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Abstract
As Higgs boson pair production is often referred to as the ultimate test of the Standard Model of particle
physics, many different analysis are conducted to find evidence this process. All these analysis have one thing
in common: A large number of particle interactions and decays has to be recorded, reconstructed, identified
and analysed. To automate such processes many different Data and Computer Science approaches are used.

In this thesis, a new Feed Forward Neural Network based model is proposed to separate and classify
signal and background events for the analysis of Higgs pair production in the boosted decay channel
X → HH → bb̄WW ∗ with 1 lepton in the final state. To train the Neural Network simulated events in
the range 0.8 TeV ≤ mX ≤ 5 TeV at

√
s = 13 TeV are used. The detector response for these simulated

events is based on the ATLAS detector at CERN. The analysis currently uses a hand designed, cut-based
approach, which is evaluated and compared to the proposed model. In addition to a training on all mass
points simulated, the Neural Network is trained on two singular mass points, which are used to evaluate the
model performance further. The final proposed model is shown to outperform the cut-based model.

Keywords: Particle Physics, Bachelor thesis, Higgs boson pair production, Machine Learning, Neural
Networks

Zusammenfassung
Higgs Boson Paarproduktion wird oft als ultimativer Test des Standardmodells der Teilchenphysik bezeichnet,
weswegen viele verschiedene Analysen durchgeführt werden, um Nachweise zu finden. Alle diese Untersu-
chungen haben eine Sache gemeinsam: Eine große Menge an Wechselwirkungen und Zerfällen von Teilchen
muss aufgezeichnet, rekonstruiert, identifiziert und analysiert werden. Heutzutage werden deshalb viele
Ansätze der Informatik und Data Science angewandt, um diese Prozesse zu automatisieren.

In dieser Arbeit wird ein neues Modell, basierend auf einem Feed Forward Neural Network vorgestellt,
welches Ereignisse aus dem Higgs Boson Paarproduktionskanal X → HH → bb̄WW ∗ mit einem Lepton im
Endzustand klassifizieren kann. Dieses Neuronale Netzwerk wird auf Simulationsereignissen in dem Bereich
0.8 TeV ≤ mX ≤ 5 TeV bei einer Schwerpunktsenergie von

√
s = 13 TeV trainiert. Simuliert werden die

Ereignisse basierend auf dem ATLAS Detektor am CERN. Die Analyse des X → HH → bb̄WW ∗ Kanals
benutzt derzeit ein per Hand definiertes, schnittbasiertes Modell, das in dieser Arbeit auch evaluiert und mit
dem vorgeschlagenen Neuronalen Netzwerk verglichen wird. Um ein tieferes Verständnis in das Modell zu
gelangen, wird zusätzlich zum Training auf allen simulierten Massenpunkten das Neuronale Netzwerk auch
auf zwei einzelnen Massenpunkten trainiert. Es wird gezeigt, dass das vorgeschlagene Neuronale Netzwerk
das schnittbasierte Modell übertrifft.

Stichwörter: Teilchenphysik, Bachelorarbeit, Higgs Boson Paarproduktion, Maschinelles Lernen, Neuronale
Netzwerke
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Chapter 1

Introduction

Particle physics is such a vast field of research, that with new measurements and observations of
the fundamental particles and interactions of our world, even the knowledge about the creation
of our universe is expanded. To date, the best theory describing the fundamental particles and
interactions is the Standard Model of particle physics (SM) [7–9].

The latest discovered particle of the SM is the Higgs boson, which was first observed in 2012 by
the ATLAS and CMS experiment [10, 11]. Since then many properties of the Higgs boson have been
measured and verified. Still missing is the observation of Higgs boson pair production, which is
often referred to as the ultimate test of the SM, as it allows the direct measurement of the Higgs
potential [12, 13]. In addition to the SM, many different Beyond Standard Models predict resonant
Higgs boson pair production, which would, if experimentally proven, open up a new window of
understanding about our universe.

Challenged by the sheer number of events having to be analysed, modern particle physics heavily
relies on computer aided analyses. Therefore Data Science and modern approaches, such as Neural
Networks, present a great opportunity. Machine and Deep Learning models are widely used for
event selection, reconstruction and classification of events recorded [14–16].

In this thesis, a new deep learning model to separate and classify signal and background events
for the analysis of Higgs pair production in the boosted decay channel X → HH → bb̄V V ∗ with 1

lepton in the final state is proposed. This channel was chosen, because it offers the second highest
Higgs boson pair branching ratio. The X → HH → bb̄V V ∗ analysis is based on Ref. [4]. The model
proposed uses Feed Forward Neural Networks and is trained on events simulated at

√
s = 13 TeV.

Furthermore, no Beyond Standard Model (BSM) theories are considered in depth in this thesis.
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Chapter 2

The Fundamentals of Particle Physics

2.1 Standard Model of Particle Physics
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Figure 2.1: Schematic view of the Standard Model (SM) [1].

The Standard Model (SM) [7–9] is currently the most applicable theory to explain the elementary
components and interactions of our universe. The SM predicts two different kind of particles: the
ones that mediate interactions, bosons, and the ones that interact with said forces, fermions. To
date, 12 fermions and 5 bosons have been observed experimentally. These particles can be seen in
Figure 2.1.
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Fermions

Fermions are spin 1/2 particles with features such as mass, charge, colour, spin and weak isospin.
Because of their differing masses, they are grouped into 3 generations, with the mass of fermions
of the same type increasing between each generation. Furthermore, fermions are split into quarks
and leptons.

Quarks are either up-type, meaning they possess charge +2/3 e or down-type meaning they
possess charge −1/3 e with e being the elementary charge. Additionally, quarks carry colour
charge. As a result, they cannot be observed alone, but only bound in hadrons. This phenomena is
explained later by the strong interaction. The first generation of quarks are the up quark u and
down quark d, followed by the charm quark c and strange quark s. Finally, the top quark t and
bottom quark b form the third generation. Since quarks are massive, charged and carry colour they
can interact with every boson the SM predicts.

Leptons on the other hand, do not carry colour and are integer charged. They are grouped into
charged leptons with charge ±1 e and neutral charged leptons called neutrinos. As a result,
charged leptons can interact with the electromagnetic and weak interaction and neutrinos only
with the weak interaction. The first generation of leptons are the electron e and the electron
neutrino νe. Second are the muon µ and muon neutrino νµ. The third generation of leptons are the
tauon τ and tauon neutrino ντ . As seen, every charged lepton has a corresponding neutrino.

Forces

In the SM, fermions can interact with one another as described by the respective quantum field
theory (QFT), which correspond to local gauge symmetries. An excitation of the corresponding
gauge field is a gauge boson. Interactions can be ranked by their respective strength, quantified by
the coupling constant αi. The value of these coupling constants are in fact not constant, but change
with the energy scale. Consequently the coupling constants are referred to as running constants.

The electromagnetic interaction is described by quantum electrodynamics (QED) [17] and its
mediating particle the photon γ. Photons are spin 1 vector bosons and carry neither electrical
charge, colour nor mass. They interact with charged particles and therefore cannot couple to
themselves. QED corresponds to the symmetry of the U(1) gauge group.

The weak nuclear force [18–20] on the other hand is symmetric under an SU(2) group transforma-
tion and is mediated by two particles: the charged W±-boson and the neutral charged Z-boson.
Both of these particles are massive vector bosons with spin 1. Coupling to the W± and Z bosons
is possible via the weak isospin I3. Only fermions with negative chirality and antifermions with
positive chirality can interact with the charged weak nuclear force. W±-bosons mediate between
two particles with I3 = +1/2 and I3 = −1/2, thereby changing the quark and lepton flavour.
Because of that, the W also has to be of integer weak isospin I3 = ±1 or I3 = 0. The W± and
Z acquire their mass via the Higgs mechanism described later. But because of their masses, the
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coupling strength of the weak nuclear force is suppressed at low energies.

The electromagnetic and weak nuclear force can also be unified into the electroweak interaction
[18, 19]. This force is described by a symmetry of an SU(2)L ×U(1)Y with L standing for coupling
to particles with left-handed chirality and the hypercharge Y = 2(Q− I3), where Q is the electric
charge.

The strong interaction describes the coupling of particles with colour. Gluons g mediate the strong
interaction and are themselves colour charged. Consequently, only gluons and quarks can interact
strongly. Gluons are massless spin 1 vector bosons, with no electric charge. There are three different
colour charges: red, green and blue. A particle carrying a single colour is not observable, however
colourless hadrons can be observed. These hadrons are bound quarks constantly interacting via
the strong force with each other. For a hadron to be colourless, the quark colours have to match by
either being colour - anti-colour pairs or three particles of all different (anti-)colours. There are a
total of 8 gauge fields and gluons. These fields stem from a symmetry of an SU(3) group and are
described by quantum chromodynamics (QCD) [21].

Higgs Mechanism

The last boson of the SM is the Higgs boson H . The Higgs boson is the second heaviest particle of
the SM and is a scalar boson with spin 0. It is neither electrical nor colour charged. Nevertheless,
the Higgs field and Higgs boson are the reason that fermions and gauge bosons possess mass [22].
The Higgs mechanism is expressed as a complex doublet of scalar fields in the Lagrange density
of the electroweak interaction. The corresponding potential known as the Higgs potential can be
expressed as follows [22]

V (ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2 (2.1)

with λ > 0 and µ2 < 0 and is shown in 2.2.

Figure 2.2: An illustration of the Higgs potential [2].

As visible in Figure 2.2, the global minimum of the Higgs potential is not at the origin, but located

at v =
√︂
−µ2

λ . As a result the symmetry of the Higgs potential is broken, because the ground state
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of the Higgs potential does not respect the symmetry of the system. This allows the fermions, W±

and Z bosons to couple to the Higgs field whose vacuum expectation is non zero and thereby
obtain mass. Their masses can be expressed as functions of v

mW =
1

2
gW v (2.2)

mZ =
1

2

gW
cos θW

v (2.3)

mf =
1√
2
gfv (2.4)

with gW being the weak coupling constant, θW the Weinberg angle (also known as weak mixing
angle) and gf the Yukawa coupling constant [23].

