay topology of the semi-leptonic channel:

2 !

h (Eq’ Eq, By Eblep’ Eep, EV) = (pg + g + pbhad)2 - (pblep + Piep + pbu) =0, (6.3)
!

f2 (Eq, Eq) = (pq +pq)2 - mIQ/V =0, (6.4)
!

/3 (Elepa El/) = (plep + pl/)2 - mIQ/V =0 (6'5)

35



6. Application of the x?> Method: tt — qgbbev,

The first constraint, the equal-mass constraint, comes from the assumption that the invariant
mass of the top quark and anti-top quark are equal.! The second constraint, the first W-mass
constraint, implies that the invariant mass of the hadronically decaying W boson is equal to the
invariant mass of the sum of the two released light quarks. The third constraint, the second
W -mass constraint, demands that the invariant mass of the leptonically decaying W boson is
equal to the invariant mass of the sum of the released lepton and neutrino. The distribution of
the W masses remain unconsidered. The mass is assumed to be myy = 80.403 GeV [6].

The transverse momentum of the neutrino can be reconstructed from the transverse momen-
tum of the other decay products via two additional assumptions

Pvax = — (pq,x + Pgx + DPvya,x + pblep,:v + plep,a:) 5 (66)
Pvy = — (pq,y t Pay t Poraay + Py T plep,y) . (6.7)

For the complete reconstruction of the neutrino, its z-component must be determined. Thus
one additional piece of information is needed. Using the third constraint, Equation (6.5) can be
(1) (2)

solved for p, . which leads to a quadratic equation and thus to two solutions p,; and p, % for
the longitudinal momentum:

p(V%f) =ab- Diep,= + \/a’2b2 ’ pler,z + ab® —a- EIer ’ (pg,x +p12/,y)? (68)
with
1 m%,v
4= 5 bi= |5 + (Piep.aPua + PlepyPry) | - (6.9)
Plep,z + Plep,y

The full calculation can be found in the appendix. It is possible that the discriminant of Equation
6.8 becomes negative. No physically reasonable neutrino can be reconstructed in this case and
a KF is not possible. If applicable both solutions are evaluated. The solution with the smaller
x? value is chosen. Calculating Du,» the energy of the neutrino can be determined as

By =15 = \[Ph + P2y + P (6.10)

where the assumption m, = 0 is made. Therefore, the neutrino energy is a function of the other
energies
E, = E, (Ey, Eq, By, Ev,,,» Eiep) - (6.11)

The reconstructed neutrino can be inserted into the first constraint (Equation (6.3)). Con-
sequently, it no longer depends on the neutrino energy, but only on the five energies of the
observable particles. Thus the Lagrange function for the t¢ decay only contains the first two
constraints (the third constraint is entirely exploited for the neutrino reconstruction). The matri-
ces and vectors needed for the calculation of the Lagrange function and the Lagrange multipliers
are:

E, E, 10000
E; E; 01000
g=| By, | a=| B, |; A=]0010 0f=1s (6.12)
ey by 00010
E,,, Ejey 00001

n fact, the masses of the measured particles are not exactly determined, but Breit-Wigner-like distributed with
a width of approximately 1.5 GeV/c?. This is not accounted for in the formulation of the x?-function. The
Likelihood method offers the possibility to apply Breit-Wigner distributed parameters.
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6.1. Development of the Lagrange Function

L 0 o0 0 0
l2 g,
o 0 0 0 0 0 L 0o 0 o0
0 o 0 0 0 S
vi=|0 0 o2 0 0| evi=|[0 0 = 0 01 g3
@ / had
0 0 0 o 0 0 0 0 A0
9 blep
00 0 0 o o 0o o 0 -t
Ulep
of,  of, _ofl_ _of  of
b= (%) B |7 T T PPy e (6.14)
mW 8f2 8f2 afg 8f2 afg
OEq OEq OBy, OBy, 0OEcp
é-o 0 0 0
0 L 0 0 0
0'(7 1
c=aTva=| " O e 0 Uy (6.15)
0 0 0 —— 0
Ublep
0 0 0 0 5
Ulep
E;l/o*:f
E; /(fq2
. 14 1 /
ci=ATv-1j = El;had/g,giad ; (6.16)
ll)lep O/-glep
Elep/alep
N 2
. BcleT 8f ) _
VB = = Za: 8Ea *Oq , & =4(q,(q, bhad7 blep7 lep (617)
8f' / 8f/ ’
(St (rmr) s (m-n)
= )\T = ° - O; ) ook '62 ) (618)
af, / afs /
> (a&) 0g 2.8 (aé@) "752
with o := q,q, bpad, biep, lep and 3 := ¢, q. The Lagrange function is
: (Fo-B) | SadhioEl 0
L(E@,E@):: RIS YU o OF; -( ) ) : (6.19)
@ Oq Z 9y . E My
B8 OEg B ———
=(7 —Aa) V-1 (g - Ad) —Ba =b

The derivatives can be found in the appendix. Note that for the derivatives two additional
approximations are made:

mg =mg =~ 0, (6.20)

Miep = 0. (6.21)
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6. Application of the x?> Method: tt — qgbbev,

The light quarks and leptons are assumed to be massless.

The Lagrange function contains five energy parameters. An improvement of the energy
resolution is expected, meaning that on average they are closer to the true energy values than
the measured ones (Section 6.5.1).

At the Tevatron the centre-of-mass energy barely suffices to produce a tt pair. Hence, the
assumption that a produced ¢t system has no additional transverse momentum is appropriate.
However, at the LHC this assumption is not fulfilled due to its higher energy. Therefore, it must
be considered in the KF.

The introduction of the transverse momentum of the t¢ system pyr to the x? method is
problematic: py 7 is an unmeasured parameter. Thus no initial value exists which is needed for
the Taylor expansion as discussed in Section 5.1. The error for p;; ¢ is of similar importance
since it is essential for the evaluation of the Lagrangian multiplier and strongly influences the
fit result.

Nevertheless, in these studies the KF is also investigated with respect to ps . Therefore,
two new parameters are introduced: the transverse momentum of the ¢¢ system in x-direction
and in y-direction which are denoted ps, and py,, respectively.? The transverse momentum
directly affects the solution of the neutrino:

Pvz = Ptz — (pq,ar + Pgx T Popgxe T Poyep,x + plep,m) s (6-22)
Puvy = Pty — (pq,y +Pagy t Poraayy T Poyeyy T plezv,y) . (6.23)

This is the only point where the transverse momentum of the ¢¢ system occurs within the KF.
It is not reasonable to add a new Gaussian term for each parameter ps, and p, because of
two reasons: firstly, the distribution of p;z, and py,, is not Gaussian-like and secondly the best
estimators for initial values are

Piza =0, (6.24)
Piiy =0, (6.25)

because these are the most probable values. Thus a Gaussian term would yield

, 2
(Phiw = Pire)  (pira)?

_ 6.26)
B I (
Utf,x Utf,x
, 2
<pt£, _ptﬂy) )2
L - (ptféy) , (6.27)
Tty Tty

which would impose a restraint such that always smaller values are preferred. Estimated errors
U;Ew and O';{y are needed in order to calculate the Lagrangian multipliers. Therefore, constant
values were taken from the RMS value of the p,; , and py;,, distributions. The analogous calcu-

lation for the Lagrange function with respect to the transverse momentum yields:

/

E, E, 1000000
Eq E; 0100000
E, By 0010000
j=| B, |: a=| By, [; A:=]|0001000|=1L; (628
E,, Elep 0000100
0 Pt 0000010
0 Pity 0000001

2An equivalent approach is the introduction of the parameters pe,r and the angular ¢ in the z-y-plane.
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6.1. Development of the Lagrange Function
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with v := ¢, q, bhad, biep, lep, tt, z, tt,y and § := ¢, . Finally the Lagrange function is
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6. Application of the x?> Method: tt — qgbbev,

6.2. Description of the Used Data

Three different MC data samples serve as input for the KF in order to test its performance:

e MadEvent data on parton level in LO. The simulated measured energies are Gaussian-like
smeared.

e MadEvent data on parton level in LO. The simulated measured energies are smeared with
an energy resolution based on the ATLAS detector.

e Fully simulated ATLAS data in NLO. The simulated detector signals are generated with
respect to the components, geometry and properties of the ATLAS detector.

The motivation for the use of different input data is to understand systematically effects coming
from energy resolution or ISR and FSR for instance. In the following the different data sources
are described.

6.2.1. tt Events Generated with MadEvent

10,000 tt pairs in the semi-leptonic decay channel are simulated with MadEvent [57] in LO.
MadEvent is a tree-level event generator based on the matrix element creator MadGraph [58, 59].
The tt pairs are simulated to be produced solely via gluon-gluon-fusion and always decay in
the same way: the top quark decays hadronically, into an up quark and an anti-down quark.
The anti-top quark always decays leptonically into a muon and the corresponding muon-anti-
neutrino. An n-cut of |n| < 2.5 is applied on the light quarks and the muon. The invariant
top- and anti-top quark masses are Breit-Wigner distributed with a mean of 175 GeV/c? and a
width of 1.5 GeV/c%.

The MC energies of the partons and charged leptons are smeared in two different ways for
two different studies:

e Gaussian-like as used in Section 5.2 for testing the KF with the same energy resolution
which is assumed in the method. To go into detail, a Gaussian distributed random number
g with a mean at zero and a width of one was generated in order to simulate measured
energy values according to

E, = EI' t+a5-g-/Elre, @ := q,q, bhad, biep, lep; B :=1q,b,lep.  (6.36)

For this detector resolution the parameters

ae = 0.1627 GeV'/? (electrons) (6.37)
ajg = 1236 GeV?'/? (light quarks) (6.38)
apg = 1.45 GeV1/2 (b quarks) (6.39)

are taken. These values are extracted from a Gaussian fit to the energy resolution of the
simulated ATLAS data which is described in Section 6.2.2.

e Smeared according to the energy resolution which results from simulated ATLAS events
(Section 6.7.3) for a more realistic test.?

Since the energy of the partons is smeared according to an energy resolution which correspond
to jets, the simulated measured particles are also called jets.

3ROOT offers the possibility to generate a distribution according to a distribution of an arbitrary histogram.
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6.2. Description of the Used Data

6.2.2. tt Events Generated with MC@QNLO Using TopView

A sample of di-leptonic + semi-leptonic ¢t events of the decay of a tt system has been generated
using a MC@NLO generator for the event simulation on parton level. Geant4 [60] has been used
to propagate the final state particles and simulate the ATLAS detector. The generated data
sample consists of roughly 540,000 events with an integrated luminosity of 217 pb~! and a cross
section of 461 pb. Since the data is generated as realistic as possible with respect to the ATLAS
detector, the simulated detector signals of the calorimeter are not calibrated.

TopView [61] is a data analysis package for ATLAS top physics analysis and was used to
create a Root-tuple from the data sample. Root-Tuples are files in which event data is system-
atically saved within a tree-structure. TopView also provides the matching of data. Matching
means the assignment of the simulated signals of a detector to the underlying physics processes
on parton level.

Matching

For the studies made in this thesis matched data is from great importance because the matching
flags signals, coming directly from the ¢¢ decay. Hence, investigations with data purely consist-
ing of signals without Initial State Radiation (ISR) or Final State Radiation (FSR) are possible
by a selection of events with respect to a matching flag. Therefore, the matching criteria are
discussed in the following.

There are different objects which have to be matched in different ways. Object is the genus
for muon, electron, photon, tau and jet for example. It can happen that the criteria for several
different objects are fulfilled for the same detector signal. In order to remove the overlap between
objects the following sequence of object identification is adhered: Muon, Loose-Muon, Electron,
Loose-Electron, Photon, Tau-Jet, Particle-Jet. Since in this thesis the semi-leptonic decay of
tt pairs is investigated, only the matching criteria for electrons, muons and jets are shown in
Table 6.1.

Table 6.1.: Cut criteria for the matching of electrons, muons and jets by TopView. Er is the
transverse energy, AR and Isolation Cone refer to a cone in the n-¢-plane, the Isolation Cut
denotes the maximum allowed additional energy within the Isolation Cone, the flag “Use is EM”
demands a signal in the EM Cal, whereas the Degrees of Freedom set a limit on the minimum
number of hits in the muon system.

object criterion value
electron Er Cut > 20 GeV
AR Cone <04
Isolation Cone < 0.2
Isolation Cut < 6 GeV
Use is EM  true
muon Er Cut > 20 GeV
AR Cone <04
Isolation Cone < 0.2
Isolation Cut < 6 GeV
Degrees of Freedom < 20
jet Er Cut > 15 GeV
AR Cone <04
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6. Application of the x?> Method: tt — qgbbev,

The Er cut defines the minimum transverse energy for an object. The AR cone and isolation
cone are defined as a cone in the n-¢-plane. An object must be located in a well-defined AR
cone. If another object is already identified within the cone, the object will not be inserted. In
the isolation cone it is tested how much additional energy is deposited except for the energy
of the object, e.g. a muon. The isolation cut energy defines the maximum allowed additional
energy deposited within the isolation cone. If it is exceeded the object is regarded as not isolated
and discarded. Electrons deposit their energy in the EM Cal. Thus a signal in this detector
component is expected. Therefore, a flag can be set (“Use is EM”) — if no signal is found in
the EM Cal, no electron is reconstructed. Multiple hits in the tracking system are required for
the track reconstruction. The number of hits is not constant. The more hit points the better
the track reconstruction. If too few hit points are measured, no adequate track reconstruction
can be realised. A degree of freedom arises for instance from a muon chamber layer in which no
signal was measured. To set a lower limit for the minimum number of hit points, the number
of degrees of freedom must not exceed a certain limit (for muons e.g. the limit is 20 degrees of
freedom). Otherwise the object is discarded.

Selection Cuts

Selection cuts must be applied to the data sample in order to extract the semi-leptonic decay
channel from the data sample. The selection happens in two steps: firstly, cuts are applied to
data on parton level (MC data). This is done to receive a skimmed data sample which consists
only of the decay products of the semi-leptonic decay of ¢t systems where one electron is released.
In addition a bug is considered (see below). In the second step, a selection is applied to the
reconstructed objects (reco data). Table 6.2 summarises the cuts to the Root-Tuple generated
by TopView and the relative and absolute percentage of the number of skimmed events.

