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Introduction

This script aims at an introduction to wavelet theory. Wavelets are the result of truly
interdisciplinary research, originating in the early eighties, and involving mathematicians
(approximation theorists, harmonic and functional analysts), mathematical physicists as well
as researchers from signal and image processing. Wavelet theory incorporated influences from
all these areas of research; and nowadays wavelets can be encountered as a well-established
tool in many applied fields.
This script is intended to answer the following questions:

1. What are wavelets?

2. How are wavelets constructed?

3. What are the properties of wavelets? Which additional properties are desirable?

4. Which purposes do wavelets serve?

Obviously the answers depend on the context, and complete answers cannot be given in a
short script. Wavelet theory as it is developed here is essentially a subdiscipline of (Fourier)
analysis, and the mathematical content consists of theorems in analysis. However the script
also aims to hint why these results may be useful for nonmathematical purposes also.

There will be three (related) answers to the first question, which we will now sketch. On
first reading, not everything in these short descriptions can be fully understood. The missing
pieces are provided by the script. A good test for any reader will be to reread this introduction
after reading the script, and to see if he/she understands it and is able to fill in the gaps.

First answer (context: image processing): Suppose we are given a digital image, e.g., a
matrix (gi,j) ∈ R2N×2N of grey values. The one-step fast wavelet transform associated
to the Haar wavelet is computed as follows

• Group the pixels into 2× 2 subsquares ti,j ,

ti,j =
(

g2i,2j g2i,2j+1

g2i+1,2j g2i+1,2j+1

)

• For each subsquare ti,j compute weighted mean values, using the weights

1
4

(
1 1
1 1

)
,

1
4

(
1 1
−1 −1

)
,

1
4

(
1 −1
1 −1

)
,

1
4

(
1 −1
−1 1

)
.

• Store these weighted mean values into N ×N -matrices a, d1, d2, d3; hence

a1,1 =
1
4

(g1,1 + g1,2 + g2,1 + g2,2) , d1
1,1 =

1
4

(g1,1 + g1,2 − g2,1 − g2,2)

etc.
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• The resulting matrices are called ”approximation matrix” (a) and detail matrices (d1, d2, d3).
Elements of a detail matrix are also called ”detail coefficients” or ”wavelet coefficients”.

• A standard visualisation mode for the coefficients is
(

a d1

d2 d3

)
.

Figure 1: Original image and visualisation of approximation coefficients (left upper corner)
and detail coefficients. The approximation coefficients look like a copy of the image at lower
resolution, whereas the detail coefficients highlight edges of different orientations.

Iterating this procedure, where the approximation matrix is used as input for the next step,
yields higher order wavelet coefficients. The usual display mode for the results is obtained
by replacing the approximation coefficients by their higher order wavelet and approximation
coefficients, see the next figure.

Figure 2: Original image vs. approximation coefficients (left upper corner) and detail coeffi-
cients after three iterations of the decomposition step.

The illustrations provide a fairly good intuition of the information contained in the wavelet
coefficients: The approximation coefficients provide an approximation of the original image
at lower resolution. Depending on the orientation (that is, the index i of di), the wavelet
coefficients di are large at positions close to abrupt changes in the image along the vertical
or horizontal direction.
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Let us collect the main properties of the wavelet coefficients:

• The computation of wavelet coefficients is simple and fast.

• Likewise, there is a simple and fast algorithm for the reconstruction of the image from
wavelet coefficients.

• The coefficients corresponding to image regions with almost constant grey levels are
small (this turns out to be particularly useful for compression purposes).

Second answer (analysis): The continuous wavelet transform on R is a linear mapping
assigning functions on R certain functions on R×R∗, by the following procedure: Suppose we
are given a function g : R→ R, which is smooth with the exception of a few isolated points.

Figure 3: Input signal f . f or one of its derivatives has jumps at positions 500,100,1500,
2000.

We define
ψ(x) = (1− x2)e−x2/2 ,

as well as for b ∈ R and a > 0,

ψb,a = |a|−1/2ψ

(
x− b

a

)

a version of ψ, scaled by a and shifted by b. A popular choice is plotted below.
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Figure 4: The mexican hat wavelet.

The continuous wavelet transform of g is defined as the map Wψg : R×R+ → R given by

Wψg(b, a) = 〈g, ψb,a〉
=

∫

R
g(x)ψ

(
x− b

a

)
dx
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A plot of the wavelet coefficients shows that large coefficients concentrate in cones pointing
at the ”jumps” of g.