In general, the SM is in accordance with current measurements and the most successful description
of particle physics today. However, the SM is not a complete theory as it does not explain every
effect of our universe, most notably gravity and dark matter.

2.2 Higgs Boson Pair Production

The Higgs boson is the newest discovered particle of the SM. It was discovered in 2012 by the
ATLAS and CMS expirements in LHC at CERN [10, 11].

The Higgs boson is a scalar boson of spin 0 and has a mass of mH = 125.09 ± 0.21(stat.) ±
0.11(sys.) GeV [24, 25] and a total cross section of σtotal

H = 55.62 pb measured at
√
s = 13 TeV

[24,25]. Because of their large mass, Higgs bosons decay quickly. The branching ratios of the Higgs
boson are shown in Figure 2.3 as a function of Higgs boson mass. As can be seen, the Higgs decay
is dominated by H → bb̄, followed by H → WW , because of their large mass.

The production of Higgs bosons at the LHC is dominated by gluon-gluon fusion (ggF), meaning
two gluons give rise to a virtual top quark loop which fuses to a Higgs boson. Secondly Higgs
bosons can be produced by vector boson fusion (VBF). The third most likely production channel is
the W or Z associated production. Least likely is a production in association with a tt̄ pair. All
leading order Feynman diagrams of these production channels are depicted in Figure 2.4.

The last missing component of the Higgs potential (Eq. 2.1), the self-coupling constant λ, can
be measured by Higgs boson pair production. In proton-proton collisions, the production of a
pair of Higgs bosons is dominated by gluon-gluon fusion and is sensitve to the Higgs boson self
coupling. As seen in Figure 2.5 a) the Higgs pair stems from a decaying virtual Higgs boson. Thus
the Higgs bosons couple to each other and the self coupling constant λ is measurable. However,
Higgs boson pair production is heavily suppressed due to destructive interference, for example by
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Figure 2.3: Higgs decay channel with branching ratios depicted as a function of the mass of the
Higgs boson [3].

top Yukawa-coupling 2.5 b). Therefore, Higgs boson pair production has only a cross-section of
about σSM

HH = 31.05 fb [26].

The aforementioned self interacting pair production is also referred to as non resonant. Many
Beyond Standard Model theories (BSM) also predict one or more other particles which would be
capable of decaying resonantly into two SM Higgs bosons. One example would be the extension of
the SM with a second complex scalar doublet, as this is necessary for supersymmetry [27]. Another
example is the Two-Real-Singlet Model (TRSM) [28], which is including two real scalar singlets to
the SM. The TRSM even predicts two additional scalar boson, which can decay into two SM Higgs
bosons, depending on the chosen mass scales. An example for such a process is shown in Figure
2.5 c).
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(a) ggF (b) VBF

(c) VH (d) tt̄H

Figure 2.4: Lowest order Feynman diagrams for the production of Higgs bosons at LHC. a)
gluon-gluon fusion ggF, b) vector boson fusion VBF, c) W,Z H and d) tt̄H production [4].

(a) virtual Higgs decay (b) top Yukawa-coupling
(c) resonant Higgs boson pair pro-
duction via heavy scalar X

Figure 2.5: Lowest order Feynman diagrams for the pair production of Higgs bosons at LHC [4].
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Chapter 3

The Fundamentals of Neural Networks

Instead of a human defining an algorithm which calculates a solution to a problem, in Machine
Learning, an algorithm is designed to learn a statistical model on which a decision can be made.
This requires training data and a function which quantifies how good the model performs, known
as a loss function (also known as cost function). By optimising the loss function, the model learns
how to weight data to get the best output. Often machine learning algorithms use some form of
regression to build a statistical model.

3.1 Neural Networks

Neural Networks are a class of Machine Learning algorithms first envisioned in the late 1950s [29]
and designed after the way the human brain makes decisions. They are often referred to as Deep
Learning.

Often Neural Networks are built up from perceptrons and activation functions. In combination a
perceptron and activiation function perform a binary regression, and are called a unit. By joining
many units in series and in parallel, a Neural Network is formed.

Multilayer Perceptron

A perceptron [29, 30] works by summing n weighted input variables
∑︁n

i=1 wi · xi for i = 1, ..., n

and adding a bias b. Afterwards the activation function f : R → R is applied, leading to the unit
output:

y = f

(︄
n∑︂

i=1

wi · xi + b

)︄
(3.1)

11
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Weighted sum of inputs + bias

(nonlinear) activation function

Figure 3.1: Diagram of a perceptron.

During training, the weights wi and bias bi are optimised. As seen easily this can be vectorised to:

y = f
(︁
w⃗ T x⃗ + b

)︁
(3.2)

By running many identical units in parallel, a layer is formed. A layer takes n variables as input,
runs them through m units, and returns m output variables. A layer is expressed by the weights
matrix W ∈ Rm×n, the bias vector b⃗ ∈ Rm and an activation function f : Rm → Rm:

y⃗ = f
(︂
Wx⃗ + b⃗

)︂
(3.3)

Finally multiple layers are combined sequentially to form a Multilayer Perceptron (MLP). The
number of layers is referred to as depth of the Neural Network, and the count of units in a layer as
width. The first layer of a MLP Neural Network consists of the input variables and is referred to
as input layer. The last layer of the Network is called the output layer and comprises the output
variables, on which a decision is made. In between the input and output layer, layers are referred
to as hidden layers, because from the outside, no insight is given into these layers. MLPs are
referred to as a Feed Forward Neural Networks, because data flows from the input to the output
without forming loops or recursion.

The activation function f is important for the performance of an MLP, because it defines a cut on
the output variables of a layer [31]. Therefore, non-linear functions are most desirable, such as a
binary step function at some threshold. On the other hand, the function should be differentiable (at
least in almost all points), because of the gradient based optimisation of the Neural Network (see
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section 3.2). The preferred activation function nowadays is the Rectified Linear Unit (ReLU) [32]:

ReLU(x) = max(0, x) (3.4)

The ReLU cuts of the negative output from propagating further through the network, but does
not normalise the positive values to a specific range. Non-differentiability at zero is problematic
for the ReLU, since it can lead to instability during training. Because of this, similar, but fully
differentiable functions like the Sigmoid Linear Unit (SiLU) have been developed (see Figure 3.2).

6 4 2 0 2 4 6
x

0

1

2

3

4

5

6

7

Different activation functions
ReLU(x) = max(0, x)
(x) = (1 + exp x ) 1

SiLU(x) = x (x)

Figure 3.2: Rectified Linear Unit (ReLU), Sigmoid (σ) and Sigmoid Linear Unit (SiLU) activation
functions.

Universal Approximation theory mathematically proves, for different problems and designs of
Neural Networks, conditions in which a desired function can be approximated to an arbitrary
precision. It was first shown, that for an MLP consisting of one layer with sufficient width and a
non-polynomial activation function, any continuous function could be approximated to an arbitrary
precision [33,34]. However, using only one layer of sufficient width maybe mathematically possible
to represent a problem, but deeper networks are easier to train numerically. Therefore, for arbitrary
deep MLPs using ReLUs as activation functions, it was shown, that the minimum width of a layer
is max{input dim. of the target function + 1, output dim. of the target function} to approximate
certain target functions [35–37]. In practice MLPs are chosen to be wide enough and the number of
hidden layers is used to increase the model’s overall generalisation power.

3.2 Optimisation

Optimising a Neural Network is heavily dependant on the task and the dataset provided [30]. In
general, a dataset is the most useable if all included features and classes are represented equally.
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Additionally the dataset should sample the input space uniformly. A dataset that does not fulfil
this would include a bias, which will be learned and used by any model trained on this data. To
train and evaluate a model on a dataset, the dataset is split into three groups: training, validation
and testing. The training dataset is the largest one and as the name suggests contains the data used
to train the model. During the training of the model, the validation dataset is used to cross check
the performance of the neural network, and to stop the training when the model’s performance on
the validation set stagnates, indicating overfitting of the model. Lastly, the test dataset is used to
evaluate the performance of the network. For that reason the test data can not be visible to the
model during training, to avoid overfitting. The test dataset should be the second largest dataset,
to provide enough statistics. In general three different kinds of algorithms are used to optimise
Neural Networks: supervised, unsupervised and reinforcement learning.

Supervised learning [30] uses labelled data to compare the model output with the labels. This
approach is often used for classification tasks.

Unsupervised learning [30] uses unlabelled data. The model is optimised to predict the data
again. This first sounds undesirable, but by first encoding the data to a smaller latent space and
then decoding it back to the original space, the model is trained to find patterns in the features.
Disadvantageously, these patterns are usually not understandable for humans. Because of this
design, such an approach is often used in recognition or text based tasks.

Reinforcement learning [38] is a completely different approach. It is based on the idea of punishing
and rewarding an agent for taking an action in an environment. Thereby the agent is trained to
find a compromise between exploring uncharted environments and exploiting already existing
knowledge. Easy examples for reinforcement learning are computer controlled bots in a video
game or self driving cars. Reinforcement learning is not applicable to the use case in this thesis
and will therefore not be explained in more detail.

In this thesis, supervised learning is applied to train a Neural Network. The different steps to train
a Neural Network are explained in detail, in the following Sections 3.2.1 - 3.2.4.

3.2.1 Loss Function

Since Neural Networks are trained by minimising a loss function [30], the loss has tremendous
impact on the model performance. Furthermore, the loss function should be easily optimisable.
This means the function should be differentiable in almost every point, have an easy to find global
minima and in the best case be convex. In addition, a function with a clear global minima could
still be inadequate, if many local minima exist, in which a optimiser could get stuck in. Because of
these reasons the most used loss functions are the Mean-Squared-Error (MSE):

MSE(x, t) =
1

n

n∑︂
i=1

(xi − ti)
2 (3.5)
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and the Cross-Entropy-Loss:

CrossEntropy(x, t) = −
n∑︂

i=1

ti · log xi (3.6)

with x being the model prediction and t the truth label for n classes.

The Mean-Squared-Error is one of the most straightforward loss functions. It calculates the mean
difference between the true label and prediction. By squaring the difference, large differences
between the target and prediction are amplified more than small deviations, which increases
training stability. Because of this behaviour, the MSE is often used for regression tasks and tasks
that require a continuous model output [30].

