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Thomas Kneib Outline

Outline

e Geoadditive Regression: An Application to Car Insurance Data.
e Bayesian Inference in Structured Additive Regression.

e Spatio-Temporal Regression: Forest Health Data.
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Thomas Kneib Structured Additive Regression

Structured Additive Regression

e Regression in a general sense:
— Generalised linear models,
— Multivariate (categorical) generalised linear models,
— Regression models for duration times (Cox-type models, multi-state models).

e Common structure: Model a quantity of interest in terms of categorical and
continuous covariates, e.g.

E(ylu) = h(uy)  (GLM)

A(tlu) = Xo(t) exp(u'~) (Cox model)
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Thomas Kneib Structured Additive Regression

e General idea of structured additive regression: Replace usual parametric predictor
with a flexible semiparametric predictor containing

— Nonparametric effects of time scales and continuous covariates,

— Spatial effects,

— Interaction surfaces,

— Varying coefficient terms (continuous and spatial effect modifiers),

— Random intercepts and random slopes.
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Thomas Kneib Structured Additive Regression

e Example: Car insurance data from two insurance companies in Belgium.
e Sample of approximately 160.000 policyholders.

e Aims: Separate risk analyses for claim size and claim frequency to predict risk
premium from covariates.

e Variables of primary interest: Claim size y; or claim frequency h; of policyholders.

e Covariates:

vage vehicles age
page policyholders age
hp  vehicles horsepower
bm  bonus-malus score
s district in Belgium
Vector of categorical covariates
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Thomas Kneib Structured Additive Regression

e Geoadditive models:

— Gaussian model for log-costs log(y):

log(y) ~ N(n,0?)

with
n = fi(vage) + fa(page) + f3(bm) + fa(hp) + fspar(s) +0'C.

— Poisson model for frequencies h;:
h ~ Po(exp(n))
with

n = fi(vage) + fa(page) + fa(page)sex + f3(bm) + fa(hp) + fspar(s) +v'C.
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Thomas Kneib

Structured Additive Regression

e Results for claim frequency:

17 30 43 56 69 82 95
age of the policyholder

.35

0 55 11 16,5 22
bonus malus score

17 30 43 56 69 82 95
age of the policyholder (deviation for males)

10 39 68 97 126 155 184 213 242
horse power of the car
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Thomas Kneib Structured Additive Regression

-0.470814 0 0642283
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Thomas Kneib Structured Additive Regression

e Spatial effect for claim size:

-0.181311 0 0.26348
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Thomas Kneib Model Components and Priors

Model Components and Priors

e Penalised splines.
— Approximate f(x) = > &,;B;(x) by a weighted sum of B-spline basis functions.
— Employ a large number of basis functions to enable flexibility.

— Penalise differences between parameters of adjacent basis functions to ensure

smoothness
92 Z —&j—1) (first order differences)
-
1
92 Z(fj — 2651+ &-2)° (second order differences)
-
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Thomas Kneib Model Components and Priors

-3 -15 0 15 3
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Model Components and Priors

Thomas Kneib

e Bivariate penalised splines.

e Varying coefficient models.

— Effect of covariate x varies smoothly over the domain of a second covariate z:

f(:IB,Z) :x'g(z)

— Spatial effect modifier = Geographically weighted regression.

11
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Thomas Kneib

Model Components and Priors

e Spatial effect for regional data: Markov random fields.
— Bivariate extension of a first order random walk on the real line.

— Define appropriate neighbourhoods for the regions.

— Assume that the expected value of fq,q:(s) is the average of the function

evaluations of adjacent sites.

f(t+1)

E[f(t)|f(t—1),f(t+1)] —

f(t-1)

Modelling Geoadditive Regression Data

12



Thomas Kneib Model Components and Priors

e Spatial effect for point-referenced data: Stationary Gaussian random fields.
— Well-known as Kriging in the geostatistics literature.
— Spatial effect follows a zero mean stationary Gaussian stochastic process.
— Correlation of two arbitrary sites is defined by an intrinsic correlation function.

— Can be interpreted as a basis function approach with radial basis functions.
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Thomas Kneib Model Components and Priors

e All effects can be cast into one general framework.
e All vectors of function evaluations f; can be expressed as
1= Zi&;
with design matrix Z; and regression coefficients &;.

e Generic form of the prior for &;:

kj
2

_ 1
p(&|77) o (77) 77 exp jp@&@
J

e K; >0 acts as a penalty matrix, rank(K;) = k; < d; = dim(&;).

° ’rj2 > 0 can be interpreted as a variance or (inverse) smoothness parameter.
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Thomas Kneib Bayesian Inference

Bayesian Inference

e Fully Bayesian inference:

— All parameters (including the variance parameters 72) are assigned suitable prior
distributions.

— Typically, estimation is based on MCMC simulation techniques.
— Usual estimates: Posterior expectation, posterior median (easily obtained from the
samples).
e Empirical Bayes inference:

— Differentiate between parameters of primary interest (regression coefficients) and
hyperparameters (variances).

— Assign priors only to the former.
— Estimate the hyperparameters by maximising their marginal posterior.