Figure 5: Wavelet coefficients Wψ(b, a). The horizontal axis corresponds to the position
parameter b, the vertical axis to scale (inverted, i.e., lower points on the axis correspond
to larger scales). Dark colors correspond to large absolute values; these tend to accumulate
around the jump points.

The common features of the two different notions of a wavelet turn out to be:

• ”Wavelets” are elementary building blocks indexed by a scale and a position parameter.

• A ”wavelet transform” consists in a decomposition of a ”signal” (image, function) into
these building blocks, by computing certain expansion coefficients, called ”wavelet coef-
ficients”. The expansion coefficients are scalar products of the signal with the building
blocks. There is also an inverse map allowing to ”synthesise” the signal from the coef-
ficients.

• Large wavelet coefficients occur mostly in the vicinity of singularities.

Besides these somewhat hazy analogies between the two answers, there also exists a math-
ematical connection, which will be the
Third answer (orthonormal wavelets): An orthonormal wavelet is a function ψ ∈
L2(R) with the property that

ψj,k(x) = 2j/2ψ
(
2jt− k

)

defines an orthonormal basis (ψj,k)j,k∈Z of L2(R).
Note that it is not apparent at all why the third answer connects the two previous ones;

except maybe that wavelet ONB’s are discretely indexed.

The chief aims of this script are:

• Give a mathematical treatment of the second and third answer. Study the existence and
properties of continuous and discrete wavelet systems in L2(R), as well as construction
methods.
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• Derive the fast wavelet transform from the construction of wavelet orthonormal bases
via multiresolution analyses. Sketch wavelet based algorithms for certain signal
processing problems, and explain the heuristics behind these algorithms.

Outline

The first chapter recalls basics from analysis. Wavelet analysis in general is about decom-
posing functions into basic building blocks. These building blocks are indexed by a scale and
a translation parameter. The first chapter clarifies the different ways of decomposing a func-
tion; mathematically this is expressed by certain isometric operators between Hilbert spaces.
A particularly intuitive type of decomposition is provided by orthonormal bases (ONB’s),
but we will also need “continuous” versions (such as the Fourier transforms), which are best
understood by analogy to ONB’s. The basics concerning Hilbert spaces are presented in the
first two section. Then we give an overview of integration and Lp-spaces. Here the most im-
portant aspects concern pointwise statements about Lp-functions (there are a few traps one
has to avoid), and convergence in Lp. We also define the class of “test signals” which provide
a sort of benchmark to compare different transforms, namely piecewise smooth functions.

The last three sections are concerned with the Fourier transform and its properties. The
role of the Fourier transform in this script is twofold: On the one hand, it is impossible to
prove anything about wavelets without it. On the other hand the Fourier transform serves as
a yardstick for wavelets: We will often compare wavelets (favorably) to the Fourier transform.
Wavelets were designed to remedy certain shortcomings of the Fourier transform, and one of
them can be understood by use of piecewise smooth functions: The global smoothness of a
functions is closely related to the decay behaviour of its Fourier transform. However, if the
function is very smooth except at one point, this close relation vanishes. This can be attributed
to the “lack of localisation” of the Fourier transform: Changing the function locally has a
global effect on its Fourier transform. These observations are explained in detail in Sections
1.5 and 1.6.

Chapter 2 deals with the continuous wavelet transform (CWT, the second of the above
answers). The CWT is in a sense the simplest transform to construct. One should keep in
mind that generally a wavelet is a tool that can be chosen according to the need of the user.
For the CWT, the arsenal of wavelets to choose from is particularly large; they only have
to fulfill a (rather mild) admissibility condition. We then discuss interpretation issues. The
scale parameter can be read as inverse frequency, which allows to read the CWT as something
like a “localised Fourier transform” or “filterbank”. This interpretation will provide a good
intuition for the analysis of piecewise smooth functions. Moreover, it gives a first hint that
a good wavelet is one that is “well-localised in time and frequency”, i.e., with fast decay of
the wavelet and its Fourier transform. We then deal with piecewise smooth functions and
their characterisation using the decay behavior of the CWT (Sections 2.2 through 2.4). As a
natural byproduct we obtain a more precise formulation of the rather hazy “good localisation”
requirement, namely in terms of decay behaviour, vanishing moments and smoothness of the
wavelet.