The Cross-Entropy-Loss is used in classification tasks, for optimising the probability of an input
belonging to a class. Often the Cross-Entropy-Loss is combined with a Softmax Softmax(xi) =

expxi∑︁
j expxj or Sigmoid σ(xi) =

expxi

1+expxi
activation function in the output layer, to force the output

to be in x ∈ [0, 1]n. The logarithmic nature of the Cross-Entropy-Loss punishes large deviations
from the target. In addition, minimising the Cross-Entropy-Loss for a parameter is the same as
maximising the likelihood for that parameter, which is a well known statistical optimisation [30].

3.2.2 Gradient Descent and Backpropagation

The loss of a Neural Network is optimised in its simplest form via first order Gradient Descent
optimisation. For the loss function f(θ), the model parameter θ and learning rate Gradient Descent
can be implemented as in Algorithm 1.

Algorithm 1 Gradient Descent

Input: θ0 (model parameters), L(θ) (loss function), γ (learning rate)

1: for t = 1, · · · , T do
2: gt = ∇θLt(θt−1) ▷ compute gradients
3: θt = θt−1 − γgt ▷ Update parameters
4: end for

Output: θT

First the training data is passed through the model and an output is predicted. This step is referred
to as forward pass. After the loss has been calculated, the gradient of the loss is calculated for
all model parameters. The parameters are then updated by subtracting the gradient of the loss
from the parameters. The learning rate γ determines the amount of change applied to the model
parameter per gradient descent step, thereby defining the convergence rate.

The problem with this approach is the need for the gradient of the loss function for all model
parameters. Consider a Neural Network with 3 layers called y = f(x), z = g(y) and h(z) with
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the output of the network given as L(x) = h(g(f(x))). To calculate the gradient, the chain rule is
needed:

∂L

∂x
(x) =

∂L

∂z

∂z

∂y

∂y

∂x
= h′(z)g′(y)f ′(x) = h′(g(f(x))g′(f(x))f ′(x) (3.7)

To calculate this gradient, Backpropagation [39] is employed. This means that during the forward
pass of the data, every layer/parameter saves its input. Then knowing its own gradient, any layer
can calculate the gradient for each of its parameters dependent on the input. To obtain the full
gradient, all layer gradients are then multiplied together.
As an example: For the layer h, the input z is saved, h(z) calculated and passed forward. After-
wards for the layer h, the gradient h′(z) = h′(g(f(x))) can be calculated, when the gradient h′ is
known. Independently for g and f , the respected gradients can be computed, to form the desired
result: ∂L

∂x (x) = h′(z)g′(y)f ′(x).
If each layer and function has a known derivative by design, Backpropagation is therefore relatively
efficient to calculate.

To avoid the memory consumption of Backpropagation, Stochastic Gradient Descent is used [40]. In
this alteration of the Gradient Descent algorithm, not all data is used to calculate the most desirable
gradient per training’s epoch, but only a sample of the training data, called a batch. By using the
smaller batches, more gradients have to be calculated during an epoch, which results in suboptimal
gradients, but reduces memory and computation consumption. In practice, the Stochastic Gradient
Descent still convergences but requires more iterations than classical Gradient Descent. To further
increase numerical stability and the convergence rate, weight decay/regularisation and momentum
are employed in Stochastic Gradient Descent algorithms as in Algorithm 2.

Momentum [41, 42] is based on the idea of retaining a velocity vector bt pointing in the direction of
persistent reduction over the previous iterations. The velocity vector classically is defined with
momentum µ, the impact of the new gradient to the velocity vector and dampening τ , the amount
of retained velocity [41, 42]:

bt = µbt−1 + (1− τ)∇θLt(θt−1) (3.8)

Weight decay and regularisation are both based on the idea of reducing the impact of gradients
with large magnitude to favour a "simpler" solution. Regularisation works by adding a term to the
optimisation problem, resulting in a unique solution being forced. In this case the weighted L2

norm of the input x is added. Weight decay retains an amount of the previous gradients during
optimisation, to smooth out the current gradient, because in general all gradients should point in
the overall same direction. In Stochastic Gradient Descent weight decay and L2 regularisation are
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equivalent and defined as a weighting factor λ [43]:

θt = (1− λ)θt−1 − γ∇Lt(θt) (3.9)

Algorithm 2 Stochastic Gradient Descent with momentum and regularisation

Input: θ0 (model parameters), L(θ) (loss function), γ (learning rate), λ (weight decay),
1: µ (momentum), τ (dampening)

2: for t = 1, · · · , T do
3: gt = ∇θLt(θt−1) ▷ compute gradients
4: gt = gt + λθt−1 ▷ regularize gradients
5: if t > 1 then ▷ Calculate momentum
6: bt = µbt−1 + (1− τ)gt
7: else
8: bt = gt
9: end if

10: gt = bt

11: θt = θt−1 − γgt ▷ Update parameters
12: end for

Output: θT

3.2.3 ADAM, AMSGRAD and decoupled weight decay

To further improve numerical stability and convergence rate, algorithms have been developed
which control momentum and dampening on their own. One of the most prominent is ADAM,
named after Adaptive Moment estimation. As the name suggests, ADAM estimates the first and
second order moment to update the learning rate instead of using momentum and dampening [44].
This design was chosen to combine the advantages of ADAGRAD and RMSPROP in a memory
efficient algorithm. The first excels at dealing with sparse gradients and the second one at dealing
with non-stationary objects. Because of this, ADAM has become widely used for training machine
learning problems with large datasets and/or high-dimensional parameter spaces.

As advantageous as ADAM is, two problems in the original definition lead to suboptimal perform-
ance in some cases. However these problems can easily be fixed.

The first problem stems from weight decay not being equal to L2 regularisation in ADAM as in
Stochastic Gradient Descent. Originally ADAM used L2 regularisation, resulting in scaling the
sums of the gradient of the loss function and the gradient of the L2 regulariser. On the other hand,
decoupled weight decay only adapts the gradient of the loss function. This results in weight decay
regularising with a larger gradient magnitude than L2 regularisation and is shown by Ref. [45] to
be more favourable.

Secondly, the standard ADAM algorithm does not converge in some cases. This problem is fixed by
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implementing AMSGRAD [46] into ADAM. In ADAM, the second order moment estimate vt can
increase the learning rate if gt = ∇θLt(θt−1) < vt−1, because then vt = β2mt−1 +(1−β2)g

2
t < vt−1.

This will result in a slowing of convergence and in the worst case non convergence. But by taking
the maximum of all previous second order moment estimates vmax = max(vmax, vt) the learning
rate cannot decrease, resulting in overall faster convergence.

The following algorithm 3 is the implementation of ADAM with AMSGRAD and decoupled weight
decay used as optimiser in this thesis:

Algorithm 3 ADAM with AMSGRAD and decoupled weight decay

Input: θ0 (model parameters), L(θ) (loss function), γ (learning rate), β1, β2 (betas), λ (weight
decay), ϵ = 10−8 (to avoid dividing by 0)

1: m0 = 0 (first moment)
2: v0 = 0 (second moment)
3: v̂max = 0

4: for t = 1, · · · , T do
5: gt = ∇θLt(θt−1) ▷ compute gradients
6: mt = β1mt−1 + (1− β1)gt ▷ compute biasesd first order moment estimate
7: vt = β2mt−1 + (1− β2)g

2
t ▷ compute biasesd second order moment estimate

8: m̂t =
mt

1−βt
1

▷ bias correct first order moment estimate
9: v̂t =

vt
1−βt

2
▷ bias correct second order moment estimate

10: v̂max = max(v̂max, v̂t) ▷ Update maximum vmax

11: θt = θt−1 − γ m̂t√
v̂max+ϵ

− γλθt−1 ▷ Update parameters with decouled weight decay
12: end for

Output: θT

3.2.4 Gradient Problems

During training, the gradients of the different parameters are of particular interest, because
problems are directly visible via the Gradient Descent Optimisation. There are two different kinds
of gradient problems: exploding and vanishing gradients.

Exploding Gradients

Exploding gradients are gradients that consistently grow larger during training, resulting in big
changes to the parameters, which leads to unstable model performance. Exploding gradients
are often a sign for implementation errors or suboptimal initialisation of model parameters in
Feed Forward Neural Networks. In Recurrent Neural Networks, exploding gradients are much
more common and often are a by product of the model architecture. To avoid exploding gradients
gradient clipping and weight decay or L2 regularisation can be used.
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Vanishing Gradients

Vanishing gradients are much more common for Feed Forward Neural Networks. They often
result from using the wrong activation function in a layer. As an example, the sigmoid function

σ(x) =
1

1 + exp−x
=

expx

1 + expx
(3.10)

compresses its input to [0, 1]. This can be useful, but with

∂

∂x
σ(x) =

exp−x

(1 + exp−x)2
= σ(x)(1− σ(x)) (3.11)

the gradients for |σ(x)| → 1 become

lim
|σ(x)|→1

∂σ

∂x
(x) = 0 (3.12)

Because the input does not have to be relatively large or small to achieve this behaviour, these
areas can easily be saturated during training, resulting in vanishing gradients (see Figure 3.3).
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Figure 3.3: Sigmoid activation function and gradient.

To avoid vanishing gradients, ReLUs or similar functions are used as activation functions to
connect layers. In addition, Batch normalisation between layers, gradient clipping and weight
decay or regularisation can help [47].

Batch Normalisation

Batch normalisation [47, 48] was designed to keep data propagating through the network standard
normalised. For xB ∈ Rn, an input batch with mean µB and variance σ2

B , Batch normalisation is
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defined as in Ref. [48]:

Batchnorm(xB) = γ · x̂B + β = γ · xB − µB√︁
(σB)2 + ϵ

+ β (3.13)

with γ and β being learnable parameters to restore the representation power of the network.
By setting γ =

√︁
(σB)2 and β = µB the original input variable can even be recovered and

therefore, during training, a desired representation is learned. Going back to the vanishing
gradient problem, it is easily visible that batch normalised data is much more suited for activation
functions compressing the output. Overall this architecture leads to an increase in training stability,
speed and overall model performance.