Table 6.2.: Overview of the number of events of the TopView data before and after applying
selection cuts. The relative percentage indicates the percentage of events which remain after
the use of an additional cut. The absolute percentage reflects the percentage with respect to
the initial number of events in the TopView data sample. The error of the percentages follows
from Poisson statistics. The top quark mass cut rejects non-realistic events which are afflicted
with a bug. In the last three lines tight cuts have been applied.

No. | Cut No. of Events | Rel. Percent. | Abs. Percent.
entire sample 541,050 100.00 100.00
1 1 thad,1 tiep, 1 lepton 433,674 80.15 +0.15 80.15 +0.14
2 exactly 1 electron 144,243 33.26 4+ 0.26 26.66 =0.14
3 top quark mass cut 108, 202 75.01 +0.30 20.00 +0.14
4a | 1 electron in detector 69, 780 64.49 + 0.38 12.90 +0.14
5a | 4 jets in detector 18, 880 27.06 +£0.73 3.494+0.14
6a | all 4 jets matched 6,564 34.77 +1.23 1.27+0.14
4b | 1 good electron in detector 16,998 24.36 £0.77 3.14+0.14
5b | 4 good jets in detector 6,276 36.92 + 1.26 1.16 +0.14
6b | all 4 good jets matched 2,961 4718 £ 1.84 0.55 +0.14

Selection Cuts on MC data

The first cut (cut 1) ensures that only the semi-leptonic decay channel is selected by demanding
exactly one hadronically and one leptonically decaying top quark and one lepton in an event.
Di-leptonic events are thus rejected. Approximately 20% of the events are removed by this cut.
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6.2. Description of the Used Data

This is consistent with the branching ratios of the decaying tt system: the semi-leptonic decay
occurs four times more often than the di-leptonic decay (Section 2.2.3).

Cut 2 distinguishes between different lepton flavours. For each flavour approximately one
third of the events are skimmed. This is in accordance witch the branching ratios since the
leptonic decay of the W boson into an electron happens as often as into a muon or a tau. In
the following only the decay where electrons are involved is considered.

The last cut (cut 3) on parton level considers a bug of the data: in approximately 20% of
the events the invariant mass of at least one of the decaying top quarks can not be correctly
reconstructed on parton level. The top quark mass which follows from the invariant mass of
the decay products is too small in these events. On parton level it is generated with a mass of
exactly 175 GeV/c?. Figure 6.1 (left plot) shows the reconstructed top quark mass before cut 3.

[7] [2]
= Entries 433674 S Entries 108202
% Mean 1721 % 60000
2i0°} |RMS 8.498 2
o | o
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lep. top quark mass [GeV/c’] no. reconstructed of electrons

Figure 6.1.: Left: invariant mass of the leptonically decaying top quark where the bug of
the invariant top quark mass is not fixed. The number of events on the y-axis is scaled log-
arithmically. Evidently, in approximately 20% of the events the top quark mass is too small.
The top quark mass has been generated at exactly 175 GeV/c?. Right: electron multiplicity
reconstructed electrons. On parton level the events consist only of the semi-leptonic decay of a
tt system where one electron is released. In about 33% of the events no electron is found in the
detector and in approximately 65% (2%) of the events one (two) electrons are found in the reco
data.

All events in which this bug occurs are rejected by claiming for the top quark mass m;

Iy — 175| [GeV /c?] < 1[GeV /2] (6.40)

for both the hadronically and the leptonically decaying top quark.
With cut 1 to cut 3 a data sample of roughly 108, 200 decaying tt pairs into e+ jets is created
with an integrated luminosity corresponding to 43.4 pb—1.

Selection cuts on reco data
Based on the data sample provided by MC cuts, cuts to the reco data must be performed in
order to select the semi-leptonic decay channel from the detector signals.

Cut 4a selects events in which only one electron is detected. It is possible that either more
than one electron is reconstructed or none. This is due to several effects: an electron can be
taken as a jet. It can also happen that an electron is interpreted to be a part of a jet because
it is located within the AR cone of the jet.
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6. Application of the x?> Method: tt — qgbbev,

Furthermore, an electron can be radiated in the direction of the services. In all these cases no
electron is detected. A jet can release electrons. If it happens that the jet is not reconstructed
or that the electron is isolated, or a hadron of the jet is held for an electron (a pion for instance),
an additional electron is counted. Figure 6.1 (right plot) shows the multiplicity of reconstructed
electrons. No electron was found in approximately 33% of the events. In about 2% several
electrons were reconstructed. 65% of the events pass selection cut 4a.

Cut ba selects events with exactly four reconstructed jets in oder to chose the semi-leptonic
decay channel of the tf system. Due to e.g. ISR and FSR for instance the number of jets can be
different from the number of hadronic partons in the final state of the hard scattering process. It
can also happen that several jets can not be separated, that a jet propagates into the beam pipe
or into the services or that the energy of a jet is too low to be reconstructed. The multiplicity
of the reconstructed jets is plotted in Figure 6.2 (left), where the number of matched jets is
colour-coded.

Cut 6a selects events in which all four jets are matched. This cut is applied only for studies
in which the effect of ISR and FSR is neglected (Section 6.7).

Tight Cuts (TC)

Tight cut 4b to 6b are analogous to cut 4a to 6a. The aim is to enrich the resulting data sample
with events of interest. Events of interest are four-jet events in which every jet is matched. In
these events every jet comes directly from the semi-leptonic decay of a tt system. However,
in an experiment the matching information does not exist and only the entire four-jet bin of
Figure 6.2 (left plot) can be selected.
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Figure 6.2.: Multiplicity of reconstructed jets. Due to ISR, FSR and various other reasons, in
the detector one to 11 jets are reconstructed. The number of matched jets is colour-coded. Red,
hatched ascending from right to left: four matched jets. Blue, hatched vertically: three matched
jets. Black, vertically hatched: two matched jets. Green, hatched ascending from left to right:
one matched jet. Brown, cross-hatched: no matched jet. Events marked in red are the events
of interest because they contain all four jets coming directly from the semi-leptonic decay of a
tt system. Left: multiplicity with loose cuts. In the four-jet bin the fraction of events in which
all jets are matched is about (35 + 1)%. Right: multiplicity with tight cuts. In the four-jet bin
the fraction of events in which all jets are matched is approximately (47 42)%. The error of the
percentages is derived from Poisson statistics.
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TCs are applied in order to increase the fraction of matched jets in the sample. The following
TCs are chosen:

Njet] < 2.5 (for all jets) (6.41)
Ejet > 20 GeV (for all jets) (6.42)
Ejet > 40 GeV (for at least 3 jets). (6.43)

Note that these TCs are chosen according to the cuts proposed in the ATLAS CSC notes [62].
They are also suitable to separate the signal from background processes. Events which fulfill the
TCs are called good. An event in which these requirements are not fulfilled is discarded. The
TC efficiencies are shown in the relative percentage of cut 6b (and 6a for comparison) in Table
6.2. The fraction of events in which all four jets are matched is remarkably higher if TCs have
been applied: with TCs roughly (47 4+ 2)%, without approximatelly (35 £ 1)%. The multiplicity
of reconstructed jets for events which pass the TCs is shown in Figure 6.2 (right).

6.3. Overview of the Performed Studies

The results of the KF are presented and discussed in the following. Diverse studies are performed:

e Investigation of the parameter space of the KF on a single event with and without con-
straints.

e Studies of the energy resolution of simulated measured and fitted energies.

e Combinatorial efficiencies considering the reconstruction of the decay topology of a tt
system.

e b-tagging efficiencies of the KF.

e Reconstruction of the top quark mass from its decay products.

e Influence of a transverse momentum of the ¢¢ system to the KF.

e Result of the KF by fitting the transverse momentum of the t¢ system.

e Calibration of the JES for light quark and b quark jets separately by means of MC truth
data.

e Investigation of the sensitivity of the KF for the JES for light quark and b quark jets
separately.

The investigations are made separately for all three data sets described in the previous section.
For the study of the parameter space of the Lagrange function, no distinction between the
different input data is needed. The investigation of the JES is solely performed for the simulated
ATLAS data, since this is the most realistic simulated set of data. Hence, a calibration of the
calorimeter is only reasonable for those data.
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6. Application of the x?> Method: tt — qgbbev,

6.4. Parameter Space of the Lagrange Function of a Single
Event

The studies of the parameter space made in this section are valid for all used data samples. In
this example one event of the ATLAS data sample is used. The parameter space of the Lagrange
function (Equation (6.19)) is five-dimensional, one dimension for each energy parameter £, Eg,
Evypas Eb,., and Ejep. This parameter space can be visualised by varying two parameters while
the others are fixed. As an example, Figure 6.3 (left) shows the value of the light- and light
anti-quark jets for the x2-terms of the Lagrange function (Equation (6.2)) as a function of the
light quark jet energies. The smeared energy values of the light quark jets are marked as a peak.

E(5| [GeV]

True Energy Measured Energy

X xX

30f Fitted Energy

20

50 " 60

=
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Figure 6.3.: Left: y2-terms of the Lagrange function of a tf decay as a function of the two
light quark jet energies for one single event. The energies of the other particles are fixed. The
simulated measured energy value is marked as a peak. Right: value of the y2-terms of the
two light quark jets and of the first W-mass constraint as a function of the two light quark jet
energies for a single event. Thereby the value of the Lagrange function is colour-coded. Solid
line: fitted energy value. Dashed line: true energy value. Dotted line: measured energy value.
The anti-correlation of the two energies of the photons E, and E; can be recognized.

The same observations as for the pion decay can be made: the parabolic character of the
quadratic x2-terms can be recognized in the shape of the plot in Figure 6.3 (left) and the
Lagrange function depends stronger on the energy F; with the smaller value.

The W-mass constraint for the light quarks is analogous to the 7° mass constraint for the
decaying pion. The Lagrange function including the W-mass constraint is shown in Figure 6.3
(right). The anti-correlation of the two light quark jet energies can be recognized. Furthermore,
the fitted energy values are closer to the true energy values as the measured ones.

Including the equal-mass constraint leads to a difficulty: as described in Section 6.1 the
energy of the neutrino must be reconstructed via the energies of the other particles. It can
happen that the measured energy values result in a physically unreasonable neutrino, meaning
that the discriminant D of the reconstruction of its z-momentum becomes negative (Equation
(6.8)). The x? method cannot be used on these events.

Furthermore, there is the possibility that a minimum of the Lagrange function is found for
a set of parameter values which result in a physically unreasonable neutrino. Thus it must
be ensured that regions of the five-dimensional parameter space in which no neutrino can be
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6.4. Parameter Space of the Lagrange Function of a Single Event

reconstructed are avoided. This is done by a penalty term ¢ in the Lagrange function:

0 D>0
_ Pz 6.44
v {—0.01.1) ,D < 0. (6.44)

It is essential for the convergence of the minimisation that the parameter space remains
smooth, including the transition of physically reasonable regions to unreasonable regions. There-
fore, for every set of parameter values within the minimisation of the Lagrange function, it is
examined if the discriminant D for the solution of the z-momentum of the neutrino is positive
or negative: if it is negative a number 1 is added which is proportional to the absolute value
of the discriminant in order to prevent the Lagrange function to take its minimum for values
which result in a physically unreasonable neutrino:

The Lagrange function including both the first W-mass constraint and the equal mass con-
straint, as well as the penalty term is plotted in Figure 6.4 (left) as a function of the light quark
jet energies. The value of the discriminant is plotted in the same region in Figure 6.4 (right).
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Figure 6.4.: Left: 3D-view of the value of the whole Lagrange function as a function of the
light quark jet energies. Right: 3D-view of the value of the discriminant as a function of the light
quark jet energies. If the value of the discriminant is negative, a factor which is proportional
to it is added to the Lagrange function (compare with left plot). The parameter space of the
Lagrange function is continuous which is essential to ensure the convergence of the minimisation.

In the 3D-view the smoothness of the contribution of the Lagrange function can be recog-
nized. In this particular event, the discriminant becomes negative for small energies of F, and
large energies of Ej5 (right plot). Consequently, the penalty term contributes to the Lagrange
function in this region. In Figure 6.4 in the right corner of the left plot this contribution can
be recognized: a small kink indicates the transition from a physically reasonable region to an
unreasonable region. However, this kink does not influence the convergence of the minimisation
negatively. The crucial point is that the gradient of the Lagrange function in this physically not
reasonable region points towards the minimum.
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For small energies E,; and Ej (left corner of the left plot of Figure 6.4), there is no contribution
of the penalty term because in this region the energies yield a physically reasonable neutrino
solution. Compared to the right corner of this plot, the contribution of the penalty term is
appropriate as it is from the same order of magnitude.

The number of events in which the minimisation does not converge is less than 1%. On
the other hand, for less than 1% of the fitted events, no physically reasonable neutrino can be
reconstructed. This percentage holds for all studies made with the KF.

6.5. Studies with the Kinematic Fit Using MadEvent Data —
Gaussian smeared

In the following, the KF is applied to the MadEvent data sample which contains events only on
parton level (Section 6.2.1). The simulated measured energy values are Gaussian smeared and
labeled as jets because their energy resolution corresponds to the one of jets (Section 6.7.3).
The motivation is to investigate the results of the KF with the same energy resolution which is
assumed in the method (Section 4.1).

Studies of the energy resolution, combinatorial efficiencies, b-tagging, transverse momentum
of the tt system and the top quark mass are mentioned the first time in the following. Therefore,
they are discussed in more detail. Analogous investigations are performed in Section 6.6 and
Section 6.7.

6.5.1. Studies of the Energy Resolution

In Figure 6.5 the energy resolution of the smeared and fitted energies of light quarks, b;e;, and bpqq
are plotted. In Table 6.3 the results of Gaussian fits to the plots in Figure 6.5 are summarised.