We also want to draw the reader’s attention to two wavelets which keep popping up
throughout the script, namely the Haar and the Shannon wavelet. They are somewhat ex-
tremal and academic cases which serve mainly as illustration of the various phenomena.
However, at least the Haar wavelet is still often encountered in applications, and very often
the heuristic arguments used for certain wavelet based algorithms can be best understood by
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thinking of the Shannon wavelet. In particular, the view of wavelet transform as filterbank
separating different frequency components is valid in a sharp sense only for the Shannon
wavelet.

In Chapter 3 we consider wavelet ONB’s of L2(R), and their construction via multiresolu-
tion analyses. In a sense, the course of argument consists in “boiling down” the construction
problem in several steps: First, the construction of an MRA (which is a sequence of closed
subspaces of L2(R)) is seen to correspond to the correct choice of a single function ϕL2(R),
the scaling function (Section 3.1). Then the scaling function is seen to be characterised by
a certain discrete series of coefficients (called “scaling coefficients”) (Section 3.3). Hence a
clever choice of these coefficients is enough to construct the MRA (and the wavelet ONB is
a simple byproduct of this, see Section 3.2). That such a clever choice of coefficients can be
made in such a way as to yield compactly supported wavelets with arbitrarily many vanishing
moments and arbitrary smoothness, is a famous result due to Daubechies. We give a sketch
of the proof in Section 3.3. In Section 3.4 we outline an alternative approach to wavelet
construction, which results in spline wavelets.

Chapter 4 deals with purely discrete data. As a byproduct of the multiresolution construc-
tion we obtain a fast and simple algorithm which computes wavelet coefficients of a function
L2(R) its sequence of scaling coefficients. The importance of the algorithm for the success
of wavelets in applications cannot be overstated. The algorithm implements an operator on
the (discrete time) signal space `2(Z). Due to its origin, the operator has an interpretation in
connection with an MRA in L2(R). However, it is also possible to understand it as a strictly
discrete-time filterbank (watch out for the Shannon wavelet), or as computing the expansion
coefficients with respect to a certain ONB of `2(Z).

In Section 4.3 we address the extension of the algorithm to 2D signals, i.e. discrete images.
In the final section we comment on two standard applications of discrete wavelets, namely
denoising and compression.
Sources

There are numerous books on wavelets, but unfortunately none which contains (in an easily
accessible manner) the material presented here. Moreover, as anyone trying to compare two
wavelet books knows, every author uses his own indexing of MRA’s and has his own ideas
where to put the 2π in the Fourier transform etc. Hence, if nothing else, this script provides
a self-contained account of the several wavelet transforms and their connections.

Chapter 1 covers results contained in any introductory book on real and/or functional
analysis. I only give proofs in Chapter 1 when I regard them as useful for the further under-
standing of the script.

Chapter 2 is uses ideas and results from [4, 3, 14], though I’m not aware of a source
containing rigourous proofs of Theorems 2.2.13 or 2.3.3. There exist proofs for related (usually
rather simpler) statements, e.g., in [5, 1].

Chapter 3 is mostly taken from [16]. Chapter 4 uses parts from [2, 6].
For further reading, we recommend [6] for a rather complete account of signal processing

applications, [9, 10] for the use of wavelet transforms in functional and Fourier analysis, and
[11] for a good overview of wavelets, time-frequency analysis and the like.

All illustrations in this script were produced using the Matlab wavelets toolbox.
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Chapter 1

Basics of (Functional) Analysis

1.1 Hilbert spaces and ONB’s

As explained in the introduction, the decomposition of functions into building blocks is a
major issue in this script. The suitable environment for this type of problem is provided by
Hilbert spaces. In order to motivate Hilbert spaces, let us recall a few facts from linear
algebra:

A standard application of Zorn’s lemma provides the existence of an (algebraic) basis
(xi)i∈I , for every vector space X. Hence each element x ∈ X can be written as a unique
linear combination

x =
∑

i∈I

αixi

with only finitely many nonzero coefficients. However, we are interested in vector spaces of
functions, and these spaces are usually infinite-dimensional; the algebraic dimension of decent
function spaces is in fact uncountable. This causes at least two unpleasant problems:

• Bases in the sense of linear algebra exist, but they are impossible to compute explicitly
(Zorn’s lemma is not constructive).

• Even if we could somehow compute a basis, the computation of the coefficients would
still require solving an infinite-dimensional system of linear equations (forget it).