3.2.5 Hyperparameters

During training, the following hyperparameters define the performance and training stability of a
Feed Forward Neural Network using Multilayer Perceptrons (values provided are recommended
default values):

• Number of layers: defines the depth of the Neural Network and therefore representation
power.

• Number of units used per layer: controls the width of the NN and determines which
functions can be fitted (Universal Approximation theory).

• Number of batch normalisation layer: helps with vanishing gradients and increases con-
vergence rate and overall model performance.

• Activation functions used per layer: defines cuts on the layer output. For connections
between layers, ReLUs are recommended. For the output layer, the activation function
depends on the task and wanted output. For multi-class classification, the Softmax function
is advised.

• Loss function: determines the way the model is trained. If the NN outputs probabilities, the
Cross Entropy loss is recommended.

• Optimiser: defines how accurate and how fast the model is trained.

– learning rate γ: determines the maximum change to the NN parameter per optimisation
step.

– weight decay λ = 0.01: defines how much the previous gradients influence the current
gradient, to smooth out the overall gradient descent.

– betas β1 = 0.9, β2 = 0.999 (if ADAM is used): determine the influence of previous
moments estimates on the current estimation.
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Chapter 4

The ATLAS Experiment and the Large Hadron
Collider

4.1 The Large Hadron Collider

Figure 4.1: Schematic view of the CERN accelerator complex [5].
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The Large Hadron Collider (LHC) [49] was built by the European Organisation for Nuclear Research
(CERN) in Geneva to study particles of the SM and to search for BSM particles and interactions.
CERN is not only encompassing the LHC but is a complex of many accelerators and experiments as
seen in Figure 4.1. Admittedly, LHC is the biggest of them with a circumference of 27 km, built in
tunnels about 100 m underground. The LHC was designed to collide protons at a centre-of-mass
energy of

√
s = 14 TeV at a luminosity of L = 1034 cm−2s−1 [49].

LHC was first operational between 2010 and 2013 with a centre-of-mass energy between
√
s =

7 and 8 TeV. This first data collection period is called Run I. For Run II, the LHC was upgraded
and a energy of

√
s = 13 TeV was reached. This run took place from 2015 until 2018, afterwards

LHC was upgraded again. In 2022, the LHC Run III started again with
√
s = 13.6 TeV. Run III is

supposed to end 2025.

To reach the required energy for LHC collisions, protons have to pass through different accelerators
which increase the energy of the protons step-by-step. The first accelerator is the LINAC 2, a linear
accelerator which accelerates ions containing protons to 50 MeV. In Run III, LINAC 4 is used instead
which accelerates protons up to 160 MeV. After the LINAC, the protons are inserted into the Proton
Synchrotron Booster. There, the protons are extracted and accelerated to 1.4 GeV. Afterwards the
beam is fed into the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS). Protons
are now accelerated to 450 GeV. Finally they are inserted into the LHC and accelerated to their
currently final energy of about 6.5 TeV.

The collision data of the LHC is collected at 4 main experiments: ATLAS [50], CMS [51], ALICE [52]
and LHCb [53]. ATLAS and CMS are designed as general purpose detectors, while ALICE and LHCb

have specialised physics programs. The ALICE experiment focuses on quark deconfinement and
quark-gluon plasma to study QCD. On the other hand, LHCb is designed to study b physics and
thereby explore CP violation. In this thesis only data from the ATLAS project is considered.

4.2 The ATLAS Experiment

The ATLAS experiment, as mentioned above, is a general purpose detector. Therefore it is composed
of many sub-detectors to measure every possible particle. These sub-detectors are ordered by
increasing distance to the interaction vertex: the inner detector (ID), the calorimeters (CAL) and
the muon spectrometer (MS). The detectors are arranged cylindrically around the proton beam as
seen in Figure 4.2.

The ATLAS experiment uses a right-handed coordinate system with x pointing from the interaction
vertex to the center of LHC, y upwards and z parallel to the beam. Because of the cylindrical design
of ATLAS, the polar angle θ and azimuthal angle ϕ are often used instead of x and y. Additionally,
θ is substituted with the pseudorapidity η = − ln tan θ

2 , because differences in pseudorapidity ∆η

are approximately Lorentz invariant under boosts along z. The distance between two particles is
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Figure 4.2: Schematic view of the ATLAS experiment [6].

defined as ∆R =
√︁

(∆η)2 + (∆ϕ)2.

The ATLAS detector covers the full azimuthal range and |η| < 4.9. Only some areas are not covered
because of support structures and read out channels preventing the installation of further detectors.

4.2.1 The Inner Detector

The Inner Detector (ID) is the detector closest to the interaction point. It comprises an insertable
B-Layer (IBL), pixel detector, the strip semiconductor tracker (SCT) and the transition radiation
tracker (TRT). The whole ID is encapsulated in a 2 T magnetic field. This leads to the tracks of
charged particles to bend, which allows to infer the charge of the particle from the direction of the
curvature. In addition, the measurement of the tracks allows to deduce the transverse momentum
pT of the particle.

The IBL is used to track charged particles, especially B hadrons. The IBL is surrounded by the pixel
detector and SCT. Both detectors use silicon semiconductors to measure charged particles. The
pixel detector has a good 3D resolution by default. The SCT is comprised of stacked strip layers.
These layers are rotated by 40 mrad to another to achieve a 2D resolution, but this is not as precise
as the pixel detector. The pixel detector and SCT achieve a coverage of |∆η| < 2.5. Lastly particles
pass the TRT. The TRT is used to identify electrons. For this task the TRT is built from layers of drift
tubes filled with ionising gas. These tubes are interleaved with materials with different refraction
indices, which generates distinct signatures for the particles and allows for their identification. The
TRT covers |∆η| < 2.

Because the ID is located so close to high energy collisions, it is prone to radiation damage. To
counter this the ID is cooled down with dry nitrogen to between −5 and −10 ◦C. The ID achieves
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an overall momentum resolution of σpT

pT
= 0.05%pT ⊕ 1% [GeV].

4.2.2 The Calorimeters

The calorimeters are used to measure the energy of particles interacting electromagnetically and
hadronically. In ATLAS, sampling calorimeters are used. This means the calorimeters are built
by alternating passive and active layers. The passive layers develop showers from the incoming
particles. Therefore, lead, steel and tungsten are used as absorber materials. After passing the
passive layers the energy of the shower particles is measured by liquid argon or scintillating tiles
in the active layer. As a result most of the energy of the measured particles is depleted at the end
of the calorimeter. Because of this, calorimeters are referred to as destructive detectors. The ATLAS

calorimeter system is comprised of two barrel and two end-cap calorimeters.

The first and innermost barrel calorimeter is the Electromagnetic Calorimeter (ECAL). It is mainly
used to measure the energy of electrons and photons. The shower produced in the passive layer
stems from Bremsstrahlung and pair production of electrons and positrons by the photon. During
these processes the electrons and photons of the shower sequentially loose energy. Therefore the
process is limited because Bremsstrahlung only takes place until a threshold energy is reached.
Because of this limit, the ECALs size is also assessable. The ECAL is built inside a liquid argon
chamber, which is also used as active layers. For the passive layer lead is used. The ECAL covers
the range |∆η| < 1.475 with an accuracy of σE

E = 10%√
E

⊕ 0.7% [GeV].

The second barrel calorimeter is the hadronic tile calorimeter (HCAL). This detector is used
to measure the energy of strongly interacting hadrons. The shower process is similar to the
one in ECAL with the difference that hadrons interact with the absorber material instead of
electrons or photons. This interaction is a strong interaction and produces either hadrons or
gluons. However also electroweak decays are possible, resulting in hadronic showers often
containing electromagnetic showers as well. The HCAL can measure energies with a resolution of
σE

E = 50%√
E

⊕ 3% [GeV] in a region of |∆η| < 1.7 in hadronic showers.

The end-cap calorimeters encompass a Forward calorimeter (FCal), an Electromagnetic end-
cap calorimeter (EMEC) and hadronic end-cap calorimeter (HEC). Furthermore the FCal is a
combination of one EM calorimeter and two hadron calorimeters. The FCal, EMEC and HEC are
located at the end of the detector to extend the range in which particles can be tracked. They cover
a combined range of 1.375 < |∆η| < 4.9 and work on the same principals as the before mentioned
calorimeters. Liquid argon and scintillating tiles are used as active layers as well as lead, steel
and tungsten as absorber. The EMEC covers a range of 1.375 < |∆η| < 3.2 with a resolution of
σE

E = 10%√
E

⊕ 0.7% [GeV]. The HEC measures hadrons with a resolution of σE

E = 50%√
E

⊕ 3% [GeV] in
a region of 1.375 < |∆η| < 3.2. The FCal extends the coverage of ATLAS calorimeter to a range of
3.1 < |∆η| < 4.9 at a resolution of σE

E = 100%√
E

⊕ 10% [GeV].
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4.2.3 The Muon Spectrometer

The Muon Spectrometer (MS) is the outermost detector of the ATLAS experiment. It is designed
to detect particles that are not stopped and detected by the calorimeter. Such particles are pre-
dominantly muons µ. Muons are not detected in the calorimeters because they are not affected
much by Bremsstrahlung due to their high mass. To detect them, gas filled drift chambers inside a
magnetic field with 0.5 T for the barrel and 1 T for the end-cap are used. Muons that enter the
drift chambers ionise the gas, which causes an ionisation cascade that is measurable. Because of
the magnetic field the measured tracks are bend, so the transverse momentum of the particle can
be reconstructed.

The MS is able to measure the momentum of muons in the barrel at |∆η| < 1, in the end-cap at
|∆η| < 2 and at 2 < |∆η| < 2.7 with higher granularity. Trigger chambers for muons are also
part of the MS and cover |∆η| < 2.4. For muons with a transverse momentum of pT = 1 TeV the
relative resolution of the MS is around 10%.

4.2.4 The Trigger

Due to the high number of collisions taking place at LHC, a large amount of data is generated,
approximately 60 TB/s. Therefore, a trigger system is used to reduce the amount of data which
has to be stored and analyzed.