Table 6.3.: Widths o of the Gaussian fit to the energy resolutions of light quark and b quark
jets. The widths of the measured values represent the characteristic energy resolution parameter
of the detector. “Rel. impr.” denotes the relative improvement of the widths due to the fit. The
errors are the errors of the width of the Gaussian fits.

object | o'[GeV]'/2 | 5t[GeV]Y/2 | rel. impr. [%]

lq jet 1.22 £0.01 1.031 +0.009 | 15.492 + 0.010

b quark jet (lep) | 1.406 +0.023 | 1.262 +0.018 | 10.242 £ 0.023

b quark jet (had) | 1.42 4+ 0.02 1.318 £ 0.020 7.183 £+ 0.022

For both light quark and b quark jets the widths o of the distributions (left plots) are equal
to the characteristic calorimeter parameters 'a’ which have been applied to the KF.

The energy resolution of the fitted energies (right plots) is also Gaussian distributed. Their
widths are always smaller than the corresponding widths of the smeared data. Therefore, the
fitted energies are on average closer to the true values than to the measured ones. Hence, the
additional information of the constraints results in an improvement of the energy resolution.

The improvement of the energy resolution is larger for light quark jets compared to b quark
jets. On the one hand, this is due to the fact that the light quark jets are influenced by both
the first W-mass constraint and the equal mass constraint, whereas the b quark jets are only
affected by the equal mass constraint. On the other hand, the W-mass constraint introduces an
absolute reference value to the KF by the distinct value of the W boson pole mass.
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Figure 6.5.: Energy resolution of the jets coming from MC tt events of MadEvent data. Top:
for light quark jets. Middle: for b quark jets from the leptonically decaying top quark. Bottom: b
quark jets from the hadronically decaying top quark. On the left in each case: energy resolution
of the smeared energy values. On the right in each case: energy resolution of the fitted energies.

In contrast, the equal mass constraint only demands the equality of the invariant mass of the
two decayed top quarks without inserting an absolute value. This aspect is discussed in Section

6.7.2 in more detail.

The relative improvement of the energy resolution of b quark jets is different for jets, coming
from leptonically decaying top quarks ¢, (11%), than for jets coming from the hadronically
decaying top quarks tpeq (7%). In this example a tendency which is true for all results of the KF
can be recognized: the improvement of the energy resolution for b, (= 10%) is always larger

than for bp.q (=~

the equal mass constraint, the energy of the lepton is involved.

7%). This is because within the reconstruction of the invariant mass of ¢, via
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This energy is measured with a much higher accuracy than the energies of the light quark
jets from t5,44. A large shift of the energy of by, for instance can be balanced by the light quark
jets. In contrast, a large shift of the energy of b, can not be balanced by the lepton. Therefore,
the precisely measured lepton restrains more strongly the possible energy values Ej,, leading
to a better energy resolution.

The latter effect can be observed for all results of the KF. However, in the following studies it
is not distinguished between the fitted energies of b;., and bj,qq, but only the energy resolution for
all b quark jets is considered. This is because no new effect can be observed by a differentiation
of the b quark jets.

6.5.2. Reconstruction of the Decay Topology of tt Events

The reconstruction of the decay topology of tt events happens via the assignment of the measured
jets to the assumed partons. The aim is to find the correct jet combination.

The signature of a decaying ¢t system yields four jets (Section 2.2.3). The flavour of the
measured jets is not known. Therefore, there are 4! = 24 possibilities to pair jets and partons.
No distinction of the light quark and anti-light quark is needed for the reconstruction of the
invariant W boson mass. Thus 47! = 12 jet combinations remain. The efficiency to find the
correct combination by chance is hence % ~ 8.3%. The correct combination is known for MC
data. For each event, every permutation is fitted and the result which leads to the smallest value
of the Lagrange function is taken as the estimated correct combination. Therefore, evaluating
the Lagrange function for every jet assignment gives a handle on the reconstruction of the event

topology. Table 6.4 summarises the result of the KF applied to MadEvent events.

Table 6.4.: Results of the KF applied to Gaussian smeared MadEvent data. “v-error” in-
dicates the percentage of events which are rejected due to a physically unreasonable neutrino
reconstruction (Section 6.1). ES™* stands for the fraction of the events in which all four jets
of the tf decay are correctly assigned. EG™™ " (EQ"Y 1Py is the percentage of the events in
which only the hadronic (leptonic) hemisphere is correctly reconstructed. EF " denotes the
percentage of events which are completely wrongly reconstructed. The errors come from Poisson

statistics.

v—error [%] | Bt (%] | B M%) | EQYY P [%] | EF" [%)
199425 | 568+15 | 00+0.0 | 16.8+£2.7 | 26.5+22

As already mentioned in Section 6.1 the KF can not be accomplished if it is not possible
to reconstruct a neutrino. Thus there is a percentage “v-error” of events which are instantly
discarded. The fraction of events is about (19.9 £ 2.5)%.

In roughly 57% of the fitted events the correct jet combination is found from the evaluation
of the value of the Lagrange function. This fraction is considerably larger than the fraction of
8.3% which is expected from a correct reconstruction by chance. Thus the restraint coming from
the assumed decay topology of the tt system yields a positive influence for finding the correct
jet assignment.

Is is not possible to reconstruct only the hadronic hemisphere correctly (without all jet-
parton combinations being correct) for MadEvent events, because additional jets coming from
ISR and FSR are not simulated (= E?{nly had — 9% ).
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Thus if the three jets of the hadronic hemisphere are correctly assigned only the b quark jet
of the leptonically decaying top quark remains and is ascribed to the leptonic hemisphere which
results in an entirely correct reconstructed event. This is different for events in which ISR/FSR
occurs (Section 6.7.4).

The fraction of events in which only the leptonic hemisphere is correctly reconstructed is
E?fnly lep (16.8 + 2.7)%. Consequently, the leptonic hemisphere can be reconstructed more
often compared to the hadronic hemisphere.

In approximately 26% of the events, the topology of the t¢ decay is entirely wrongly recon-
structed.

6.5.3. b-tagging Efficiencies

The identification of b quark jets (b-tagging) helps identifying decay signatures in which b quark
jets are released. Methods have been established to perform b-tagging.

Since a jet assignment in the ¢f system is performed with the KF, it has the potential to
identify b quark jets and can be used as a cross-check for other methods. If the topology is
reconstructed correctly for instance the two b quark jets are correctly identified. However, for
the b-tagging it is not required that the topology of a tt event is entirely correctly reconstructed.
An event where the two b quark jets have been mixed up e.g., the event topology is wrongly
reconstructed but the b-tagging is successful for the two released b quarks.

The b-tagging efficiency of the KF is influenced by the kinematics of the t¢ decay. The energy
distribution of light quark jets and that of b quark jets is different (Figure 6.6). This is due to

2 2 2 E
5 " Entries 7850 s | Entries 7850
® 40of Mean  100.4 > op Mean  134.2

[S) - O 250
S soof RMS 76.63 g 200; RMS 93.95
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light quark jet energy [GeV] b quark jet energy [GeV]

Figure 6.6.: Energy distributions of decay products of a tf system. Left: light quark jets.
Right: b quark jets. Due to the decay topology the energy of b quark jets is on average larger.

the decay topology (Figure 2.6): the b quark and the W boson share the energy from the top
quark decay. Finally, the two light quarks share the energy of the decaying W boson. Thus,
on average, the b quarks have higher energies than the light quarks. Therefore, it is not likely
to reconstruct the topology of a tt system where the two b quark jets are assigned to jets of
the hadronic hemisphere, because the (on average higher) energy of the two b quark jets must
be balanced by one of the remaining light quark jets for satisfying the equal mass constraint.
Consequently, it is more likely that the b quark jets are mixed up with each other than assigned
to a light quark jet. This effect positively affects the b-tagging efficiency because for the pure
identification of the b flavour it is irrelevant if the two b quark jets are mixed up or not.
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6. Application of the x?> Method: tt — qgbbev,

In Table 6.5 the b-tagging efficiency is presented for the same fit made in Section 6.5.2.
E;_tag indicates the percentage of fitted events in which a b quark jet is correctly identified to

Table 6.5.: b-tagging and combinatorial efficiencies of the KF for the Gaussian smeared MadE-
vent data. Eg_tag denotes the percentage how often a b quark jet is correctly identified to be
one. “E%‘f{ff%tad” (“Ecﬁo,rbrfﬁp”) indicates the fraction of events in which the b quark jet of the
hadronically (leptonically) decaying top quark is correctly assigned. For comparative reasons

the efficiency for the complete reconstruction of the event topology is stated with E§*, too.

Elf)f—tag [%] ‘ E%o{)rfchtad [%] E%O{)rfﬂp [%] H E%orrect [%]
82.0+1.2 | 61.6+14  735+13 || 568+15

be one. Additionally, “E%Ofan]ﬁ;d” and “E%O{Dn}’eip” are the fractions of events in which the b quark jet
of the hadronically and leptonically decaying top quark are correctly assigned. For comparative
reasons the combinatorial efficiency from Table 6.4 is denoted, too.

The b-tagging efficiency is about 82%. The b quark jet coming from the leptonically decaying
top quark is more often correctly reconstructed ((73.5 +1.3)%) than the one coming from the
hadronically decaying top quark ((61.6 & 1.4)%). This is because a mis-assignment of b, is
only possible by an interchange with one of the jets from the hadronically hemisphere. Due to
kinematics this is not so likely as to interchange the hadronic b quark jet with a (hadronic) light
quark jet, since the equal mass constraint demands that the two hemispheres of the hadronically
and leptonically decaying top quark are balanced (Equation (6.3)).

However, compared to the efficiency of the entirely correct reconstruction of an event of
roughly E§et = 57 + 2%, the b-tagging efficiency is considerably higher. Thus, there are
events in which the two b quark jets are interchanged and events in which only one b quark jet
is correctly assigned.

6.5.4. Reconstruction of the Top Quark Mass

The reconstruction of the top quark mass is performed to investigate systematic effects of the KF
(and not due to a physics analysis to estimate the value of its invariant mass). Every modification
of the KF which changes the fit result (like the consideration of a transverse momentum of the
tt system for instance, Section 6.5.5), also influences the reconstruction of the top quark mass
because they depend on all fitted energy parameter.

The reconstructed invariant mass of hadronically decaying top quarks is shown in Figure 6.7
for a KF in which always the correct jet assignment is taken (left) and for a fit in which the
correct jet assignment is estimated via the Lagrange function (right). For the latter plot the
correctness of the reconstruction of the events is colour-coded.

In Table 6.6 the RMS value and the widths of a Gaussian fit to the peak of the plots in
Figure 6.7 are summarised.

The effect of the combinatorial uncertainty can be studied comparing the latter two rows
of Table 6.6. In events in which the wrong jet combination is taken, the top quark mass is
on average reconstructed at a value which differs considerably from its pole-mass. From these
events a combinatorial background is formed, causing a large increase of RMSE;%. Thus on the
one hand, the RMS value increases for the KF in which the correct jet assignment is chosen via
the value of the Lagrange function due to the combinatorial background.
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Figure 6.7.: Reconstructed invariant mass of the hadronically decaying top quark. For the
reconstruction the fitted energies are taken (Section 6.5.2). Left: fit in which always the correct
jet assignment is taken. Right: fit in the correct jet assignment is estimated via the Lagrange
function. The correctness of the reconstruction of the events is colour-coded: red, hatched
ascending from right to left: correct combination (= 57% of the events). Blue, hatched vertically:
only the leptonic hemisphere is correctly reconstructed (=~ 17% of the events). Green, hatched
horizontally: no hemisphere is correctly reconstructed (= 26% of the events).

Table 6.6.: Results of the reconstruction of the invariant mass of the hadronically decaying
top quarks from the fitted energies. “Combi” denotes if the correct jet combinatorics has been
taken or if it was estimated by the evaluation of the Lagrange function. O'?(?S denotes the width
of a Gaussian fit to the peak of the reconstructed top mass. RMS{I(?S is the RMS value of the
histogram.

Combi. || B¢ (%] | opad [GeV] RMSP [GeV]
correct combi 100 10.26 = 0.14 14.9
est. combi 56.8 £ 1.5 | 10.81 +=0.17 35.2

On the other hand, the Gaussian fit to the peak of the reconstructed top quark mass is hardly
affected by the combinatorial background — the correctly reconstructed events (red, hatched
ascending from right to left) lead to a narrow mass peak around the pole mass of the top quark
which has been generated at 175 GeV /c? (Section 6.2.1).

In Figure 6.7 (right) the blue events are events in which only the jet from the leptonic hemi-
sphere is correctly assigned and the hadronic hemisphere is wrongly reconstructed. However, the
reconstructed top quark mass of these event contributes to the peak and not to the background.
This is because the invariant mass of tj,q is not modified by the equal mass constraint if the
jets of the hadronic hemisphere are interchanged — the invariant mass is independent of the
permutation of the jets coming from the hadronically decaying top quark.

Nevertheless, the blue peak is slightly shifted to smaller energy values and a bit broader
than the red peak of the completely correct reconstructed events. This is due to the influence
of the first W mass constraint: one light quark jet is interchanged with bj.q. As described in
Section 6.5.3, the energy of a b quark jet is on average larger than the energy of a light quark
jet.
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6. Application of the x?> Method: tt — qgbbev,

Thus on average the energy of the wrongly assigned b quark jet is shifted to smaller values
in order to fulfill the first W mass constraint which imposes an absolute value for the invariant
mass of the W boson. This is because the peak of the events marked in blue is shifted to smaller
masses.

6.5.5. Studies of the Transverse Momentum of the tt System

In general, t¢ pairs produced at the LHC have a transverse momentum p,7 7 (Section 6.1). This
transverse momentum directly affects the solution of the neutrino momentum (Equation 6.23)
and thus influences the KF. In this section the influence of ps; ¢ and its fit via additional fit
parameters p;, and p,, (Section 6.1) is investigated.

Figure 6.8 shows the py p-distribution, resulting from the simulated ATLAS data. This
distribution has also been applied to the MadEvent data, if a boost of the t£ system is performed.
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Figure 6.8.: Distribution of the transverse momentum of the ¢¢ system from simulated ATLAS
data on parton level (with cut number 4b of Table 6.2). Left: transverse momentum. Right:
distribution of the azimuthal angular ¢.