One way around both problems (in fact, the simplest one that works) is provided by Hilbert
spaces and orthonormal bases (ONB’s). Most interesting Hilbert spaces contain explicitly
computable countable orthonormal bases (xi)i∈I (the wavelet ONB’s in L2(R), constructed
in chapter 3, are one class of examples). And by orthonormality, computing the coefficients
amounts to taking scalar products. In short, the decomposition provided by orthonormal
bases is given by

x =
∑

i∈I

〈x, xi〉xi ,

where we used the scalar product of the Hilbert space.

Definition 1.1.1 Let H be a C-vector space. A mapping

〈·, ·〉 : H×H → C

is a scalar product, when the following statements hold:
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1. For all x ∈ H the mapping y 7→ 〈y, x〉 is linear.

2. For all x, y ∈ H: 〈x, y〉 = 〈y, x〉.
3. For all x ∈ H, 〈x, x〉 ≥ 0, with equality only for x = 0.

We define the norm on H as ‖x‖ :=
√
〈x, x〉. A space H endowed with scalar product is

called pre-Hilbert space. 2

1.1.2 Lemma and Definition. Let H be a pre-Hilbert space.

(a) Cauchy-Schwarz inequality

∀x, y ∈ H : |〈x, y〉| ≤ ‖x‖‖y‖ .

(b) Triangle inequality
∀x, y ∈ H : ‖x + y‖ ≤ ‖x‖+ ‖y‖

(c) The mapping d(x, y) := ‖x− y‖ is a metric on H.

If H is complete with respect to the metric d, it is called Hilbert space. 2

Proof. For the proof of (a) consider the mapping

φ(t) = ‖x− t〈x, y〉y‖2 = a + bt + ct2 ,

where a = ‖x‖2, b = 2|〈x, y〉|2 and c = |〈x, y〉|2‖y‖2. By the property 3. of the scalar product
φ(t) ≥ 0, which implies that the discriminant b2 − 4ac fulfills

0 ≥ b2 − 4ac = 4|〈x, y〉|4 − 4‖x‖2‖y‖2|〈x, y〉|2 .

In the case 〈x, y〉 6= 0, we obtain the Cauchy-Schwarz inequality by cancelling |〈x, y〉|2, in the
other case it is trivial.

For part (b), we calculate

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 〈x, y〉+ 〈y, x〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖ ‖y‖ = (‖x‖+ ‖y‖)2 .

Part (c) follows from the definition of d and part (b). 2

Definition 1.1.3 (Unconditional convergence)
Let H be a Hilbert space, (xi)i∈I ⊂ H a family of vectors, and x ∈ H. We write

x =
∑

i∈I

xi

if for all ε > 0 there exists a finite set Jε ⊂ I such that for all finite J ′ ⊃ Jε,
∥∥∥∥∥x−

∑

i∈J ′
xi

∥∥∥∥∥ < ε .

2
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Example 1.1.4 (a) Let I be a set. Define

`2(I) = {(ai)i∈I ∈ CI :
∑

i∈I

|ai|2 < ∞} .

Here ∑

i∈I

|ai|2 = sup
J⊂Ifinite

∑

i∈J

|ai|2 .

Then `2(I) is a Hilbert space, with scalar product

〈(ai)i∈I , (bi)i∈I〉 =
∑

i∈I

aibi .

(See Section 1.3 below for the more general setting of L2-spaces.)
(b) Let H be a Hilbert space and H′ ⊂ H a closed subspace (closed with respect to the metric,
that is). Then H′ is a Hilbert space.
(c) Let H1, H2 be Hilbert spaces. Then the orthogonal sum H1 ⊕H2 is the direct product
of H1 and H2, endowed with the scalar product

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉1 + 〈x2, y2〉2 .

Here 〈·, ·〉i denotes the scalar product on the Hilbert space Hi. It is easy to check that the
orthogonal sum is complete, i.e., H1 ⊕H2 is a Hilbert space. 2

Definition 1.1.5 Let H be a Hilbert space.

(a) Two vectors x, y are called orthogonal (x⊥y) if 〈x, y〉 = 0.

(b) A family (xi)i∈I ⊂ H is an orthonormal system (ONS) if

∀i, j ∈ I : 〈xi, xj〉 = δi,j

(c) A family (xi)i∈I ⊂ H is total if for all x ∈ H the following implication holds

(∀i ∈ I : 〈x, xi〉 = 0) ⇒ x = 0 .

(d) A total ONS is called orthonormal basis (ONB).

2

Proposition 1.1.6 Let H be a Hilbert space.