— Plugging these estimates into the joint posterior and maximising with respect to
the parameters of primary interest yields posterior mode estimates.
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Thomas Kneib Bayesian Inference

e MCMC-based inference:

— Assign inverse gamma prior to 73
1 b,
2 J
P(T;) X g g1 XP | =75
(Tj )4t 7;
Proper for a; >0,b; >0  Common choice: a; = b; = € small.
Improper for b, =0, a; = —1  Flat prior for variance 77,
b; =0, aj = —= Flat prior for standard deviation ;.

— Conditions for proper posteriors in structured additive regression are available.

— Gibbs sampler for 77|-:

Sample from an inverse Gamma distribution with parameters
1

1
a; = a; + §rank(Kj) and b =b; + §§;Kj§j.
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Thomas Kneib Bayesian Inference

— Metropolis-Hastings update for ;|-

Propose new state from a multivariate Gaussian distribution with precision matrix
and mean

1
P; = Z\W Z; + —K;  and  m; = P ZIW (5 — n—j).
J

IWLS-Proposal with appropriately defined working weights W and working
observations y.

e Efficient algorithms make use of the sparse matrix structure of P; and K.
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Thomas Kneib Bayesian Inference

e Empirical Bayes inference.

— Consider the variances 72 as unknown constants to be estimated from their

j
marginal posterior.

— Consider the regression coefficients &, as correlated random effects with multivariate
Gaussian distribution

= Use mixed model methodology for estimation.
e Problem: In most cases partially improper random effects distribution.
e Mixed model representation: Decompose
& = X85 + Vjby,
where

p(B;) o const and b; ~ N (0, TjQij).

= (3, is a fixed effect and b; is an i.i.d. random effect.
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Thomas Kneib Bayesian Inference

e This yields a variance components model with pedictor
n=XB+Vb

where in turn
p(B) o< const and b~ N(0,Q).
e Obtain empirical Bayes estimates / penalized likelihood estimates via iterating
— Penalized maximum likelihood for the regression coefficients 3 and b.

— Restricted Maximum / Marginal likelihood for the variance parameters in Q:

LQ) = [ L(5.b.Qp(b)dsds — max.

e Involves a Laplace approximation to the marginal likelihood (corresponding to REML
estimation of variances in Gaussian mixed models).
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Thomas Kneib BayesX

BayesX

e BayesX is a software tool for estimating structured additive regression models.

P Barest (ol

File Preferences Window Help ]
\ | emeax || vause | | suppmessoutPur | pRiORITY: | NORMAL > ‘
| 5 command ,..,Kz' Breview 77 7 A

l:‘ dataset d

] 07\examplesiresulty
P Dbject-Yiewer

07 exarmplesizambi

ap=m calor hel usi|

BayesX - Software for Bayesian Inference in Structured hdditive Re:
Version 1.50 (19.04.2007)

> dataset d

> d.infile using z:\talks\bath2007\exsmplesiresults £ district geo:
NOTE: 12 varisbles with 54 observations read from file
z:\talks\bath2007\ exanplesiresults_£_district_geospline.res

> map w

> m.infile using z:'talks\bathz007\exauples\zambis.bnd |
NOTE: §7 regions read from file z:)talks\bath2007\exauples’zambia.l
> graph o

> g.dravmap pmode district, map=m color hcl using d

NOTE: 3 wissing valusis) plotted

373159 o 263166

[51 objectBrowser

datasst

e Available from

http://www.stat.uni-muenchen.de/ “bayesx
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

Spatio-Temporal Regression: Forest Health Data

e Yearly forest health inventories carried out from 1983 to 2004.
e 83 beeches within a 15 km times 10 km area.

e Response: defoliation degree of beech 7 in year ¢, measured in three ordered categories:

y;+ = 1 no defoliation,
yir = 2 defoliation 25% or less,
y;it = 3 defoliation above 25%.

e Covariates:

t calendar time,

S; site of the beech,

a;y age of the tree in years,

u;+ further (mostly categorical) covariates.
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Spatio-Temporal Regression: Forest Health Data
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

e Cumulative probit model:
Plyiy <r)= (e(r) - 77z't)
with standard normal cdf ®, thresholds —oco = 09 < (1) < 9(2) <« 93) = x5 and

Nie = f1(t) + falages) + f3(t, ageir) + fopar(5i) + wiy

,

/ R >

e(l) 6(2) n 9(3) e(l) 9(2) n 9(3)
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Spatio-Temporal Regression: Forest Health Data
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data
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Thomas Kneib Spatio-Temporal Regression: Forest Health Data

e (Category-specific trends:
Plyi < 1) =2 |07 — /;7(t) = falagei) = Fopar(si) — uiyy

e More complicated constraints:

00 < M — fH3) <@ - fP ) <0 forall .

time trend 1 time trend 2

T T T T T T T T
1983 1990 1997 2004 1983 1990 1997 2004
calendar time calendar time
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Summary

Summary

e Flexible semiparametric regression models for geoadditive data structures.

e Fully automated Bayesian inferential procedures.

e Similar types of models are available for extended Cox-type hazard regression models:

— Joint estimation of covariate effects and baseline hazard rate.
— Time-varying effect to overcome proportional hazards.

— Interval, left, and right censored survival times.

e A place called home:

http://www.stat.uni-muenchen.de/ "kneib
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