The mean of the p,; r-distribution is around 62 GeV (left plot). From the right plot the uni-
form distribution of transverse momentum on the x-y-plane is demonstrated. From these plots
it can be recognized that in general, p,z 1 is different from zero. Consequently, the consideration
of the transverse momentum of the ¢ system within the KF is studied in the following. The
effect of a p;z p-boost according to the distribution shown in Figure 6.8 is investigated for a KF
with different modifications. Two criteria (C) are modified:

(C.1) The tt system has a transverse momentum (Boost-flg = 1) or not (Boost-flg = 0).

(C.2) KF with (p;-flg = 1) or without (p,;z-flg = 0) a fit of py p.

Table 6.7 summarises the result of the KF in which criterion C.1 has been varied. For clarity,
the single rows in which different configurations “Conf.” of criteria are chosen for the KF, are
numbered.

Since the reconstructed top masses depend on all fitted energy parameter, they can be used
as an indicator for investigating systematically effects of the KF.
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Table 6.7.: Fit results of the KF for different modifications. “Conf.” denotes the configuration
of the criteria which has been applied to the fit. The special case Conf. = MC means that
as initial values for py, and p;, the MC values are taken. If pyp-flg = 1 also a fit of the
transverse momentum pyz - of the ¢¢ system is performed (described in Section 6.1). If Boost-flg
= 1 the tf system is boosted via the p;z  distribution of the simulated ATLAS data (Figure 6.8).
“v-error” indicates the percentage of events which are rejected due to a physically unreasonable
neutrino reconstruction (Section 6.1). E§'* stands for the percentage of the events in which the
correct jet combination is found. RMSE;% and RMSSS give the RMS value for the reconstructed

hadronically and leptonically decaying top quark masses, whereas a}tf;% and alt‘;f is the width of
a Gaussian fit around the respective top mass peak.

Conf| PET Boost- || v—error Fgorrect o P RMS; %, altgg RMSE}?
flg flg (%] (%] [GeV] [GeV] [GeV] [GeV]
1 0 0 1994+25 56.8+1.5 | 10.8£0.2 35.2 11.04+0.2 34.4
2 0 1 26.0+23 54.5+1.6 || 11.2+£0.2 37.7 13.04+0.3 37.5
MC 0 1 188 4+26 575+1.5 | 11.0+£0.2 34.7 10.94+0.2 35.0

In particular the leptonically decaying top quark depends directly on the reconstructed neu-
trino momentum, whereas the hadronically decaying top quark is only affected by the neutrino
momentum via the equal mass constraint. Therefore, effects considering p;; 7 influence especially
the leptonic hemisphere (Equation (6.23)).

Comparing Conf. 1 with Conf. 2, the percentage v-error increases if a py -boost is applied.
Since the transverse momentum is not considered in the KF of these configurations, the initial
values for p;m and p;ﬂy are zero, regardless if a py; r-boost is performed or not. Thus if a py; 7-
boost is accomplished, but no transverse momentum is taken into account, a conceptional bias
is inserted into the (initial) reconstruction of the neutrino. Therefore, on average the neutrino
can not so often be reconstructed if a pyp-boost is comprised within the KF. This tendency is
true for all investigations which include a transverse boost of the t¢ system.

The py r-boost worsens the fit results: the efficiency to correctly reconstruct the event topol-
ogy decreases from (56.8 £ 1.5)% to (54.5 £ 1.6)%, whereas the reconstruction of the top quark
masses shows a larger uncertainty (altgg = (13.0 + 0.3) GeV instead of altgg = (11.0 £ 0.2) GeV
without boost, for instance) . Thereby, the increase of o'’ mainly affects the leptonic hemi-
sphere. This can be explained by the weak link between the leptonic and hadronic hemisphere
via the equal mass constraint. The value of Ufgc)l is only weakly affected by the p;;r-boost
because it influences only the reconstructed neutrino of the leptonic hemisphere.

To illustrate the effect of the bias due to an additional ps; -boost, Conf. MC is added to
Table 6.7. In Conf. 1 no p;; r-boost is applied. Thus no wrong assumption is made by claiming
Ptiz = Pir,y = 0 in contrast to Conf. 2 where a boost is performed. In Conf. MC a p; r-boost is
applied as well, but for the transverse momentum initial values pgff and png are used which
are known from MC data. Therefore, Conf. MC does not contain this bias because no wrong
assumption is made for the values ps, and py,. Consequently, the results of Conf. MC are
similar to the ones of Conf. 1, although in this configuration a p,;; p-boost is applied analogous
to Conf. 2.

To counteract the bias coming from disregarding the transverse momentum of the ¢¢ system
within the KF, p;; , and py, are introduced as new fit parameters (Section 6.1). Nevertheless,

the initial values p;{m and p;{y are set to zero, regardless if a py r-boost is performed or not.
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Note that this conceptional bias does not result from a wrong application of the Method, but
from the fact that for fitting py; 7 two parameters are included into the KF for which no initial
value exist. Consequently, a bias can not be avoided due to the concept of the xy? method itself.
The assumption p;m = p;ﬂy = 0 is the best one which can be made. Any other value which
differs from zero would mark out a certain direction which introduces a worse systematical bias.
Describing the transverse momentum of the ¢¢ system via the two coordinates p;z 7 and ¢z 7 does
not change the result. This is because both descriptions are equivalent due to the one-to-one

transformation
/2 2
ptt,T - ptf,aﬁ +ptﬂy’

pit, T
pit, T

(6.45)

arccos s Digy = 0

buir = (6.46)

— arccos s Dity < 0.

Assuming a certain p;; r unlike zero in these coordinates would also mark out a certain direction
because a particular angular ¢ 7 is to be taken.

Table 6.8 summarises results analogous to the results of Table 6.7 which are obtained if the
fit of pyr, and pyz, is added to the KF (criterion C.2).

Table 6.8.: Fit results of the KF for different modifications analogous to Table 6.7. Here, also
a fit of p;z 1 has been applied.

Conf| PHT" Boost- || v—error Fgorrect o P RMS;%> alt‘;f RMSTS;)
flg flg [%] (%] [GeV] [GeV] [GeV] [GeV]
3 1 0 1994+25 43.7+1.7 || 12.7+£0.3 45.4 13.8+04 50.2
4 1 1 26.0+24 440+1.8 | 12.3+0.3 45.9 14.8 +£ 0.5 49.6
MC 1 1 188+25 43.7+1.7 || 12.6 +0.3 45.8 13.5+04 49.7

The introduction of the new fit parameters worsens the fit results. Comparing Conf. 1 with
Conf. 3 clearly points this out: in both configurations no p; r-boost is applied but in the latter
one a fit of the transverse momentum is performed. The new freedom of the KF to vary two more
fit parameters leads to the effect, that the event topology is more often wrongly reconstructed.
Thus, more events contribute to the combinatorial background and the RMS value increases.

Comparing Conf. 3 with Conf. 4 similar tendencies can be recognized as from comparison
of Conf. 1 with Conf. 2: v-error increases if a p;p-boost is performed while o'°P increases in
particular for the leptonically decaying top quark. However, the RMS values and the combi-
natorial efficiency show no systematic tendency because the bias from the new fit parameters
worsens the result too strongly. This aspect is also emphasized regarding the result of Conf. MC.
Although the use of the correct values pgff and pitfze eliminates the bias of wrong initial values
for the transverse momentum (the decrease of v-error points this out), no improvement of the

combinatorial efficiency can be observed.

The decrease of E§™™" of roughly 13% if a Py 7-boost is performed, is due to the permutation
of the two b quark jets. This can be shown by considering separately the efficiency of the correct
reconstruction of by, and bp,q, compared to the b-tagging efficiency E}?tag and the efficiency
Egorrect of the correct event reconstruction. In Table 6.9 these efficiencies are summarised for

Conf. 1 and Conf. 3.
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Table 6.9.: Combinatorial and b-tagging efficiencies of the KF for different modifications.
“Conf.” , “E&™™®” and the flags are defined as in Table 6.7. “Had. correct” (“Lep. correct”)
indicates the percentage of fitted events in which the b quark jet of the hadronically (leptonically)
decaying top quark is correctly assigned. E}?tag denotes the percentage of fitted events in which
a b quark jet is correctly identified.

Cont. | P4 Boosi- H Egrrect ‘ Efvie  Eihie ‘ g
[%) [%] %]
1 0 68i1 51616+14 73.5+1.3 |82.0+1.2
3 ‘ 1 H 43.7+ 1.7 ‘ 499+16 57.0+15 ‘ 794413

The efficiency of the correct reconstruction of b;, decreases stronger than of the b quark jet
of the hadronic hemisphere:

AEFD o = (11.7 £ 1.6)%, (6.47)
AEF S = (16.5 £ 1.5)%. (6.48)

However the b-tagging efficiency decreases only marginal:
AEF™ = (2.6 &+ 1.3)%. (6.49)

This is due to the fact that in particular a permutation of the two b quark jets takes place.
On the assumption that in all events in which b4q is wrongly reconstructed, bpqq and by, have
been mixed up, there remain AEl‘c:forbrfg;“) AE%"’rbr'fgd = (4.8 £ 1.6)% of events in which only
biep is not correctly reconstructed. Thus due to this effect E§P™" decreases for a few percent:
L8LLOG, = (2.4 £ 0.8)% ~ AES™t. Thereby, the factor 1 results from the fact that in these
events by, was not correctly reconstructed, but bj,q, such that one of two b quark jets of the
event is successfully b-tagged.

6.6. Studies with the Kinematic Fit Using MadEvent Data —
ATLAS Smeared

For the following, the KF is applied on the MadEvent data sample with simulated measured
energies which are smeared according to the energy resolution of simulated ATLAS data (Sec-
tion 6.7.3). The motivation is to investigate the effect of a non-Gaussian energy resolution, in
particular tails. The studies presented here are analogous to the studies presented in Section
6.5. Therefore, especially the differences of the results are discussed.

6.6.1. Studies of the Energy Resolution

Figure 6.9 shows the energy resolution of the simulated measured and fitted energies for light
quark and b quark jets separately.
Table 6.10 summarises the result of the Gaussian fit to the peaks of the energy resolutions.
In principle all tendencies investigated in Section 6.5.1 (Table 6.3) can be recognized. The
relative improvement of the light quark energy resolution (=~ 13%) for instance is larger than
of the b quark jets (= 9%). However, due to the asymmetry of the energy distribution, the
absolute values decreased compared to the results of Gaussian-like smeared energies.
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Figure 6.9.: Energy resolution of MadEvent data where the simulated measured energies are
smeared according to the energy resolution of simulated ATLAS data. Top: for light quark jets.
Bottom: for b quark jets. Left: for the measured energies. Right: for the fitted energies.

Table 6.10.: Widths o of the Gaussian fit to the energy resolutions of light quark and b quark
jets. The widths of the measured values represent the characteristic energy resolution parameter
of the detector. “Rel. impr.” denotes the relative improvement of the width due to the fit. The
errors are the errors of the mean of the Gaussian fits.

object | o'[GeV]Y/2 | 5ft[GeV]/2 | rel. impr. [%]
lq jet 1.24 +£0.01 1.082 £+ 0.011 12.74 £ 0.01
b quark jet | 1.396 £ 0.022 | 1.271 £ 0.017 8.95 £ 0.02

This points out that the non-Gaussian tails of the energy distribution lead to a consequent
worsening of all results of the KF: the widths of the fitted energies are always broader if the
applied energy resolution has non-Gaussian tails.

6.6.2. Reconstruction of the Decay Topology of tt Events

The combinatorial efficiencies are investigated analogous to Section 6.5.2. The results are sum-
marized in Table 6.11.

Compared to the results of Section 6.5.2, v—error and E§™*°* decrease by roughly 2% and
11% respectively, while E;nly P and Ef " increase by approximately 4% and 8%.
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Table 6.11.: Results of the KF applied to Gaussian smeared MadEvent events. “v-error”
indicates the percentage of events which are rejected due to a physically unreasonable neutrino
reconstruction (Section 6.1). E§'* stands for the percentage of the events in which all four jets
of the tt decay are correctly assigned. E?ﬁnly had (E;nly lep) is the percentage of the events in which
only the hadronically (leptonically) hemisphere is correctly reconstructed. Egrong denotes the
percentage of events which are completely wrong reconstructed. The error comes from Poisson

statistics.

v—error [%)] ‘ Egorrect (%] ‘ E%ﬂly had Toz) ‘ Egnly lep [7] ‘ B8 %]
223+24 | 455£1.7 | 0.0£00 | 205+25 | 341£20

Thus the efficiency for the correct reconstruction of the event topology is worsened by the
non-Gaussian tails of the energy resolution. Therefore, the assumption of a Gaussian distribution
of the energy resolution causes a bias of the KF.

However, the efficiency of the correct reconstruction of only the leptonic hemisphere increases
by a few percent. This is due to the fact that in events, which have been completely correctly
reconstructed in Section 6.5.2, the jets of the hadronic hemisphere are wrongly assigned while
for the leptonic hemisphere the chance of a correct reconstruction still exists. Consequently,
the absolute number of events in which a correct reconstruction of the leptonic hemisphere is
possible is larger compared to the results of Section 6.5.2.

Since the only difference of the studies of the KF made in Section 6.5.2 is the implementation
of non-Gaussian energy resolution, the worsening of the correct reconstruction of the entire event
topology can thus be explained.

6.6.3. b-tagging Efficiencies

The b-tagging is investigated analogous to Section 6.6.3. Table 6.12 shows the result of the
b-tagging and combinatorial efficiency of the KF applied to the MadEvent data which has been
smeared which an energy resolution according to the simulated ATLAS data.

Table 6.12.: b-tagging and combinatorial efficiencies of the KF for the MadEvent data smeared
according the simulated ATLAS data. This table is analogous to Table 6.5

Ep ™ (%] | Bhcing (%] Efe, (%] | By (%]
75.7+13 | 51.8+£19  66.0£14 | 45517

The efficiencies are smaller compared to those of Section 6.5.3: the b-tagging efficiency
decreases by roughly 6% and the combinatorial efficiency by approximately 11%. Hence, the
b-tagging efficiency is not so strongly affected by the non-Gaussian energy distribution as the
combinatorial efficiency. This is due to the fact that there are events in which the two b quark
jets of the tf decay are interchanged. These events are correctly b-tagged but not correctly
reconstructed in terms of the event topology.
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6.6.4. Reconstruction of the Top Quark Mass
Since in Section 6.5.4 the combinatorial background is discussed in detail, here only the differ-
ences of analogous results are presented.