First, a hardware based Level-1 trigger (L1) is used. L1 makes fast decisions at a low resolution,
mainly by searching for high energy measurements in the calorimeters or muon spectrometer to
define regions of interest. This step already reduces the data stream from 40 MHz to 100−1000 kHz.

Secondly, a software based High-Level trigger (HLT) is used. This trigger makes much more
complex decisions, as it associates track information from the ID with energy deposits in the
remaining detector, to reconstruct different physics objects. In the end, the data stream is reduced
to 1− 10 kHz and permanently saved.





Chapter 5

The X → HH → bb̄V V (∗) channel

5.1 The Data

In this analysis, a search for resonant pair production of two Higgs bosons is performed in the fully
boosted decay channel X → HH → bb̄V V (∗) with 1 lepton in the final state. As seen in Figure 5.1,
this channel is characterised by one Higgs boson decaying to two b-jets, H → bb̄ ,and the other
decaying via H → WW ∗. In the 1 lepton final state, one of the W bosons decays hadronically
(Whad), while the other decays leptonically (Wlep). Furthermore, the event selection employed
targets the leptonic decay W → µν for Wlep. In the fully boosted topology, the Whad is reconstructed
as a single jet. Furthermore, it is expected that the lepton is reconstructed inside the Whad-jet. In
addition, no distinction is made on the W bosons being off-shell or on-shell.

This topology is relevant for resonant HH production and targets high masses. This means only
a fraction of the event energy mX is used during the production of the masses mH of the Higgs
bosons HH . Therefore the search targets scenarios where mX exceeds 1 TeV significantly are used.
As a result, the further decay products have a high momentum and cannot be resolved by the
detector, resulting in this fully boosted topology.

Figure 5.1: X → HH → bb̄V V (∗) schematic drawing with 1 lepton final state [4].

To train a model to separate signal from background, labelled events are needed. The events
used in this analysis are generated using Monte Carlo simulations. During these simulations,
labelled particle tracks and interactions are simulated with the corresponding detector readout (see
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Section 5.1.1). Afterwards the detector responses are reconstructed for particles and other objects
such as jets. A preselection is applied to the events (see Section 5.1.2). Kinematic distributions
of the selected data is shown in Section 5.1.3. The Monte Carlo simulations, reconstruction and
preselection follow the design implemented in Ref. [4].

5.1.1 Monte Carlo Simulation

The samples for the Higgs boson pairs are generated by simulating a spin-0 heavy resonance
decaying to two SM Higgs bosons X → HH with mH = 125 GeV. Samples are generated for
mX = 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 4 and 5 TeV. For all of these events a cross section of 1 pb

is assumed. Initial X → HH samples are calculated at leading order in αS using MADGRAPH [54]
with the NNPDF2.3LO PDF [55] set. Hadronization and parton showers are then simulated using
HERWIG7 [56] with EVTGEN [57]. Detector responses are simulated using the AFII detector
simulation [58]. During simulation, a filter is applied to require one decay to be H → bb̄ and the
other either H → WW (∗) or H → ZZ(∗). In addition, the branching ratio of each H is constrained
to be 50% to bb̄ and 50% to V V (∗) Finally by requiring that exactly one lepton and neutrino is
present in the final state, H → ZZ(∗) samples are excluded.

As background the following processes are simulated: massive vector boson production together
with jets (W and Z), top quark pair production (tt̄), QCD, single top production including a t, s
and Wt channel (single t), vector boson pair production (diboson) and single Higgs production
(single H). The W , Z and diboson samples are generated at next-to-next-to leading order, tt̄ and
single t background samples are simulated at leading order. For the QCD samples, a data driven
approach was used.

For a full overview of all simulations and filters used for the samples, see Ref. [4]. To note is that for
this analysis SHERPA 2.2.11 is used instead of SHERPA 2.2.1 for the W and Z background samples.

5.1.2 Reconstruction and Preselection

During data taking, the detectors only readout particle tracks and energy deposits. These tracks and
energy deposits are then associated with particle signatures, to make the data human readable. For
this task, different reconstruction algorithms are used. Once particle signatures are reconstructed,
an event preselection is applied to the data.

Jets

Because of the many different hadrons with similar signature, depositing energy in the hadronic
calorimeter, not single objects are reconstructed, but groups of particles called jets. These jets are
associated with the originally decaying particle like the Whad and in the best case only encompass
decay products of this process. In this analysis TAR jets [59] are used. These TAR jets are clustered
using the anti-kt algorithm [60] with a size parameter of R = 0.75 as large-R jets. They are required
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to have pT > 100 GeV and |η| < 2. Furthermore, TAR jets are labelled as Whad and H → bb̄, where
the Whad is the TAR jet closest to the lepton and H → bb̄ the pT leading TAR jet, which is not
labelled Whad.

Leptons

Due to the background modelling of the boosted topology, only muons (µ) are considered. They are
reconstructed by matching a track in the Inner Detector (ID) with a Muon Spectrometer track [61].
Muons in this analysis are required to pass medium identification and tight track only isolation [62].
Furthermore, they must have pT > 10 GeV and |η| < 2.5.

Missing Transverse Momentum

Because neutrinos cannot be measured by the ATLAS detector, the missing transverse momentum
in the final state is assumed to originate from the neutrinos. It is defined as the negative vector
sum of all other reconstructed objects, such as jets, photons, electrons and muons. Moreover, in
this analysis the missing transverse momentum is given by pmet =

(︁
Emiss

T , pmiss
x , pmiss

y , 0
)︁
.

b-Tagging

Because the decay signature of hadrons containing a b quark differs significantly from other
hadrons, it is possible to extract the quark flavour. To tag b quarks inside a jet, the DL1r algorithm
is used [63].

Overlap Removal

Because in ATLAS all event reconstructions and identifications run independently on all tracks
and energy deposits, overlap removal is needed to remove double counting of energy. As this is a
geometrical problem, overlap removal is done by cutting nearby classifications based on the ∆R

between two objects.
An overview of the overlap removal used is described in Ref. [4].

Preselection

All preselection criteria applied are listed again in Table 5.1. The criteria are designed to select
events that conform with the boosted topology signature and have a precise detector readout. The
cuts on the pT of an object and the requirement for two TAR jets, force the event to be consistent
with a boosted topology. In addition, cuts are applied on the pseudorapidity η of the object. The
preselection is the same as for the cut-based X → HH → bb̄V V (∗) analysis [4], with the exception
that the condition of the lepton being inside or near a jet ∆R(lep, closestJet) < 1 is not used,
because the selection would drastically reduce the separation power of the min ∆R(lep, closest jet)

variable.
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reconstruction object Conditions

TAR jets 2 TAR Jets required
pTAR
t > 100 GeV

|ηTAR| < 2

plead.JetT > 500 GeV

<= 2 b-tagged PFlow jets

lepton lepton has to be a muon
plepT > 10 GeV

|ηlep| < 2.5

|d0significance| < 3

|z0 sin θ| < 0.5 mm

pass medium ID [62]
pass FCTightTrackOnly isolation [62]

H → bb̄ pH→b̄b
t > 500 GeV

Table 5.1: Preselection criteria used.

5.1.3 Kinematic Properties and Distributions of the Dataset

After the simulation, reconstruction and preselection, the events are distributed in the different
classes as seen in Figure 5.2. With around 45.28%, the W samples make up the bulk of events.
Followed by tt̄ events with 28.33%, HH → bb̄WW ∗ events with 12.44%, QCD events with 5.95%,
single t with 3.52%, Z events around 2.64%, diboson events at 1.72% and lastly single H with
around 0.12%. For further analysis, four analysis classes are defined: W , tt̄, HH → bb̄V V (∗) and
other background. The HH → bb̄WW ∗, W and tt̄ classes are the respected simulated events and
the other background class combines the single H , diboson, Z, single t and QCD samples. These
classes were chosen because of the number of events available and their respected significance as
signal and background processes. The distribution of these classes can be seen in Figure 5.3. As
the W , tt̄ and HH → bb̄WW (∗) classes are unchanged, still around 45.28% of events are W events,
28.33% tt̄ events and 12.44% HH → bb̄WW ∗ events. The other background class contains around
13.95% of events.

As depicted, the new HH → bb̄WW (∗) class contains the least amount of events. Furthermore,
the HH → bb̄WW (∗) class is a combination of different mass points mX = 0.8, 0.9 1, 1.2, 1.4, 1.6,
1.8, 2.5, 3, 4 and 5 TeV, but for simplicity a model has to predict only predict the class and not the
mass point. The distribution of the HH → bb̄WW (∗) mass point samples can be seen in Figure
5.4. As shown, the lower mass points mX = 0.8, 0.9 and 1 TeV are drastically under-represented.
However, the fully boosted topology does not favour such events, so this under-representation is
not as drastic, as is it first seems.
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Figure 5.2: Distribution of event classes.
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Figure 5.3: Distribution of analysis classes.

Using this simulated dataset to train a model would result in overfitting the W class, because
of the bias towards the W class. The low number of HH → bb̄WW (∗) signal events is especially
problematic, resulting in an optimiser training on this data only after all other classes are sufficiently
learned. As described in Section 3.2, a uniformly distributed dataset is most efficient to train a
model. To achieve this without further simulations, the HH → bb̄WW (∗) mass points and the four
classes are reweighted.
First the mass points mX = 1.2, 1.4, 1.6, 1.8, 2.5, 3, 4 and 5 TeV are weighted to the same number
of events as the mX = 2 TeV mass point. The samples with mX = 0.8, 0.9 and 1 TeV are excluded
from this reweighting, because of their drastically smaller number of events and lower probability
to pass the preselection. The results of this normalisation can be seen for the mass points in Figure
5.5 and for the analysis classes in Figure 5.6.
Secondly, the HH → bb̄WW (∗), tt̄ and other background class are weighted to the same number of
events as the W class. The results of this normalisation can be seen in Figure 5.7.

0.8 0.9 1 1.2 1.4 1.6 1.8 2 2.5 3 4 5
mX [TeV]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Pe
rc

en
ta

ge
 o

f e
ve

nt
s i

n 
al

l e
ve

nt
s

HH bbVV *  events after the preselection
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Figure 5.7: Distribution of analysis classes with
the HH → bb̄V V (∗) mass points reweighted
and all classes normalised.