(a) (Pythagoras) If x⊥y then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

(b) (Parseval equality) Let (xi)i∈I be an ONS, (ai)i∈I ∈ `2(I). Then
∑

i∈I aixi converges,
with ‖∑

i∈I aixi‖2 =
∑

i∈I |ai|2.
(c) Let (xi)i∈I be an ONS, x ∈ H. Then (〈x, xi〉)i∈I ∈ `2(I), with

∑
i∈I |〈x, xi〉|2 ≤ ‖x‖2.

(d) Let (xi)i∈I be an ONS. Suppose that x =
∑

i∈I aixi, with (ai)i∈I ∈ `2(I). Then ai =
〈x, xi〉.
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Proof. Part (a) is obtained by direct computation. For part (b) we first observe that the norm
equality in part (b) directly follows from part (a) for finitely supported coefficient sequences,
and on this subspace we define the linear mapping T : (ai)i∈I 7→

∑
i∈I aixi. We next fix an

arbitrary a = (ai)i∈I ∈ `2(I) and consider the sets

Jn = {i ∈ I : |ai| > 1/n} ,

and J =
⋃

n∈N Jn. Then J is the set of all indices in I for which ai 6= 0. Each of the Jn is
finite, because of

|Jn| · 1
n2

≤
∑

i∈Jn

|ai|2 ≤
∑

i∈I

|ai|2 .

As a consequence, J is countable. Moreover, the fact that Jn ⊂ Jm for m ≥ n implies that
every finite set J ′ ⊂ J is contained in a suitable Jm. We let

yn =
∑

j∈Jn

aixi .

This is a Cauchy sequence: For n < m,

‖ym − yn‖2 =
∑

j∈Jm\Jn

|ai|2 . (1.1)

For a given ε > 0 there exists a Lε such that

(
∑

i∈J ′
|ai|2)1/2 < ε

for all finite J ′ ⊂ I \ Lε. Hence if we pick M ∈ N such that Lε ⊂ JM , then (1.1) implies
‖ym − yn‖ ≤ ε for all m,n ≥ M . Hence (ym)m∈N is a Cauchy series, and we let y denote
its limit. The final step consists in proving y =

∑
i∈I aixi. Given ε > 0, we pick M > 0 as

before, and Kε = JM . Then for all J ′ containing Kε, we have

‖
∑

j∈J ′
aixi − yM‖ ≤


 ∑

j∈J ′\JM

|ai|2



1/2

< ε .

On the other hand, the fact that ‖yn−yM‖ < ε, for all n > M , implies that also ‖y−yM‖ ≤ ε.
Therefore, the triangle inequality implies

‖y −
∑

j∈J ′
aixi‖ ≤ ‖y − yM‖+ ‖yM −

∑

j∈J ′
aixi‖ ≤ 2ε .

For part (c) consider J ⊂ I finite. Define yJ =
∑

i∈I〈x, xi〉xi, zJ = x − yJ . Then
straightforward computation yields yJ⊥zJ , and thus by part (b)

∑

i∈J

|〈x, xi〉|2 = ‖yJ‖2 = ‖x‖2 − ‖zJ‖2 ≤ ‖x‖2 ,

which is the desired inequality.
For part (d) we use the continuity of the scalar product: If x =

∑
i∈I aixi, then

〈x, xj〉 =
∑

i∈I

ai〈ai, aj〉 = aj .

2
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Theorem 1.1.7 Let (xi)i∈I be an ONS in the Hilbert space H. Then the following are equiv-
alent:

(a) (xi)i∈I ONB.

(b) For all x ∈ H: x =
∑

i∈I〈x, xi〉xi.

Proof. For (b) ⇒ (a), assume x⊥xi for all i ∈ I. Then x =
∑

i∈I〈x, xi〉xi = 0.
For the converse, let x be given and consider y = x−∑

i∈I〈x, xi〉xi. Direct computation
establishes y⊥xi, and then (a) implies y = 0. 2

1.1.8 Exercise
(a) Show that every Hilbert space contains an ONB. (Use Zorn’s lemma.)
(b) Let x =

∑
i∈I xi and y ∈ H. Prove that 〈x, y〉 =

∑
i∈I〈xi, y〉, where the right hand side

converges unconditionally. (Use Cauchy-Schwarz) 2

Remark 1.1.9 If (xi)i∈I is an ONS, then

(xi)i∈I ONB ⇔ ∀x ∈ H : ‖x‖2 =
∑

i∈I

|〈x, xi〉|2

Here ⇒ follows by writing x =
∑

i∈I〈x, xi〉xi, and employing 1.1.6 (b). The converse direction
is obtained by writing y = x − 〈i∈I〈x, xi〉xi. Then the sum x = y + (x − y) is orthogonal,
yielding