In Table 6.13 the width of a Gaussian fit to the peak of the reconstructed invariant top quark
mass and the RMS value are shown for the KF in which the correct jet combination is taken
and for the KF in which the correct combination is estimated via the Lagrange function.

Table 6.13.: Results of the reconstruction of the invariant mass of hadronically decaying top
quarks from the fitted energies. This table is analogous to Table 6.6.

Combi — flg. || EF™ [%] | opad [GeV] RMSP [GeV]
0 100 11.1+£0.2 17.3
1 4554+ 1.7 | 12.0+0.3 39.8

Though, due to the non-Gaussian distributed energy resolution, the absolute values of the
widths and RMS values increase. Compared to Table 6.6 the same tendencies of the results can
be recognized. The bias coming from the assumption of a Gaussian-like energy resolution thus
causes a worsening of the reconstruction of the invariant top quark mass.

6.6.5. Studies of the Transverse Momentum of the tt System

For comparison of the studies of the transverse momentum of the ¢ system made in Section
6.5.5, here the corresponding results are summarised in Table 6.14.

Table 6.14.: Fit results of the KF for different modifications analogous to Table 6.7 and Table

6.8.
Conf| PHT" Boost- || v—error Fgorrect J}tf;% RMS;Z% Jlt‘;f Rl\/IngjD
flg flg (%] (%] [GeV] [GeV] [GeV] [GeV]
1 0 0 223+24 455+£1.7 || 120£0.3 39.8 13.2+04 39.6
2 0 1 280+24 43.8+19 || 13604 42.3 15.8 £ 0.6 42.6
3 1 0 223+22 348+£1.8 || 13.7+£04 48.1 17.1£0.8 51.8
4 1 1 28.0£2.2 349+£20 | 146+£0.5 49.1 188 £ 1.1 41.6

This Table is analogous to Table 6.7 and Table 6.8 — the same tendencies can be recognized
which are discussed in Section 6.5.5 in detail. However, all results are worsened. Since the only
difference of the studies made in Section 6.5.5 is the implementation of a non-Gaussian energy
resolution, the worsening of the results can thus be explained.
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6.7. Studies with the Kinematic Fit Using Simulated ATLAS
Data

The data of the MC@NLO generated sample are miscalibrated. Since it is intended to inves-
tigate systematically the sensitivity of the method for the JES, beforehand a calibration of
the calorimeter is necessary. All JES studies are performed for light quark and b quark jets
separately.

The studies made in the following are analogous to the studies presented in the previous
sections. Due to the fact that the ATLAS data is simulated as realistic as possible the generated
tt pairs are boosted on parton level. Hence, investigations of unboosted t¢ systems are omitted.

6.7.1. JES — Calibration

The calibration of the hadronic calorimeter is realised using true energy values of the simulated
data. The motivation is to ensure a correctly calibrated calorimeter before varying the JES
systematically. To ensure that the calibration is not biased by a wrong jet identification, the
correct jet assignment has been chosen using MC data. All studies in which the simulated
ATLAS data sample is used are based on the calibrated data.

If the detector is correctly calibrated the mean p of the ratio of the measured energy values

and the true energy values p <E//Et7"“e) ~ 1 is expected to peak around one. Figure 6.10 shows

this ratio for light quark (left) and b quark jets (right) separately before calibration. The energy
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[1) - RMS 0.1765 (1} 800 RMS 0.1865
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@ 800|- Constant 948.3+14.6 ] 700 Constant 896 + 15.8
"'6 [ Mean 0.9583 £ 0.0019 “6 3 Mean 0.9299 + 0.0023
8 [ Sigma____ 0.1152:+0.0019 . 600 Sigma____ 0.1102:+0.0029
© 600[ ] -
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a0l 400 ;
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i 100}
0 i hnnnll oo — 0 E - .
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Figure 6.10.: Ratio % of uncalibrated energies. Left: for light quarks. Right: for b quarks.
The peaks are significantly shifted from one.

distribution of b quark jets shows a larger asymmetric tail. This is due to the fact that there
are additional effects for b quark jets which result in a lower measured energy (Section 6.7.3).
The peaks of the distributions are significantly shifted from one:

tug (E,/Ee) = 0.9583 4 0.0019 (6.50)
q q q

wy (B, /E ) = 0.9299 + 0.0023. 6.51
b b

The measured energy is too small on average. For a calibration this shift must be reversed
depending on the energy. For energy intervals of 7 GeV distributions of the difference (F ' — Etrue)
have been plotted.
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6. Application of the x?> Method: tt — qgbbev,

Therefrom, the systematic deviation of the measured energy values from the true energy
values is pointed out. A Gaussian fit to the peak yields the mean p of these distributions.
In Figure 6.11 the mean of these distributions is plotted as a function of the true energy for
light quark and b quark jets separately. The error comes from the error of the mean from the
Gaussian fits and increases with a decreasing number of events in a bin which is especially for
higher energies the case.

Y < o
(] (]
S, S,
s s
= T =
ur )11 g
1 1
. ur
= = }
x?/ ndf 93.26 / 60 40| %2/ ndf 116.4/ 60
-15| po -1.805 + 0.08796 po -3.379+0.1141 l
pi -0.01938 + 0.0009407 | p1 -0.06586 + 0.001117 |
100 200 300 400 100 200 300 400
light quark jet energy [GeV] b quark jet energy [GeV]

Figure 6.11.: Mean of a Gaussian fit around the peak of the distributions of (E' — E'%¢) as a
function of the true energy. Left: for light quarks. Right: for b quarks.

A linear model is taken as a simple parametrization for the dependency of ,u(E/ — E'v€) as
a function of the energy E'“¢. The coefficients of a linear fit to the plot in Figure 6.11 yield a
possibility to calibrate the calorimeter response for light quark and b quark jets separately. For
the calibrated energies E%® it ig

B = o B+, a :=1.01938 = 0.00094, b := 1.805 % 0.009 (6.52)
B — o By 4 b, a = 1.06586 + 0.00112, b := 3.379 + 0.114. (6.53)

Using Equation (6.52) and Equation (6.53) to calibrate all jet energies, the energy resolution for
light quark and b quark jets peaks around one within their errors (Figure 6.12).
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’ true s true
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Figure 6.12.: Ratio % of calibrated energies. Left: for light quark jets. Right: for b quark
jets. The peaks are located around one within their errors.
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After calibration it is:
pg (By/ B) = 0.9999 40,0020 (6.54)

10 (E;/Eg’““e) —0.999 +0.002. (6.55)

The calibration of the JES also affects the reconstructed top quark masses — if all energies are
systematically shifted to smaller energies e.g., the top quark mass is shifted to smaller masses.
Figure 6.13 shows the reconstruction of the hadronically decaying top quark mass before and
after calibration.

) 500[ Entries 4757 (7] [ Entries 4759
r= i Mean 160.1 T 4as50F Mean 173.9
o i RMS 21.3 o g RMS 22,18
> a00|- x2/ ndf 15.4/9 > 400 x2 / ndf 3.085/8
o - Constant  475.9+10.3 o E Constant  461.5+10.4
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- igma 16.79+ 0.4 F igma 16.95+0.5
g 300 - s 300f =
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200f- 200}~
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- 50
0’ NI i -l I 0? I ool no ol o I i
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Figure 6.13.: Reconstructed hadronically decaying top quark mass. Left: before calibration.
Right: after calibration. The top mass was generated at 175 GeV /c2.

A Gaussian fit to the top quark mass peak yields

1t (Miop) = 160.5 £ 0.4 GeV /c? (before calibration) (6.56)
1t (Miop) = 174.5 £ 0.5 GeV/c? (after calibration). (6.57)

From the sensitivity of the top quark mass to systematical shifts of the energies, follows the
potential of the calibration of the JES. For all studies made in the following always the calibrated
energies are used and denoted by E'.

6.7.2. JES — Sensitivity of the Kinematic Fit

Since within the KF the energy of detector signals is fitted, it contains the potential to be
sensitive to the JES. This can be investigated by studying the fit results in which the JES has
been varied. Therefore, every jet energy value is multiplied by a JES factor of a. The aim is
to estimate a only from the result of the KF. This is done by establishing a JES calibration
curve for light quark and b quark jets separately. This curve has been created for the correct jet
assignment. The investigation with respect to jet combinatorics happens in the same way but
has not yet been performed.

The distribution %—ﬁ; shows if the method is sensitive to the JES. If so, the KF performs a
restraint to the fitted energies in such a manner that the fitted energy values tend towards the
true energy values and therefore, they tend to compensate a wrong JES factor «. This restraint
is performed by the first W-mass constraint and the equal mass constraint which are of totally

different quality (see below).
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Figure 6.14.: Consistency check for the JES. Left: distribution of the ratio % for a JES
l

factor of a = 0.6. A Gaussian fit marks the peak. Right: peak position of the anussian fit of
several plots analogous to the left plot with different JES factors a. The line marks a linear fit
of the points. The error results from the error of the Gaussian fit.

The result of a consistency check for the JES is shown in Figure 6.14. The left plot depicts
E / /
the distribution of the ratio =< for a factor of a = 0.6. Let W (a . Elq/Efg“e) =i Hoyq bE

Et?"ue
the mean of a Gaussian fit of fiqpeak to this distribution. For the left plot of Figure 6.14 it is
ME).G,lq = 0.6051£0.0014 ~ o which is consistent with the included JES. Note that the number of
events has been decreased compared to the plots in Figure 6.12 for instance. This is due to the
fact that the JES was remarkably modified. Consequently, more events are discarded because
it is more often the case that no physically reasonable neutrino can be reconstructed (v-error
increases).

The right plot of Figure 6.14 shows /‘L/Cl,lq as a function of a for 0.5 < a < 1.5 in steps
of 0.1. A linear fit to this plot yields a bisecting line. Therefore, the included factor of « is
extracted one-to-one from the changed energy values. Thus the consistency check is successful.
An analogous result follows for b quark jets.

In the next step, the /sensitivity of the KF to the JES is investigated by studying the dis-
tribution of the ratio %ﬁt which only depends on the measured and fitted energy values. Fig-
ure 6.15 shows this ratio for both light quark and b quark jets separately for a JES factor of
a = 0.6. The distribution for the light quark jets is significantly shifted from one, with a peak at
,ug.zé, ¢ = 0.797£0.002. Evidently the fitted energies receive a restraint which causes them to have
on average larger energies than the measured ones. This tendency leads to fitted energy values
which are on average closer to the true energies than the measured ones because all measured
energies are scaled with a factor of 0.6 in this example. Thus the KF is sensitive to the JES of

the light quarks.

The right plot of Figure 6.15 shows the analogous distribution for b quark jets. The mean
M(J)C,Zé » = 1.003 & 0.001 is not shifted from one. Although the measured energies are scaled with
a factor of 0.6 the fitted energies are not systematically shifted to higher energies. Thus the KF

applied as described in Section 6.1 is not sensitive to the JES of the b quark jets.
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Figure 6.15.: Distribution of the ratio % Left: for light quark jets. Right: for b quark jets.

The same investigations are made for different JES factors of 0.5 < o < 1.5 in steps of 0.1.
Figure 6.16 shows u{;“ as a function of « for light quark and b quark jets separately. Note the

change in scales. In the left plot the dependency of the fitted energies from the JES can be
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Figure 6.16.: Mean of the distribution of the ratio %—ﬁt for several JES factors 0.5 < a < 1.5

in steps of 0.1. Left: for light quark jets. Right: for b quark jets.

recognized: the larger the JES factor « the larger pf i

g This plot represents a calibration curve
for the JES of light quark jets.

To understand the shape of the curve the following consideration can be made: the ideal
calibration curve would be the bisecting line of Figure 6.14 (right plot): if the fitted energies
always led to the true energy values the calibration curve would be identical with this plot. On
the other hand the fitted energies would be identical with the measured energies if there were no

constraints (Section 5.1). In this case no calibration could be performed because for every a > 0
the mean uéfz would be equal one, resulting in a horizontal line in Figure 6.16 (left plot) at
M(JZZ = 1. Thus the calibration curve is situated between the constant M{Zi} = 1 and the bisecting

/

E
line caused by the restraint of the constraints. Thereby at o = 1 also the distribution ETth peaks
lq
at one, because the detector is calibrated (Section 6.7.1).
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To estimate the precision of the calibration of the JES, the error of the mean o (,uéfé) can

be used. This error depends on the number N of events which were applied to the fit:

fit) o 1

(ua q) Vi (6.58)
A data sample with a luminosity of 43.4 pb~!is used for these studies as described in Section 6.2.2.
Since the calibration curve is not linear but a function of the JES, the precision of the calibration
of the JES is a function of a. Therefore, the curve must be parametrized. This is done by the
following model:

,c1 := —0.2898 4+ 0.0014

,c2 = 1.2900 &£ 0.0014. (6.59)

C
it 1
plit = = o Te

The precision of the JES can thus be obtained from the one-sigma environment o (,ué q) for

different values of «

o (1d,) = 0.0020 = a = 0.5 100017 (6.60)
o (uffs,,) = 0.0007 = o = 1.0 +0-0024 (6.61)
o(uft,) = 0.0022 = =15 100156 (6.62)

In the right plot of Figure 6.16 the calibration curve for the b quark jets is depicted. Note
that the scale of the y-axis is stretched by a factor of roughly 50 compared to the left plot.
For a = 1 the mean ,u{b is not exactly one but M{b 1.0005 £ 0.0005. This is because the
calibration of the detector can not be performed with infinite accuracy. However, the calibration
was successful since u dlffers less than one per mill from one which lies within the one sigma
environment. A large modlﬁcatlon of the JES by a factor of @ = 1.5 causes a shift of the mean
u{ib of only two per mill. This is due to the fact that the equal mass constraint and the first
W -mass constraint are of totally different quality: the latter one introduces an absolute reference
value to the KF, namely the distinct value of the pole mass of the W boson. It depends only
on the two light quark energies and claims the equality of their invariant mass with a particular
W boson mass. Thus an absolute benchmark is inserted into the KF for the light quark jets,
resulting in a strong restraint for the light quark energy parameters and leading to the sensitivity
for the JES. In contrast, within the equal mass constraint only the equality of the invariant mass
of the two decaying top quarks is demanded without inserting an absolute value. Hence, via the
equal mass constraint no sensitivity to an absolute energy scale is performed. Additionally, the
equal mass constraint implies a larger freedom to the parameters because six quantities can be
varied in order to satisfy it.