It is expected that models trained on this reweighted dataset would not prefer any class or
HH → bb̄V V (∗) mass point during training. Excluded are the HH → bb̄V V (∗) mass points
mX = 0.8, 0.9 and 1 TeV. However, a non weighted dataset with uniformly distributed samples in
every class and mass point is expected to outperform this rewighted dataset.

The variables contained in the dataset include low-level kinematic features like the four-vectors of
reconstructed objects, high-level features like jet substructure and meta variables like the number
of b-tags, which are defined through other algorithms.
The low-level features included in the dataset are:

• Mass of the reconstructed jets and lepton: mH→bb̄, mWhad and m
Wlep

T

• Pseudorapidity of all reconstructed objects: ηH→bb̄, ηWhad and ηlep

• Transverse momentum of all reconstructed objects: pH→bb̄
T , pWhad

T and plep
T

• Missing transverse momentum for the neutrino is included via Emiss
T

The azimuthal angle ϕ for the reconstructed objects is not included in the low-level variables,
because it is assumed that events are uniformly distributed over ϕ. However this also means the
dataset does not contain four-vector momentum for the reconstructed objects.

The following high-level features are included

• Jet substructure variables based on Energy Correlation Functions: CH→bb̄
2 and CWhad

2 [64]

• Jet substructure variables based on N-subjettiness: τH→bb̄
42 and τWhad

42 [65]

• Position of the lepton to the jets: min ∆R(lep, closest jet)

• Mass of the whole process combined via the visible + met mass:

mHH
vis+met =

√︂
(ph→bb̄ + pWhad + plep + pmet)2
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These variables where chosen because of their provided separation power, nonetheless detailed
analysis on all different kinds of jet substructure variables was not conducted.

Lastly the meta variables contain:

• Number of b-tagged Jets: N jets
b−tagged

• Number of b-tags per jet: NH→bb̄
b−tags and NWhad

b−tags

• Number of tracks per jet: NH→bb̄
tracks and NWhad

tracks

To further improve numerical and training stability, all variables are scaled to be within [0, 1] using
a MinMax-Scaler transformation. The transformation is defined for the variable x as:

xscaled =
x−min(x)

max(x)−min(x))
(5.1)

Figure 5.8 shows the distribution of pWhad

T before and after MinMax-Scaler transformation. As can
be seen, only the value range changed and not the distribution itself. Therefore, no separation
power is lost by applying this transformation.

The separation power of some variables, such as the number of b-tags inside the H → bb̄ candidate
is very easy to see (Figure 5.9). Only two peaks can be observed, with one being dominated by W

and the other by HH → bb̄WW ∗ events. Therefore, a separation between these events is visible.

For continuous variables such as min ∆R(lep, closest jet) (Figure 5.10), still one area is dominated
by an event, but the separation power constantly changes. min ∆R(lep, closest jet) contains around
zero predominantly HH → bb̄WW ∗ events, than shortly tt̄ events are slightly the most prominent
events, however W events dominate starting from 0.2.

For the classification of HH → bb̄WW ∗ events variables, that contain large ranges, are especially
interesting such as the distributions of mWhad (Figure 5.11) and pH→bb̄

T (Figure 5.12). The distribution
of pH→bb̄

T particular could be of great use for HH → bb̄WW ∗ classification, because in the range
0.2 until 0.7 HH → bb̄WW ∗ are the most probable event.

Distributions for all variables can be found in the Appendix .1.
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Figure 5.8: Comparison of pWhad

T (a) before and (b) after the MinMax-Scaler transformation with
the class and mass point reweighting applied.
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Figure 5.9: Normalised distribution of N jets
b−tagged after the MinMax-Scaler transformation with the

class and mass point reweighting applied.
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Figure 5.10: Normalised distribution of min ∆R(lep, closest jet) after the MinMax-Scaler trans-
formation with the class and mass point reweighting applied, in (a) linear and (b) log scale.



5.1. THE DATA 37

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mWhad

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Nu
m

be
r o

f e
ve

nt
s n

or
m

ed

Distribuition of mWhad

(with event weights, class weights, mass weights and normed)
Background
HH bbVV *

W
tt

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mWhad

10 8

10 6

10 4

10 2

Nu
m

be
r o

f e
ve

nt
s n

or
m

ed
 (l

og
)

Distribuition of mWhad

(with event weights, class weights, mass weights and normed)
Background
HH bbVV *

W
tt

(b)

Figure 5.11: Normalised distribution of mWhad after the MinMax-Scaler transformation with the
class and mass point reweighting applied, in (a) linear and (b) log scale.
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Figure 5.12: Normalised distribution of pH→bb̄
T after the MinMax-Scaler transformation with the

class and mass point reweighting applied, in (a) linear and (b) log scale.





Chapter 6

Optimization of Signal Extraction

6.1 The cut-based selection

Originally a cut-based, binary selection was proposed to separate the HH → bb̄WW ∗ signal from
all backgrounds [4]. These cuts were human designed and are based on the physical and statistical
knowledge about the process.

For an event to pass as a signal X → HH → bb̄WW ∗ event, it is first required that the H → bb̄

candidate is reconstructed as a single, b-tagged TAR jet. Furthermore, this b-tagged H → bb̄

candidate is required to be the only b-tagged TAR jet in the event reconstruction. However, no
distinction is made on the H → bb̄ candidate having one or two b-tags. This is done to increase the
signal efficiency, as the efficiency of the used b-tagging working point would result in discarding a
non-negligible number of signal events, when two b-tags per H → bb̄ candidate would be required.
Nonetheless, the signal significance for H → bb̄ candidates with two b-tags is better. Therefore,
keeping the one and two b-tagged H → bb̄ candidates separated in two regions, allows to exploit
the signal significance in the two b-tagged region and the added signal efficiency of the single
b-tagged events [4].

In addition to these conditions, three window cuts are applied to separate signal and background
events. These cuts are designed to take advantage of differences in variables stemming from the
boosts of the final state products. For the X → HH → bb̄WW ∗ process, the following variables
are used: mH→bb̄, ∆R (lep,Whad) and CH→bb̄

2 . To perform a cut on these variables, the dependency
on the pT of the related object is used. As an example, the H → bb̄ mass cut depends on pH→bb̄

T .
Moreover, two cuts are used as windows instead of a single cut. Therefore a region is defined in
which the signal resides.

The window cuts were constructed for an object by the following steps:

1. All events that pass the preselection in 5.1.2 and contain exactly one b-tagged TAR jet are

39
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grouped in a two-dimensional histogram consisting of the pT of the considered objected
(mH→bb̄, ∆R (lep,Whad) or CH→bb̄

2 ) and variable of interest. To include all signal events, a
range of 0 GeV ≤ pT ≤ 5000 GeV with a bin width of 10 GeV is used.

2. The pT bins are then merged until the statistical uncertainty per bin is less then 5%, to ensure
sufficient statistics.

3. In every bin the smallest window containing a certain percentage of signal events is construc-
ted around the median of the variable of interest.

4. These upper and lower bounds for all pT bins are then used to fit a function, which is used
as a smooth window cut.

For an event to be classified as a signal X → HH → bb̄WW ∗ event, it has to pass the following
criteria:

1.
pass the 70% efficiency mH→bb̄ window cut with 1 or 2 b-tags in the H → bb̄ candidate
or
fail the 80% mH→bb̄ window cut with 1 b-tag in the H → bb̄ candidate

2. pass the 80% efficiency CH→bb̄
2 window cut

3. pass the 80% efficiency ∆R (lep,Whad) window cut

For the mH→bb̄ window cut, the relation between the mass of the H → bb̄ candidate mH→bb̄ and
the corresponding transverse momentum pH→bb̄

T is exploited. Figure 6.1 shows the distribution of
mH→bb̄ and pH→bb̄

T over all simulated mX mass points. As seen, all mH→bb̄ signals peak around
mH even though the shape of the peak varies with mX , and for low mX , a second very small peak
in the low mH→bb̄ region can be observed. Furthermore, the correlation between mX and pH→bb̄

T is
shown.

Due to ∆R (lep,Whad) being dependent on two variables, multiple potential transverse momenta
are considered: plepT , pWhad

T and |pHvis

T | = |plepT + pWhad

T |. It was found that pHvis

T performs the best
(for a detailed analysis see Ref. [4]). The distribution of ∆R (lep,Whad) can be seen in Figure 6.2a.

For the CH→bb̄
2 window cut, the relation between the H → bb̄ candidates jet substructure variable

CH→bb̄
2 and transverse momentum pH→bb̄

T is used. Figure 6.2b shows the distribution of CH→bb̄
2 . As

seen, this variable does not separate as significantly as the ∆R (lep,Whad) signal and background.

The cuts, except for the CH→bb̄
2 cuts, are fitted on the X → HH → bb̄WW ∗ events discussed in

Section 5. For the CH→bb̄
2 cuts X → SH → bb̄WW ∗ events are used, as it was found, that cuts

derived on these events perform equal or better to cuts fitted on X → HH → bb̄WW ∗ events (for
a detailed analysis see Ref. [4]). The final cuts for mH→bb̄, ∆R (lep,Whad) and CH→bb̄

2 can be seen
in Figure 6.3.



6.1. THE CUT-BASED SELECTION 41

0 50 100 150 200 250

[GeV]TARbb m→H

0

0.01

0.02

0.03

0.04

0.05

0.06

N
o
rm

a
liz

e
d
 t
o
 u

n
it
y =0.8TeVXm

=0.9TeVXm

=1.0TeVXm

=1.2TeVXm
=1.4TeVXm

=1.6TeVXm
=1.8TeVXm

=2.0TeVXm

=2.5TeVXm
=3.0TeVXm

=4.0TeVXm
=5.0TeVXm

= 13 TeVs
bbWW, 1-lep→HH→X

=1pbsig
σ
Preselection, 1 b-tagged TAR jet

(a) mH→bb̄

0 500 100015002000250030003500400045005000

[GeV]
T

bb p→H

0

0.05

0.1

0.15

0.2

0.25

N
o
rm

a
liz

e
d
 t
o
 u

n
it
y =0.8TeVXm

=0.9TeVXm

=1.0TeVXm

=1.2TeVXm
=1.4TeVXm

=1.6TeVXm
=1.8TeVXm

=2.0TeVXm

=2.5TeVXm
=3.0TeVXm

=4.0TeVXm
=5.0TeVXm

= 13 TeVs
bbWW, 1-lep→HH→X

=1pbsig
σ
Preselection, 1 b-tagged TAR jet

(b) pH→bb̄
T

Figure 6.1: Normalised distributions of mH→bb̄ and pH→bb̄
T of the H → bb̄ candidate for the

individual signal samples. The preselection except the pT > 500 GeV cut is applied. Furthermore,
exactly one b-tagged jet in the event is required [4].