Nevertheless, certain tendencies can be recognized. For JES factors smaller than one the
curve increases meaning that on average the fitted energy of the b quarks El{ " Jecreases. This
can be explained by the first W-mass constraint: for o < 1 the measured jet energies are smaller
than the true energies. Therefore the fitted light quark jet energies are larger than the measured
ones (Figure 6.16, left plot). According to the equal mass constraint the higher energy of the
hght quark jets must be balanced by the energy of the b quark jets. Consequently, on average
E " decreases. For a > 1 the measured energy values are on average larger than the true ones.
The influence of the light quarks to the equal mass constraint is smaller than for the case o < 1
because the slope of the calibration curve in Figure 6.16 (left plot) decreases for increasing o.
Thus the measured energy value of the lepton becomes more important. The lepton is the only
particle which is not affected by the JES.
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All energies of the decay products of tj,q are scaled with «, in contrast to the decay products
of tjep, where the lepton is released. Therefore the smaller invariant mass of ¢;., must be com-

pensated by decreasing energies Eilz of the hadronic hemisphere in oder to balance the leptonic
one. Consequently, the curve of Figure 6.16 (right plot) increases for increasing .

6.7.3.

Studies of the Energy Resolution

In Figure 6.17 the energy resolution of the simulated events before and after the fit is plotted for
electrons, light quark and b quark jets separately. The correct jet combination has been chosen
in order not to distort the result by combinatorial background.
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Figure 6.17.: Energy resolution for electrons (top), light quark jets (middle) and b quark jets
(bottom). On the left plot in each case the energy resolution of the measured energies is plotted
and on the right plot the energy resolution of the fitted energies respectively.
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From the left plots of Figure 6.17 it can be recognized that the energy resolution of the
simulated ATLAS data is not Gaussian-like distributed but is asymmetric and contains non-
Gaussian tails. Therefore, considering more realistic ATLAS data, the assumption of Gaussian
distributed energy parameters is only an approximation.

From the reduced x? values of a Gaussian fit to the peak of the energy distributions the
tendency to fit the energies such that they are Gaussian distributed can be recognized: for b
quark jets (light quark jets) the reduced x? value of the Gaussian fit of the measured energy
resolution is about 3.9 (2.7) while for the fitted energy resolution it decreases to 2.9 (2.4). Thus
the fitted energies consequently have a more Gaussian-like character.

Table 6.15 summarises the results of the Gaussian fit to the peaks of the energy resolutions.

Table 6.15.: Widths o of the Gaussian fit to the energy resolutions of electrons, light quark jets
and b quark jets. These widths yield the characteristic energy resolution parameters for smearing
the energies Gaussian-like (Section 6.5.1). “Rel. impr.” denotes the relative improvement of the
width due to the fit. The error is the error of the mean of the Gaussian fit.

object | J[GeV]Y2 | of[GeV]/2 | rel impr. [%]
electron 0.1627 £ 0.0054 | 0.1596 4+ 0.0052 | 1.905 =+ 0.032
lq jet 1.236 £0.019 1.099 +0.0014 | 11.084 £ 0.015

b quark jet | 1.45 +0.03 1.38 +0.026 | 4.828 +£0.033

The widths of the measured energy resolutions yield the parameters for the Gaussian-like smear-
ing of the MadEvent data (Section 6.2.1).

For electrons the width of the energy resolution is about alel ~ 16% GeV'/2 which is by far
a better resolution than that for the measurement of hadronic jets. This is due to the fact, that
electrons leave isolated signals in the electromagnetic calorimeter and do not hadronize to jets.

Concerning jets the relative energy resolution is larger than 120%/+/E [GeV]. As described
in Section 3.2.2 for pions the energy resolution is about 50%/+/ E [GeV]. This discrepancy can
be explained by effects concerning jets: pions leave very collimated signals in a calorimeter
because they consist of quarks in a bound state. In contrast single quarks hadronize by forming
jets. There are algorithms which take care of the assignment, mis-identification or clustering of
jets (cone-algorithm, Kp-algorithm, etc.). In multijet events (events with more than one jet) it
is often difficult to determine which track belongs to which jet. The assignment is not unique
and depends on sharp criteria which have to be defined in order to identify a jet signal. A certain
maximum size of a jet for instance can be defined by a cone in the 7-¢-plane (cone algorithm).
Thus it is possible that two jets cannot be separated and are regarded as one or vice versa, that
one jet is identified as several ones. Thus there are more uncertainties for the measurement of
the energy of a jet.

Regarding b quark jets, their width (O'I; = 1.45 GeV'/2) is larger than the width of light
quark jets (O'l/ g =122 GeVl/ 2). This is because of the following effects: within b quark jets more
often muons and neutrinos are released than in light quark jets. Thus on average more energy
is missing in b quark jets. Furthermore, b quark jets are on average broader than light quark
jets due to their larger invariant mass. A larger invariant mass causes a larger showering angle,
similar to a two body decay (Equation (5.3)). Since it is more difficult to estimate the energy
of broad jets, b quark jets are thus measured with a lower accuracy than light quark jets.
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Similar to b quark jets the electrons are only directly affected by the equal mass constraint
which causes a weak restraint compared to the first W-mass constraint (Section 6.7.2). Thus
the relative improvement of the fit yields roughly 2% (5%) and for electrons (b quark jets). By
contrast the improvement of the energy resolution of light quark jets is approximately 11%.

6.7.4. Reconstruction of the Decay Topology of tt Events

In this section the combinatorial efficiency of the KF applied on simulated ATLAS events is
studied. Other than for the investigations with MadEvent data, the events are generated in
NLO and contain jets which are not coming directly from the decay of a tt system but from ISR
and FSR, respectively. The KF is first tested on events without ISR and FSR and the results
are compared to those of Section 6.5 and Section 6.6. In a second study, the events with ISR
and FSR are investigated. They cannot be separated from the events without ISR/FSR in a
real experiment.

Jets coming directly from the decay of a tt system (and not from ISR or FSR) can be
identified using MC data: a matching flag indicates the origin of a jet. Therefore, it is possible
to test the KF with events which do not contain additional jets by selecting only events with
four matched jets (Figure 6.2, events marked in red in the four-jet bin). The evaluation of the
KF with these events gives information about the performance of the method using data with
realistic generated jets.

The matching flag does not exist for real data. Thus a selection of solely events without
ISR/FSR cannot be performed in a real experiment. Consequently, all four-jet events must be
used with the KF (the whole four-jet bin of Figure 6.2, right plot).

It is also possible to consider events in which five jets are measured. Thereby one jet must be
discarded. This selection can be realised by evaluating the Lagrange function for every possible
jet assignment of four from five jets. Since the number of jet permutations is remarkably larger
for five jets (%’ = 60), the efficiency to find the correct jet combination strongly decreases.
Hence, the consideration of five-jet events is not suitable for the studies performed in this thesis.

If a jet coming from ISR/FSR is assigned to a jet of the decay products of a t¢ system, it is
always treated as a wrong assigned jet. Thus a four-jet event in which one jet is faked cannot
be entirely correct reconstructed. Another consequence is that it is possible to reconstruct
an event in which only the hadronic hemisphere is correctly assigned if a jet coming from
ISR/FSR is assigned to the leptonically hemisphere while the hadronic hemisphere is accurately
reconstructed. This is not possible without additional jets coming from ISR/FSR (Section 6.5.2).

In Table 6.16 combinatorial results of the KF fit are given for four-jet events in which all
jets are matched. Thereby the errors are larger compared to previous investigations because of
the lower statistics.

Table 6.16.: Results of the KF applied to simulated ATLAS data. The table is analogous to
Table 6.11. The uncertainties are statistic uncertainties only.

v—error [%] | Bt [%] | B " %) | EgYY P [%] | B [%)

265+7.0 | 438£55 | 0.0+£00 | 2214+77 | 341£6.2

These results correspond to the results of Table 6.11. There, the energy resolution is also
smeared according to a realistic simulation of the ATLAS detector resolution. Consequently,
the results are the same within their uncertainties.
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This comparison shows that the substantial effects of the results of the KF can be investigated
by using MadEvent data in which the energy resolution is smeared with respect to the ATLAS
detector.

In the next step, the result of the KF including additional jets from ISR/ FSR is investigated.
Table 6.17 shows the results of the KF for all four-jet events including events with ISR/FSR
(Figure 6.2, right plot, four-jet bin).

Table 6.17.: Results of the KF applied to simulated ATLAS data. The table is analogous to
Table 6.4.

U—error [%] ‘ E%orrect [%] ‘ E(f)fnly had [%] ‘ E(f)fnly lep [%] ‘ Evﬁvrong [%]

28.7+46 | 20.1£55 | 09+258 | 243450 | 54.8+33

This is the most appropriate result of the KF within this thesis: it contains a boost of
the tt system, considers ISR and FSR as well as the jet combinatoric, but not the fit of p
because this consequently leads to a worsening of the results (Section 6.7.7). The KF with
this configuration yields a combinatorial efficiency for the completely correct reconstruction of
a tt decay of approximately 20%, where only 47% of the input data has the potential to be
correctly reconstructed (Figure 6.2, right plot, four-jet bin). This is consistent with the result
of Table 6.16: multiplying the efficiency EcﬁOmbi of roughly 44% with the fraction of 47% of the
events without ISR/FSR yields about 20%.

6.7.5. b-tagging Efficiencies

In this section the b-tagging efficiency of the KF using simulated ATLAS data is studied. Anal-
ogous to the previous section investigations for events without additional jets from ISR/FSR are
performed for comparing the results with the results with MadEvent data in which no ISR and
FSR appears (Section 6.6.3). Finally, the b-tagging efficiencies for all four-jet events including
events in which ISR and FSR occur are presented.

The results of the KF using four-jet events of simulated ATLAS data in which no jets from
ISR/FSR emerge are presented in Table 6.18. The results show the same tendencies as the results

Table 6.18.: b-tagging efficiencies and combinatorial efficiencies of the KF for different modi-
fications where only the events without additional jets coming from ISR/FSR were used. This
Table is analogous to Table 6.12.

Cont, | Pz Combic | EF™ | B, mpp, | By
fig fig [%] [%0] %] 7]
2 0 1 43.8£5.5 | 492£52 659+£45 | 76.5+4.1
4 1 1 32.8+£6.3 | 39.8£5.7 50.3+£5.1 | 74342
MC 0 1 46.2+£52 | 51.9+49 67.1+£43 | 76.4+£4.0

of the KF with the MadEvent data which are discussed in Section 6.5.3 in detail. Likewise, the
absolute values of the b-tagging efficiency corresponds to those of Table 6.5.

In Table 6.19 analogous results to Table 6.18 are shown for all four-jet events of the simulated
ATLAS data (including jets from ISR and FSR). Comparison of Table 6.19 with Table 6.18 yields
the same tendencies of the results. The fit results are worsened.
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Table 6.19.: b-tagging efficiencies and combinatorial efficiencies of the KF for different modi-
fications including jets from ISR/FSR. This Table is analogous to Table 6.12.

Cont, | Piia= Combic || E@m | Egpkl,  Egpd | By
fig fig [%] [%] [%] [%]
2 0 1 201 £5.5 | 33.84+4.2 443+ 3.7 | 588 £ 3.2
4 1 1 15.0£6.3 | 30.4+45 356+4.1 | 57632
MC 0 1 239452 | 383+4.1 494+36 | 61.5+3.2

This is due to the fact that the jets coming from ISR/FSR bias the result. Conf. 2 is the
configuration of the KF with the most realistic investigations of the data and yields a b-tagging
efficiency of about (58.8 £+ 3.2)%. The implementation of an additional fit of the transverse
momentum of the ¢t system (Conf. 4) worsens the efficiency to approximately 57.6 + 3.2%.

6.7.6. Reconstruction of the Top Quark Mass

Analogous to Section 6.5.4 the reconstructed top quark mass of the hadronically decaying top
quark is depicted in Figure 6.18. The mass is plotted for matched (left) and unmatched (right)
events.

) r »
T sof D all correct = [ I:l all correct
0>-> - g 100}~ - only hadron correct
o F D only lepton correct (] 5
"5 o “6 sol- D only lepton correct
o 50! 3 D NN HaR o E |:| wrong solution
< - C 6o}
40 -
302 40:’
20f |
- 20}
10F [
0: 0’ T e RS B
100 150 200 250 300 350 400 100 150 200 250 300 350 400
had. top quak mass [GeV/c?] had. top quak mass [GeV/c?]

Figure 6.18.: Reconstructed invariant mass of the hadronically decaying top quark. For the
reconstruction the fitted energies are taken (Section 6.7.4). Within a stack plot it is colour-
coded how the event topology could be reconstructed: red, hatched ascending from right to
left: correct combination. Blue, hatched vertically: only the leptonic hemisphere is correctly
reconstructed. Black, filled: only the hadronic hemisphere is correctly reconstructed. Green,
hatched horizontally: no hemisphere is correctly reconstructed. Left: fit in which only matched
events are used (Figure 6.2, right, four-jet bin, events marked in red). Red: &~ 44%, blue: ~ 22%,
blue: 0%, green: ~ 34%. Right: fit in which unmatched events are used (Figure 6.2, right, the
whole four-jet bin). Red: & 20%, blue: ~ 25%, blue: ~ 1%, green: ~ 54%.