(a) ∆R (lep,Whad) (b) CH→bb̄
2

Figure 6.2: Distributions of ∆R (lep,Whad) and CH→bb̄
2 for optimising the selection of HH pro-

duction in SRp2, the dominant signal region. The shown Asimov data is the sum of expected
background events. The shown signal is scaled to match 25% of the integral of all backgrounds [4].
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Figure 6.3: Cuts on mH→bb̄, ∆R (lep,Whad) and CH→bb̄
2 at the used efficiencies. The dashed

part of the fit will not be used in the analysis due to the applied pH→bb̄
T > 500 GeV cut in the

preselection [4].

6.2 Neural Network Setup and Training

In contrast to the cut-based approach, a model is proposed to not only separate signal and
background binary, but predict the four analysis classes HH → bb̄WW ∗, W , tt̄ and background
from Section 5.1.3. To achieve this goal, a Feed Forward Neural Network is proposed. This Neural
Network is trained on the Monte Carlo samples described in Section 5.1.1.
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6.2.1 Architecture

The model architecture proposed is a Feed Forward Neural Network utilising Multilayer Per-
ceptrons. Based on the Universal Approximation theory [35], a width of 500 units per layer and
a depth of 5 hidden layers was chosen, in order to be wide enough to approximate a possible
underlying continuous function. After each layer of perceptrons, Batch Normalisation is applied
to avoid vanishing gradients (see Section 3.2.4). Lastly a ReLU is used as an activation function,
before the output of the layer is propagated to the next layer.

As input all 21 variables presented in Section 5.1.3 are used. For events to be fed into the model,
they have to pass the preselection and have the class and mX reweighting applied (see Section
5.1.3).

Because four classes have to be predicted, the model outputs four probabilities, with each rep-
resenting one class. To achieve this, the final layer consists out of 4 perceptrons with a Softmax
activation function. For an input xi, (i = 1, . . . , 4), the Softmax function is defined as:

yi = Softmax(xi) =
exi∑︁4
j=1 e

xj

(6.1)

resulting in 0 ≤ yi ≤ 1 and
4∑︂

i=1

yi = 1.

By taking the maximum output probability, an event can be predicted to originate from one of
the analysis classes: HH → bb̄WW ∗, W , tt̄ or other background. However, the output probability
for one class is dependent on the other classes, resulting in only one output probability being the
highest. In this case this behaviour is desired, as an event can only come from one class.

A complete overview over the model architecture is listed in Table 6.1.

6.2.2 Training

The model is trained on the data discussed in Section 5.1.3. This means the four classes W , tt̄,
HH → bb̄WW ∗ and other background are reweighted to be uniformly distributed. In addition,
the HH → bb̄WW ∗ samples for the mass points mX = 1.2, 1.4, 1.6, 1.8, 2.5, 3, 4 and 5 TeV are
weighted to be also uniformly distributed, except for the mass points mX = 0.8, 0.9 and 1 TeV.
During training 70% of the event samples are visible to the model and 20% of the data is reserved
for testing. Furthermore, 10% of the training data is used as validation during training and not for
optimisation.

To train the model, the ADAM optimiser with decoupled weight decay and AMSGRAD is used
(see Section 3.2.3 and Algorithm 3). As a loss function, the Cross Entropy loss was chosen, due to
the reasons presented in Section 3.2.1. For four classes with the model prediction x ∈ [0, 1]4 and
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Layer Dimension
Perceptrons

R21 → R500Batchnorm
ReLU
Perceptrons

R500 → R500Batchnorm
ReLU
Perceptrons

R500 → R500Batchnorm
ReLU
Perceptrons

R500 → R500Batchnorm
ReLU
Perceptrons

R500 → R500Batchnorm
ReLU
Perceptrons R500 → R4

Softmax

Table 6.1: Overview of the Feed Forward Neural Network architecture proposed.

truth label t ∈ {0, 1}4, the Cross Entropy loss is defined as:

CrossEntropyLoss(x, y) = −
4∑︂

i=1

tilog(xi) (6.2)

To get a better insight into the model’s decision making, three different trainings were conducted.
The first two trainings use all background classes, but each using only a singular mass point mX

for the HH → bb̄WW ∗ signal class. The mass point mX = 2 TeV was chosen, as it is the mass
point with the most Monte Carlo event samples of the signal class and therefore not affected by
the HH → bb̄WW ∗ reweighting. The mass point mX = 1.4 TeV was also chosen, due to its lower
number in samples and to see if for lower mass points, different variables are used by the model.
Lastly, a model is trained on all events with the mass point and class reweighting applied. This
training is the main model proposed, as for this model, the best performance over all mass points
is expected.
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Chapter 7

Performance Studies

7.1 Cut-based Model

As the cut-based model separates the HH → bb̄WW ∗ and all background events in two classes,
in the following "complete background" will refer to the W , tt̄ and the other background class
combined.

To evaluate the performance of the cut-based model, the confusion matrix shown in Figure 7.1a is
a good first indicator. For a truth class t and predicted class p, the following quantity is calculated:

Number of t events predicted as class p
Number of events in t

(7.1)

In this case, the matrix contains HH → bb̄WW ∗ and complete background as classes. The values
on the diagonal are referred to as efficiency. The efficiency for the HH → bb̄WW ∗ class is defined
as:

efficiency
(︁
HH → bb̄WW ∗)︁ = Number of correctly predicted HH → bb̄WW ∗ events

Number of HH → bb̄WW ∗ events
(7.2)

and analogously for the complete background class.

As seen, the complete background is predicted correctly with an efficiency of around 99.75% and is
therefore almost perfectly predicted. In contrast, the HH → bb̄WW ∗ class is not even predicted for
half of the events correctly, with the cut-based model only achieving a efficiency of around 40.63%

for HH → bb̄WW ∗ events.

When examining the HH → bb̄WW ∗ efficiency for the different mass points (see Figure 7.1b), it
can be seen that some mass points do not even achieve an efficiency of 40%. Drastic outliers are
the mass points mX = 0.8 and 0.9 TeV, with the first one only reaching an efficiency of around
22.82% and the latter around 24.56%. However, starting from the mass point of mX = 1 TeV, a

47
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notable increase in efficiency is observable, until mX = 1.8 TeV at around 44.5%. Afterwards,
the efficiency drops again up to mX = 3 TeV at an efficiency of about 33.23%. Interestingly, at
mX = 4 TeV the efficiency peaks again to around 43.13% and plummets again to around 40.03%

at the mass point mX = 5 TeV.

This behaviour at first may seem quite undesired, but when taking into account, that only around
12.43% of the events are X → HH → bb̄WW ∗ samples, an efficiency of approx. 40.63% is
respectable in comparison to random guessing. In addition, the even smaller number of samples
for the mass points mX = 0.8, 0.9 and 1 TeV explain the lower efficiency for these mass points, as
there were fewer mass points to generate the cuts.

All in all, the cut-based model still reaches an accuracy of approximately 92.4%, with the accuracy
being a measure for overall model performance and being defined as:

accuracy =
Number of correctly classified events

Number of events
(7.3)

complete background HH bbWW *
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Figure 7.1: (a) Confusion matrix of the cut-based model over all mass points mX .
(b) Comparison of efficiency of the cut-based model for all mass points mX and complete back-
ground.
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7.2 Single Mass Point Neural Network

Comparing the cut-based model with the Neural Network, it becomes apparent how different the
output of the two designs is. The cut-based model only outputs a binary result, i.e. if an event is
a signal event or not. However, the Neural Network outputs a probability per class, resulting in
an output distribution per class. For the output of class i, it is expected that class i is predicted to
be near 1 and the other classes near 0. Furthermore, different decisions can be made to classify
an event based on the output distributions. The simplest way would be to classify an event by
the maximum predicted class probability. Cuts on the output distributions can also be applied in
addition or separately to the maximum, to change the model prediction.

Training on mX = 2 TeV

First a training was conducted with the full background classes W , tt̄ and other background, but
only the single mass point mX = 2 TeV for the X → HH → bb̄WW ∗ class. This mass point was
chosen, as it contains the most events of all signal samples and should therefore be the easiest
to learn by the model. In Figure 7.2 the output distribution for the different classes can be seen.
As desired, the distribution for the wanted output class peaks at 1, while all others are predicted
near 0. However, as seen on the right side of Figure 7.2, for every analysis class some events are
completely misclassified. Mainly misclassified are events from the other background class, which
is not surprising as the other background class contains four different background processes with
changing objects and kinematics and thus non-uniform distribution of samples.

These observations are confirmed when taking a look at the confusion matrix (see Figure 7.3a). To
classify an event, the class with the highest predicted output probability is used. As seen again,
the other background class is misclassified the most, with more other background events being
classified as being W or tt̄ samples than being in the other classes. However, it is also shown that
the HH → bb̄WW ∗ signal class has an efficiency of approx. 92.9%. Interestingly, HH → bb̄WW ∗

events are almost as often misclassified as tt̄ and other background events.