In Table 6.20 the RMS value and the widths of a Gaussian fit to the peak of the plots in
Figure 6.7 are summarised.
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Table 6.20.: Results of the reconstruction of the invariant mass of hadronically decaying top
quarks from the fitted energies. This table is analogous to Table 6.6.

| Egrrect [%] | ofad [GeV] RMSP [GeV]
matched 43.8 £ 5.5 11.1 +0.7 36.4
unmatched 20.1 £ 5.5 13.3+0.9 59.6

The result of the matched data sample is in accordance with the result of Table 6.13 within
the error. Considering the unmatched events, it is possible to reconstruct the hadronic hemi-
sphere correctly while the leptonic one is wrongly assigned via a jet coming from ISR/FSR
(Section 6.5.2). This is the case for about 1% of the events. The RMS value increases con-
siderably compared to the fit with matched events. This is because the fraction of wrongly
reconstructed events, which forms the combinatorial background, is larger. Comparing the plots
in Figure 6.18 with each other, the larger combinatorial background can clearly be recognized
in the larger fraction of events marked in green.

Although the additional combinatorial background for events including jets from ISR/FSR
is considerably larger (the ratio of wrong events to fitted events increases for more than 60% for
unmatched events, Section 6.6.2)), the width of a Gaussian fit to the mass peak only increases
for approximately 2% percent. Thus the bias coming from ISR/ FSR only slightly worsens the
reconstruction of the invariant top quark mass.

6.7.7. Studies of the Transverse Momentum of the tt System

Since the simulated decaying tt pairs of the ATLAS data are boosted on parton level, no inves-
tigation of unboosted tt pairs is made. The effect of the boost is already studied in Section 6.5
and 6.6.

Table 6.21 is analogous to Table 6.14 and summarises the results for a KF of matched and
unmatched data.

Table 6.21.: Fit results of the KF for different modifications analogous to Table 6.7 and
Table 6.8. If “Mat.-flg.= 1”7 only matched data is used.

Cont. Mat.-  pyp- || v—error Egprrect Uff;lzl RMSE‘;% Ufeoé) RMS;SS
flg fig (%] (%] [GeV] [GeV] [GeV] [GeV]
2a 1 0 26570 43.84£5.5 || 11.1£0.7 36.9 13.0+1.0 36.4
4a 1 1 265 +70 3284+6.3 | 12.7£1.0 48.4 171+ 27 46.3
2b 0 0 28.7+£4.6 20.14£5.5 | 13.3£0.9 59.5 14.8 +£1.1 55.7
4b 0 1 28.7+46 15.0%6.3 || 17.7£2.2 61.9 26.7+ 7.8 60.4

Comparing Conf. 2a and Conf. 4a with the corresponding configurations of Table 6.14, leads
to the same tendencies. This is also true for a comparison of Conf. 2b and Conf. 4b with the
same table. However, the results of the KF with the configurations Conf. 2b and Conf. 4b are
worsened due to the jets coming from ISR/FSR.

Considering Conf. 4b, the width of the Gaussian fit to the leptonically decaying top quark is
Ult:;) = (26.7 = 7.8) GeV. In this particular case the Gaussian fit was not suitable and did not fit
to the histogram which led to a outlier. This configuration is better characterized by its RMS
value which increases from RMS{;;J = 55.7 to Rl\/[ngléJ = 60.4 comparing Conf. 2b. Hence, here
also the worsening of the fit result due to the consideration of p;; r can be recognized.
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6.7.8. Studies of the Energy Resolution Including Jet Combinatorics

In Section 6.7.3 the energy resolution for light quark and b quark jets is investigated with respect
to the correct jet combination. However, in a real experiment, the correct jet assignment must
be estimated by the fit result. Therefore, in the following, the energy resolution is investigated
using the jet combination coming from the application of the KF. Furthermore, the data sample
including ISR/FSR is used for the studies in order to test the KF with more realistic data.

In Figure 6.19 the energy resolution for light quark (top) and b quark jets (bottom) is depicted
for the measured (left) and fitted energy values (right).
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Figure 6.19.: Energy resolution of jets coming from simulated ¢t events. Thereby the jet
assignment is estimated via the KF. The used data include jets coming from ISR/FSR. Top: for
light quark jets. Bottom: for b quark jets. On the left in each case: energy resolution of the
smeared energy values. On the right in each case: energy resolution of the fitted energies.

The combinatorial background can be recognized in each plot of Figure 6.19. In these events
the reconstruction of the event topology leads to a wrong jet assignment. Consequently, at the
comparison with the true energy values, different jets are compared with each other, leading to
outliers in the energy resolution. If the correct jet is assigned to a parton, it contributes to the
peak of the energy resolution.

Nevertheless, the restraint of the KF leads to an improvement of the energy resolution. In
Table 6.22 the widths of a Gaussian fit to the peaks of Figure 6.19 is summarised and the relative
improvement of the energy resolution is indicated.
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Table 6.22.: Widths o of the Gaussian fit to the energy resolutions of light quark jets and b
quark jets. The relative improvement of the resolutions is also indicated. The errors are the
errors of the mean of the Gaussian fits.

object | ' [GeV]'/2 | 5f[GeV]Y/2 | rel. impr. [%]
1q jet 1.18 £0.04 1.12£0.04 5.25 + 0.05
b quark jet | 1.39 +0.05 1.34 £0.05 3.88 £ 0.05

For light quark (b quark) jets an improvement of about 5.3+0.1% (3.94+0.1%) of the energy
resolution is found. Thus the KF positively affects the energy resolution of jets, with respect
to the estimated jet assignment, under consideration of ISR/FSR. Here, also the tendency that
in particular the light quark jets — compared to the b quark jets — are positively affected by the
KF, can be recognized.
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7. Conclusion and Outlook

In the following, the results of the KF are summarised and conclusions are drawn. Finally,
further possible investigations and improvements of the KF are presented within an outlook.

7.1. Summary and Conclusion

In this thesis a KF of ¢t events in the semi-leptonic channel has been established using the
2 method and extending it by the method of the Lagrangian multipliers in order to take con-
straints into account. The constraints have been derived from the application of the fundamental
energy- and momentum conservation to the ¢t decay topology. They have been inserted valuable
information into the method which has positively affected the fit results.

Firstly, the concept of the KF has been established and investigated for the simple example
of the decay of a pion into two photons. It has been shown that the KF works and yields an
improvement of the relative energy resolution of more than 15%. The test of the KF has thus
been successful. Consequently, the method contains the potential to be successfully applied to
other decay processes.

Subsequently, the KF has been applied to the decay of a tf system via the semi-leptonic
decay channel. In all studies made in Chapter 6 the KF led to an improvement of the relative
energy resolution: the fitted energies were on average closer to the true energy values than the
measured ones. Therefore, it is sensitive to the JES of a calorimeter. The KF, as it has been
performed in the presented studies, is sensitive to the light quark JES: a calibration curve has
been established and discussed. For a simulated data sample of 43.4 pb~!, the JES can be
estimated with a precision of roughly 0.2% for a JES factor of & = 0.5 and approximately 2%
for a JES factor of o = 1.5, disregarding jet combinatorics. Thus the calibration of a calorimeter
can be performed with respect to light quark jets.

For b quark jets a calibration curve has also been established; but it has been shown, that
there are only small effects due to a variation of the JES. Consequently, the KF as it has been
realised in these studies, is not sensitive to the JES of b quark jets. This different behavior of
the KF concerning light quark and b quark jets has been explained by the different impact of
the constraints.

The KF also yields a handle on the reconstruction of the topology of the tt decay. In
approximately 44% of the events (without ISR/FSR, Table 6.16) the decay topology has been
completely reconstructed, in contrast to finding the correct combination by chance, with only
a probability of roughly 8%. Taking ISR and FSR into account, the efficiency decreases to
about 21% for the correct reconstruction with the KF and to approximately 4% for the correct
combination by chance.
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Since the transverse momentum of ¢t pairs is of importance at the LHC, it has been studied
by introducing new fit parameters to the KF. The consideration of a transverse momentum
within the KF via the yx? method always causes a decrease of result accuracy, with respect
to the pyp distribution of simulated ATLAS data. This is due to a conceptional bias of the
2 method itself: wrong assumptions must be made in order to introduce py,r into the KF.
Therefore, the x? method is not appropriate to take the transverse momentum of a tt system
into account.

Two further applications of the KF have been performed: the identification of b quark
jets and the reconstruction of the top quark mass. The efficiency of the b-tagging is about
77% (59%) without (with) ISR/FSR and is only slightly affected by the fit of a transverse
momentum of the ¢t system. The reconstruction of the top quark mass is sensitive to every fit
parameter. Therefore, the top quark mass provides a standard candle for investigations via the
KF'. Systematic effects of different modifications of the KF have been recognized and understood,
considering the reconstructed top quark mass.

For all these studies, the comparison of the results in which the KF has been applied to dif-
ferent data sets has shown the systematical effect, that the x? method introduces a conceptional
bias by the assumption of a Gaussian distributed energy resolution.

By applying tight cuts, a data sample can be enriched with events, in which the detector
signal comes directly from the decay of a tt system. These tight cuts are also suitable for a
separation of signal and background. The ratio of events in which no ISR/FSR occurs to events
with ISR/FSR could be increased from approximately (35 4+ 1)% (without tight cuts) to about
(47 £ 2)% (including tight cuts).

Altogether the KF via the x? method yields a data calibration method which is a powerful
tool for the calibration of a detector calorimeter.

7.2. Outlook

For future investigations with the KF, further studies with the x2 method can be performed.
However, there are certain disadvantages of this method:

e An initial value for every fit parameter is needed.
e The fit parameters are assumed to be Gaussian distributed.
e Constraints have to be linear.

To avoid these disadvantages, the KF can be established using another ansatz: the Likelihood
method.

Further studies of the KF via the y? method

e Consideration of background processes (Section 2.2.4). The tight cuts discussed in Sec-
tion 6.2.2 can be used to separate the signal from the background. A modification of the
tight cuts, e.g. the variation of the pp-cut, can be investigated in order to find the optimal
cuts.

e Investigation of the JES with respect to jet combinatorics. In principle, a calibration curve
can be obtained analogous to the studies presented in Section 6.7.1.

e Variation of the JES for light quark and b quark jets separately.
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e Studies for the sensitivity of the JES to physics analysis, e.g. to the reconstruction of the
top quark mass. Since the top quark mass is the most precisely measured quark mass, its
invariant mass can be used as standard-candle for detectors. The shift of the reconstructed
top quark mass due to a miscalibrated calorimeter (Section 6.7.1) points out that via the
reconstruction contains the potential to be sensitive to the JES (also for the b quark jets).

e Alternatively to the latter item, a hard constraint for the top quark mass can be intro-
duced, analogous to the first W-mass constraint. A particular value of the top quark mass
introduces an absolute reference value to the KF. The method would thus be sensitive to
the JES of b quark jets.

Further studies of the KF via the Likelihood method

The Likelihood method avoids the disadvantages of the xy? method which has been listed above.
In addition to the investigations performed in this thesis using the x? method, the following
studies can be accomplished with the Likelihood method:

e Insertion of non-linear constraints into the KF.

e The energy resolution can be parameterized in terms of transfer functions. This is a
more realistic description of the energy resolution than the one which follows from the
assumption of a Gaussian distribution.

e The masses of the W boson and the top quarks can be assumed to be Breit-Wigner
distributed (soft constraint). This is a more realistic assumption than the use of a distinct
pole-mass (hard constraint). Note that the top quark mass of the simulated ATLAS
data which has been used in the presented studies has been generated at a sharp value
(Section 6.2.2).

e The events which have been discarded from the y? function because the measured values
yield a physically unreasonable neutrino solution, can be fitted by the Likelihood method.
A separate evaluation of only these events would point out, if they cause a bias to the fit
results and should be discarded for the benefit of better fit results.

Analogous to the y? method, the realisation of the KF via the Likelihood method requires
the establishment of a Likelihood function £. A short outline of such a function can be found
in the appendix.

Parallel to the studies presented in this thesis, first investigations with the Likelihood method
were performed. Since the results are only preliminary they have not been included. However,
first tests have shown that in principal results similar to those of this thesis can be achieved. Thus
the Likelihood method seems to work fine. For future studies, it would be worth to establish
the kinematic fit via the Likelihood method, analogous to the here presented y? method.
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A. Notation

The following notation is used in this diploma thesis:

a Vector of a set of (fitting-)parameters

A Coefficient matrix of y? terms

b Constant terms of the constraints

B Coefficient matrix of linear terms of the constraints
BR(z) Branching ratio of process x

bhad b quark of the hadronically decaying top quark
biep b quark of the leptonically decaying top quark

E, Energy of a particle «

E; Measured energy of a particle «

Elrue True energy of a particle «

E{}”SS Missing transverse energy

fi i-th constraint

fi i-th approximated constraint via Taylor expansion
L Lagrange-function

L Likelihood-function

Lepton of the leptonically decaying top quark (here: either an

l
P electron or a muon)
Me Mass of a particle «
Na,x R
Nag = | Nay = g—z Unit vector of a particle @ with momentum p,,
Na,z
pr Transverse momentum
Po,x
Do = Pay | _ P Four-momentum-vector of a particle o with momentum p,, and
“ Pa,z Eoz energy Ea
Eq
q Light quark, i.e. u-quark, d-quark, c-quark or s-quark
q Light anti-quark, i.e. t-quark, d-quark, é-quark or 5-quark
NG Centre-of-mass energy
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A. Notation

t Top quark

t Anti-top quark

|4 Error matrix

w W boson; mediator of the weak force

& Vector of a set of measured input variables (of a model f(x;)
e.g.)

iy Vector of fit parameter

g’ Vector of a set of measured values

y Photon

) Kronecker delta

n Pseudo-rapidity

y Neutrino of the leptonically decaying top quark (here: either an
electron-neutrino or a muon-neutrino)

70 Neutral pion

A i-th Lagrange multiplier

x> chi-square-function

1, Unit matrix of dimension n

VE, Gradient with respect to the energy of the particle «
Approximately

= Identical

Additional used variables are not globally defined and explained in the context.
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B. Auxiliary Calculations

B.1. Determination of the Lagrangian Multipliers

As described in Section 4.2, Lagrangian multipliers X are introduced in the Lagrange function
L in order to take constraints into account. To determine these multipliers one requirement is
used: if L is minimal its derivative must become zero. Solving the corresponding equation for
the Lagrangian multipliers yields a solution of X. For the calculation two assumptions are made:

e Constraints can be expressed in a linear way: Bd — b.
e Errors are not correlated: (V1T =V—1L

Thus the Lagrange function can be written as

!

L=(j— A5>T Vvl (y — Ad) +2X7. (Bc_i— l_;) = min
2 S—

X Constraints

= Vil = —ATV 1 (§— Ad) — (§— Ad)T V'A+2X"B

= ATV g+ ATV 4G — VA + (A@) TV A +237B 2 0.
— T 25 o

= =C SAT(V-NTG=¢  _p ATy ~14
—_———

=C

Solving this equation for X yields

o 0= —2¢+20d+2BTXT
& BC¢=Bda+ BC BT T
——
=:VB
& X =viiBC ¢~ vg'Ba

with the following auxiliary variables:

Vg := BC~'BT
C:=ATv14
¢:=Alv-1y

(B.1)

—~
o
[\

~—
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B. Auxiliary Calculations

B.2. Reconstruction of the Neutrino

Since neutrinos can not be measured at the ATLAS detector, its momentum has to be calculated
from the kinematics of the t¢ decay. The x- and y- components of its momentum follow from
the assumption

Pvi = Piri — (Pasi + Pgi + Dopagi + Dbyepi + Diep,i) =Ly, (B.10)

where for p;;; the most probable value is taken, namely zero (Section 6.5.5). Considering the
remaining z-component of the neutrino, the second W-mass constraint is applied in order to solve
it for p, .. This results in a quadratic equation. Consequently, there are two solutions for the
z-component of the neutrino momentum. Geometrically one solution results from mirroring the
other one at the z-y-plane. From the mathematical point of view, both solutions are equitable,
but only one solution corresponds to the physical reality. The correct solution is estimated via
the value of the whole Lagrange function (Chapter 4). In the following, p, . is determined by
using the second W mass constraint:

f3(Elep7 EV) = (plep +pu)2 - m%/[/ (Bll)
= Eler - pIer + Eg - Pg +2ElepEu - 2ﬁepﬁy - m{%{/ (B12)
—_—— ——
:mlepzo =m,~0
= 0. (B.13)

With E, = \/pgw +p2, +p2, it follows

!

2 (ElepEl/ - ﬁlepﬁu) = m%/[/ (B14)
2 Lo
m DPlepPv
& E, =W 7 B.15
v 2Elep Elep ( )
= s py b, = T (Pl 2+m%V-* Z (B.16)
Pvo TPy TPy = 4E12 Elep Elg PiepPv .
ep ep
4
m 1 9
= 4EV2V 2 (plep,xpl/,:c ~+ Diep,yPu,y +plep,zpz/,z) (B-17)
lep lep
miy
+ E2 (plepaﬂﬁplﬁr + Plep,yPry + plep,zpu,z) ) (B.18)
lep

where it is assumed that E, > 0 = E2 > 0. Solving for p, , one gets

1
2 2 2
Pv— w5 "D , Py,
Elep o
- 2% : (plep,mpu,x + plep,ypu,y) Plep,zPv,z + 1Tn%/[/ * Dlep,zPv,z
E; 2
ep
1 [myy, 5 2| .2 2
- E2 : 4 + myy - (plep,mpu,ar + plep,ypu,y) + (plep,mpu,x + plep,ypu,y) +py7:p + py,y
lep
m2 2
= Eip |:TW+(plep,zpu,z“rplep,ypl/,y)}

Il
e

(B.19)
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B.2. Reconstruction of the Neutrino

With
2 2 2 2 2
1 b Eiep — i Plepa TP
2 2 2 2 ; 2 ; 2 ; ;
Puz = g2 PlepPuz = Pus <1 — Eel;’ Z) =p;. < ”; 2 LN =pr | —E 3312 Y | (B.20)
P ep ep,z ep
it follows
2])1 , m2
12/,z ) - 22 ’ [ 2W + (plep,a:pl/,:v + plep,ypl/,y) ‘Pv.z
plep,a: + plep,y
=:b
2 2
1 [m%/v Elep 2 2 (B 21)
- : +(ple zPv.x +ple Pv ) " (p +p ) ’
2 2 D, ) DY Y 2 2 s s
Plep,a + Plep,y 2 Plepa + Plep,y o Y
h/_/ ~~
=:Q :b2
2 0.
Thus a squarish equation follows
!
= Pi,z —2-ab- Plep,z * Pv,z — ab2 +a- El2ep . (pzyx + pzyy) = 0, (B22)
where the following auxiliary variables have been defined:
1 m?
=gy b= { 5 T Prepabus + Pepypiy)| - (B.23)
Plep,x + Plep,y
Finally the z-component of the neutrino momentum is
1922) = ab - Prep,> = \/a2b2 -p?ep’z +ab?—a- EJer (2. + p,ay). (B.24)
The energy of the neutrino follows under the assumption m, = 0:
El/ = \/pg,m +p%,y +p%,z = El/ (pq’p675pb}Ladapblepaplep) . (B25)
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B. Auxiliary Calculations

B.3. Derivatives of the Equal Mass Constraint

In order to perform a Taylor expansion of the equal mass constraint, it must be derived by the
particle energies. Writing the constraint more explicit, the derivatives can be calculated more

easily:

2
fl = (pq +pq +pbhad)2 - (pblep +plep +pu)

2 2 2 2 2 2
:pq+pq+pbhad_pblep_plep_pV

~0

+ 2 [PgDg + PaPbpay + PaDbpay — PbieyPlep — Phy, Py — PlepPy]
=2 [(EQECY - ﬁqﬁ@) + (Equhad - ﬁqﬁbhad) + (Equhad - ﬁqﬁbhad)
- (EblepElep - ﬁblez,ﬁlep) - (EblepEl/ - ﬁblepﬁl/) - (ElepEl/ - ﬁlepﬁu)] .

Let

be the unity vector of the momentum of a particle . Defining the auxiliary terms ¢;

to
t3

t4

ts

t62

tr:

= (1 = fighq)
= (1 - ﬁqﬁbhad)

= (1 - ﬁqﬁbhad)

= 1= g, -

= 1-ngny,,, "

(B.31)

(B.32)
(B.33)
(B.34)

(B.35)

(B.36)

(B.37)
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B.3.  Derivatives of the Equal Mass Constraint

The derivatives for the first constraints are:

0 [ 0 oF,
a% =2. Eq -t + Ebhad -ty — ag]} . Ok :| (B41)
q L v q
0 [ 0 oF,
a—é}, — 2 N Eq : tl + Ebhad ' t3 - a_gl : aE:| (B42)
q L v q
0 [ 0 OF,
aEf1 “Efe tba e aﬁ? OB, ] (4
had L v had
0 [ ofi OE,
aE],jl =2 |—Epp ts— E, 't7_ab];1 o (B.44)
lep L v lep
afl _ [ afl oL,
aElep - __Eblep s By o O0E, . aElep ’ (B‘45)
with
of L .
(9—Ei = Ey,, (1 - nblepn,,) + Ejep (1 — Tyepniy) - (B.46)

The derivative of the neutrino energy can be calculated from the single components of its mo-
mentum:

OE, 0
0E, OFE,

1 apl’i apl/i A o
(\/p?jvm +p12/7y +p12/7z) - E_l/ ’ ;pyz aEa = an/i 8Ea =Ny - an (pV) ’ (B47)

with i := z,v, 2.
For the particular components of the neutrino momentum it is

Pui = — (Pa,i + Pasi + Popaasi + Pbieysi T Plep,i) =T,y (B.48)

T
Thus the gradient Vg, p, = (%pé’“, %pé’y, %pE”’Z> is given by
[e3 [e3 [e3

apui Ny , & = ¢, (77 l€p
— = ’Z. = x, , B.49
6Ea —Nayi EgiimQ , 0= bhad, blep y ( )
where the z-component is more complicated and given by
2,2 ob 2 Opv.x Opy,
8]?1(2;;2) b (CL Diep,z + a’) 2b- 9B, 2aElep (pl’vl" GIoN +Puy - 8T5>
o = APlep,z * oF > 5 (B50)
a o 2 . \/a2b2 ' plep,Z + ab2 —a- Elep ’ (pl%vx + pl%vy)
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B. Auxiliary Calculations

for o = q, @, biep, bpaq- With the auxiliary variables

aplep,z

tio = a’b* - 2 : B.51
10 a Plep,z 8Elep ( )
ob da
t1y == ph, . - | a®2b b?2 B.52
11 plep,z (a aElep + aaElep> ( )
ob
t12 = a2b B.53
O0Fjep ( )
Oa
t13 = b2 B.54
O0Fjcp ( )
) 9a E 2 2 B
tiy = — I + a2Ej, (pl,vx —i—pl,vy) (B.55)
apl/ x apl/
tie = —aqE? 2 L) Y B.56
15 Ly, < Puv,x aElep + P,y 8Elep 5 ( )
the derivative of the z-component of the neutrino momentum is
opl?) ob da
< —aqb- b B.57
aElep ao - Niep,z + Diep,= aaElep + 8Elep ( )
t t t t t t
4 10 +t11 +ti2 +t13 +t1a + 115 (B.58)
2. \/a2b2 ’ plzep,z + a’b2 —a: El26p ’ (pg,x +p12/,y)
with the partial derivatives
da — _9. Diep,zMlep,z T Plep,yMlep,y
plep,m plep,m
—DPlep,aa,x — Plep,yMa,y o0 =¢q,q (B59)
ob = { —Diep.an — Lo — DlepyN — Lo a=>b b
8Ea = lep,x!bta,x \/m lep,y'bo,y \/m ) had> Plep

—DPlep,aNa,x — Plep,yNa,y — Mep,xPa,x — Nep,yPay X = lep'
Thereby, the derivatives concerning the b-quarks look a bit different because of the consideration

of their mass: o1 5 .
ol _ 9 (g2 =
OE ~ OE < EZ=m ) VEZ 2 (B.60)

If the KF is performed including the transverse momentum of the ¢¢ system, the derivatives of
Pii, and pyz,, must be calculated:

df1 [ 0E, opy )
=2 |- Ebe —|—El + ﬁbe —|—ﬁl |, 1=2x,Y, B.61
Opizi (B, i ) Diti (5 i o) Opuzi ( )
where
OE, 0 ( \/ 5 1 Opy.z Opuy Opy,z
- Dy +p3 +p12/ ) - 7= v,x " : +pu, . : +pu, e, B.62
Opii O . Y * E, ‘ Opuzi Y Opizi - Opz i ( )
with
Opu. . .
810;,]@ = 61']" J=2Y, t=2,Y, (B.63)
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B.3.  Derivatives of the Equal Mass Constraint

and
ap,(jf) b Vitie +t17 +tig
=G Plep,z +
81015{,@‘

Opyz 9. \/a2b2pl23p,z + ab? — aE?ep . (pax + Pg,a:)

Thereby, the following auxiliary variables have been defined:

1
a:= -5 2
Plep,z + Plep,y
2
m
b:= TW + (plep,mpl/,ar + plep,ypy,y)
ob
t16::a2-2b-p2 T
PE O
ob
t17 =a-2-b-
51715{,@'

0
t1g := _aElzep : % (P?/m +p12/,y) = _aElzep 2Py
K

with

2
0b _ 0 miy ny
aptf,i aptf,i 2

For the solution the same sign is chosen as for the reconstruction of the neutrino.

Plep,xPv,x + plep,ypl/,y) = Dlep,is 1= z,y.

(B.64)

(B.65)

(B.66)
(B.67)

(B.68)

(B.69)

(B.70)
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C. A Brief Outline of a Likelihood Function

Here the realisation of a Likelihood function £ is briefly outlined. The Likelihood function
evaluates the quality of a fit by its value, analogous to the Lagrange function: The smaller the
value of the Likelihood function, the better fit the estimated values the measured quantities
with respect to the constraints. It evaluates the probability to measure a particular set of data
under the assumption of certain distributions of the fit parameters.

In Equation (C.1) an example of the implementation of the Likelihood function is given.

, 2
L= ZM - 21%%) —21n< = ) (C.1)

2 2 2 2 2
o Oq A’rnt + FA ATrLVV,hacl + mW,pol ’ FVV

=:t; = energy parameters = {2 = equal mass constraint =: t3 = first W —mass constraint

1
—2In ,
<Am%/[/,lep + mIQ/V,pol ’ F%V)

=: t4 = second W —mass constraint

with a := ¢, ¢, bpad, biep, lep, Tag := 3.1 GeV/c? being the width of the Breit-Wigner distributed
top quark mass difference of the top- and anti-top quark, I'yy := 2.141 GeV /c? being the width
of the Breit-Wigner distributed W boson mass and myy,pe := 80.403 GeV/ c? the pole mass of
the W boson [6]. Thereby, the following quantities have been defined:

Am? = (pg + pg + thad)Q — (Pbye,, + Piep + )’ (C.2)
AmW,had = (pq +p‘j)2 - m%/[/,pol (CB)
AmW,lep = (plep + pV)2 - m%/[/,pol' (04)

The first term ¢; considers a Gaussian-like distribution of the energy resolution of the measured
particles. to takes the equal mass constraint into account. Thereby, the difference of the two top
quark masses, which are reconstructed from their decay products, is assumed to be Breit-Wigner
distributed with a width of T'a; := 3.1 GeV/c? (the linear sum of the widths of both the top-
and the anti-top quark). The Breit-Wigner probability distribution p(z) of a quantity x with a
mean M and a width I' is described by

1 r

P@) = S T T T
1

(22 — M2)2 + M2T2

(C.5)

p(z) x (relativistic approximation). (C.6)
Note, that for the equal mass constraint the relativistic approximation of the Breit-Wigner
distribution cannot be used. This is due to the fact that the mean of the mass difference is
assumed to be zero. Thus in the relativistic approximation the denominator of Equation (C.6)
would become zero for equal top- and anti-top quark masses.

t3 takes the first W-mass constraint into account by using the relativistic Breit-Wigner
distribution. Analogous the second W-mass constraint could be taken into account by term 4.
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