Figure 7.3b shows the permutation importance [66, 67] of the different input variables. The
permutation importance is calculated by first computing the loss s of the model, referred to as score
in this context. Then, for the input variable i a random permutation is chosen, thereby corrupting
this variable in the dataset. Finally a new score si is computed and the permutation importance is
defined as:

permutation importance(i) = |s− si| (7.4)

If for a variable the permutation importance is greater then 0, this implies that the variable has a
considerable influence over the models decision. On the other hand, if the permutation importance
is 0, the variable has an negligible effect on the models performance.
In this case, the input variables with the biggest impact on the model’s performance are N jets

b−tagged,
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pWhad

T , min ∆R(lep, closest jet) and mWhad in decreasing order.
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Figure 7.2: Distribution of Neural Network output trained on only the mX = 2 TeV mass point.
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Figure 7.3: (a) Confusion matrix of the Neural Network trained on only the mX = 2 TeV mass
point. (b) Permutation importance of the different input variables for the Neural Network, trained
only on mX = 2 TeV. Classification is done by using the maximum predicted class probability.
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Training on mX = 1.4 TeV

Because different kinematics are expected for lower mass points mX < 2 TeV, a second mass point
at mX = 1.4 TeV was chosen, which contains a significantly lower number of events. Comparing
the output distributions for the Neural Network trained on mX = 2 TeV (Figure 7.2) and the one
trained on mX = 1.4 TeV (Figure 7.4), the classes W , tt̄ and other background perform almost
identically. However, for the HH → bb̄WW ∗ events, the model predicts not only the correct signal,
but also some W events as HH → bb̄WW ∗ events. Taking a look at the confusion matrix in Figure
7.5a, the overall trend from the distribution is also present.

Except for the W class, the model trained on mX = 1.4 TeV is outperformed by the Neural Network
trained on mX = 2 TeV, although the mX = 1.4 TeV model is only performing significantly
worse for the HH → bb̄WW ∗ class. Additionally, a small change in the input variables used
is also notable, with the variables with the highest permutation importance being: N jets

b−tagged,
min ∆R(lep, closest jet), pWhad

T , and mWhad (see Figure 7.5b).
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Figure 7.4: Distribution of Neural Network output trained on only the mX = 1.4 TeV mass point.
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Figure 7.5: (a) Confusion matrix of the Neural Network trained on only the mX = 1.4 TeV mass
point. (b) Permutation importance of the different input variables for the Neural Network, trained
only on mX = 1.4 TeV. Classification is done, by using the maximum predicted class probability.
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7.3 Multi Mass Point Neural Network

A final training was conducted on all mass points together with the mass point and class reweight-
ing from Section 5.1.3 applied. As seen in Figure 7.6a, this model performs the best at predicting
the HH → bb̄WW ∗ and W class. On the other hand this model performs the worst for the classes
tt̄ and other background. When examining the output distributions (Figure 7.7) a similar behaviour
as the mX = 2 TeV can be seen, with the exception that an increase in HH → bb̄WW ∗ event
misclassification is visible in all classes. Most important to the model’s decision are the following
variables (see Figure 7.6b): N jets

b−tagged, min ∆R(lep, closest jet), pWhad

T , and mWhad . These are the
same variables as the mX = 1.4 TeV training, but a change in importance can be seen.
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Figure 7.6: (a) Confusion matrix of the Neural Network trained on all mass points. (b) Permutation
importance of the different input variables for the Neural Network, trained only on all mass points.
Classification is done by using the maximum predicted class probability.
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Figure 7.7: Distribution of Neural Network output trained on all mass points.
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7.4 Comparison of the models

As discussed before the Neural Network trained on all mass points has the highest efficiency for
HH → bb̄WW ∗ and W events, at the cost of misclassifying other events. To compare the different
models and cut-based approach more in depth, the efficiency for each mass point is of interest,
which can be seen in Figure 7.8. The model trained on all mass points outperforms all other models,
when all mass points are considered. However the singular mass point models achieve in some
mass points an equal or even better efficiency. The singular mass point models peaks are around
the mass point used in training: mX = 1.4 and 2 TeV. For mass points with drastically different
kinematics to the one trained on, the singular mass point models mostly cannot classify a signal
event efficiently. Nonetheless, for mass points with similar kinematics the singular mass point
models generalise quite well. As an example, the model trained on mX = 2 TeV misclassifies
almost all HH → bb̄WW ∗ events with mX ≤ 1.2 TeV, but achieves the same efficiency as the
model trained on all mass points at mX = 2 and 5 TeV. The efficiency of the model trained on
only mX = 1.4 TeV for the low mass points mX = 0.8 to 1.6 TeV is especially surprising. This
behaviour indicates similar physical behaviour between the low mass points.

When only examining the model trained on all mass points, a steady increase in efficiency from
mX = 0.8 to 3 TeV can be observed. Afterwards the efficiency drops at mX = 4 TeV and increases
again at mX = 5 TeV. Similarly the model trained on mX = 2 TeV also has a lower efficiency
for mX = 4 TeV than for mX = 5 TeV. Contradictory, the model trained on mX = 1.4 TeV

has a higher efficiency at mX = 4 TeV, with this mass point generally being an outlier in the
overall model performance. These observations imply a change in the separation power of the
variables and therefore, a change in kinematics of the physics objects at mX = 4 TeV. With the
efficiency of the model trained on mX = 1.4 TeV increasing at mX = 4 TeV, the separation power
or kinematics for mX = 4 TeV have to be more similar to the once observed in lower mass points
than neighbouring mass points.

Comparing the background efficiencies of the different models is difficult, because the Neural
Network predicts three background classes and the cut-based model only one. As seen in Figure 7.8
and in the Sections above, the Neural Network’s the efficiency for a single background class is not
as good as the background efficiency of the cut-based approach. However, as most misclassified
background classes are classified as another background class (see Figures 7.3a, 7.5a and 7.6a),
combining the three classes into the complete background class, results in a significant increase
in efficiency. Therefore, accuracy is also calculated twice for the Neural Networks: once with
all 4 classes predicted, referred to as all classes accuracy and once with the background classes
combined, referred to as binary accuracy. Both accuracies are listed in Table 7.1. As expected, the
binary accuracy is the overall highest for the Neural Network trained on all mass points. However,
when all four classes are considered, the accuracy is much lower.

The Receiver Operating Characteristic (ROC) curve shows the HH → bb̄WW ∗ signal and the
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model binary accuracy all classes accuracy
cut-based model 92.4% −
trained on all mass points 96.03% 72.39%
trained on mX = 2 TeV 94.39% 70.42%
trained on mX = 1.4 TeV 90.29% 69.45%

Table 7.1: Accuracy of the different models. All statistics are calculated over all mass points.

complete background efficiency for a model at different cut thresholds on the model output. In
addition, the Area Under the Curve (AUC) is presented, which is the integral of the ROC and for a
perfect model would be 1. Figure 7.9 shows the ROC curves for the four analysis classes of the
model trained on all mass points. As normal for ROC curves, the background efficiency decreases
with increasing signal efficiency. However, for the background classes, the curves and AUC exhibit
a much worse performance. In particular, the other background class approaches the performance
of an offset random guesser (dotted line).

Figures 7.10, 7.11, 7.12 and 7.13 show the ROC curves for the three models. Based on these curves,
the same observations as before can be made. In addition the Neural Network’s signal or back-
ground efficiency can be compared to the cut-based model. As seen, at the same signal efficiency as
the cut-based model, the model trained on all mass points only surpasses the background efficiency
of the cut-based model starting from mX ≥ 1.2 TeV. Comparing the AUCs for the different models
(see Table 7.2), once again the model trained on all mass points outperforms the singular mass
point models.

AUC
model HH → bb̄WW ∗ W tt̄ other background
trained on all mass points 0.98 0.883 0.882 0.748
trained on mX = 2 TeV mX = 2 TeV 0.868 0.879 0.875 0.731
trained on mX = 1.4 TeV 0.685 0.874 0.865 0.702

Table 7.2: AUC for the Neural Networks. The cut-based model is not included, as the statistics are
not applicable. All statistics are calculated over all mass points.

All in all, the Neural Network trained on all mass points classifies signal events the best. Compared
to the cut-based model a higher binary accuracy is achieved (see Table 7.1), with the benefit of
relatively efficient classification of W and tt̄ events.
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Figure 7.10: Receiver Operating Characteristic (ROC) curves for the different mass points and all
models trained.
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Figure 7.11: Receiver Operating Characteristic (ROC) curves for the different mass points and all
models trained.
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Figure 7.12: Receiver Operating Characteristic (ROC) curves for the different mass points and all
models trained.
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Figure 7.13: Receiver Operating Characteristic (ROC) curves for the different mass points and all
models trained.





Chapter 8

Conclusion and Outlook

In Summary, a new model was proposed to separate HH → bb̄WW ∗, W , tt̄ and other background
events in the boosted X → HH → bb̄V V ∗ analysis with 1 lepton in the final state. The model is
based on a Feed Forward Neural Network and was trained on all mass points. Additionally, the
model was trained on the mass points mX = 2 TeV and mX = 1.4 TeV, to evaluate changes in
model performance.

In comparison, the new Neural Network model trained on all mass points outperformed the
currently used cut-based model at classifying signal events on all mass points. However, a slight
reduction in background efficiency is observed, but is negligible.

Comparing the Neural Networks at different mass points, a drastic change in signal efficiency is
observable for the models trained on singular mass points. This can be attributed to a change in
separation power of the input variables, due to a change in the underlying kinematics. Therefore,
using multiple Neural Networks for different mass points is not expected to outperform the
proposed method, as no significant performance increase between the Neural Network trained
on all data and the Neural Network trained on singular mass points was observed. Furthermore,
using a Parameterised Neural Network is also not expected to change the performance much, but
would be expected to generalise more easily [68].

Concluding Machine and Deep Learning models can be of great benefit for the X → HH →
bb̄WW ∗ analysis, as they could replace human designed algorithms with more efficient ones, as
presented in this thesis. Additionally the better separation and classification of events should
allow a new definition of regions, in which the X → HH → bb̄WW ∗ cross section can be better
measured.
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.1 Distribution of used features and variables
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Figure 1: Normalised distribution of all low-level features with mass and class reweighting applied
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Figure 2: Continuation: Normalised distribution of all low-level features with mass and class
reweighting applied
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Figure 3: Normalised distribution of all high-level features with mass and class reweighting
applied
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Figure 4: Normalised distribution of all meta variables with mass and class reweighting applied
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