‖x‖2 = ‖y‖2 + ‖x− y‖2 =
∑

i∈I

|〈x, xi〉|2 + ‖x− y‖2 = ‖x‖2 + ‖x− y‖2 ,

where the last equality is the assumption. Hence x = y. Since x is arbitrary, Theorem 1.1.7
implies the ONB property. 2

1.1.10 Exercise: In C unconditional convergence is the same as absolute conver-
gence. Let (xi)i∈I ⊂ C. Then

∑
i∈I xi converges in the sense of 1.1.3 iff

∑
i∈I |xi| < ∞.

(Hint: The ”if-part” follows easily from the triangle inequality. Prove the ”only-if”-part
indirectly, and reduce the general case to the case (xi)i∈I ⊂ R.) 2

1.2 Linear operators and subspaces

Definition 1.2.1 Let H,H′ be Hilbert spaces, T : H → H′ a linear operator. T is called
bounded, if ‖Tx‖ ≤ cT ‖x‖ holds, for all x ∈ H and a fixed constant cT > 0. A bounded
linear operator H → C is called linear functional. 2

Remark 1.2.2 An linear operator is bounded iff it is continuous with respect to the metrics
onH andH′. (The ”only if”-part is straightforward, the ”if”-part is treated in every functional
analysis course.) 2

Theorem 1.2.3 (Fischer/Riesz)
Let H be a Hilbert space. Then, for all x ∈ H the mapping y 7→ 〈y, x〉 is a linear functional.
Conversely, if ϕ : H → C is a linear functional, there exists x ∈ H such that for all y ∈ H :
ϕ(y) = 〈y, x〉.
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Proof. The fact that every x gives rise to a linear functional is due to the Cauchy-Schwarz
inequality. The converse is again covered in functional analysis. 2

1.2.4 Theorem and Definition Let T : H → H′ be a bounded linear operator. Then
there exists a unique bounded linear operator T ∗ : H′ → H such that for all x ∈ H and all
y ∈ H′

〈Tx, y〉 = 〈x, T ∗y〉 .

T ∗ is called the adjoint operator of T . 2

Definition 1.2.5 Let H and H′ be Hilbert spaces and T : H → H′.
(a) T is an (orthogonal) projection if T = T ∗ = T 2.

(b) T is unitary if TT ∗ = IdH and T ∗T = IdH′ .

(c) T is isometric if ‖Tx‖ = ‖x‖, for all x ∈ H.

2

Proposition 1.2.6 Let H be a Hilbert space, and K ⊂ H a subset.

(a) K⊥ = {z ∈ H : (∀x ∈ H : 〈z, x〉 = 0)} is a closed subspace.

(b) Assume that K is a closed subspace. Then for all x ∈ H there exists a unique pair
(y, y⊥) ∈ K × K⊥ such that x = y + y⊥. The mappings x 7→ y and x 7→ y⊥ are
projections (”onto K” resp. ”onto K⊥).

(c) Conversely: If T : H → H is a projection, then K = T (H) is a closed subspace. The
projection onto K⊥ is given by IdH − T .

Proof. The subspace property follows by linearity of z 7→ 〈z, x〉, closedness by the
Cauchy-Schwarz inequality.

For the proof of part (b) pick an ONB (xi)i∈I ⊂ K, and define a linear mapping T : H → K
by Tx =

∑
i∈I〈x, xi〉xi. We let y = Tx and y⊥ = x − Tx. Then Tx ∈ K, and x − Tx ∈ K⊥

follows from 〈x − Tx, xi〉 = 0, which is established directly, and the fact that the (xi)i∈I

are total in K. Moreover, x − Tx⊥Tx implies ‖x‖2 ≥ ‖x − Tx‖2 + ‖Tx‖2, and thus T is
a bounded operator. For the uniqueness of (y, y⊥) we consider (ỹ, ỹ⊥) ∈ K × K⊥ satisfying
y + y⊥ = x = ỹ + ỹ⊥. Then, collecting elements of the vector spaces K,K⊥ gives

z = y − ỹ = ỹ⊥ − y⊥ ,

i.e. z ∈ K ∩ K⊥. In particular, z⊥z, which implies z = 0.
For the projection property, T 2 = T follows by direct calculation. For selfadjointness, the

fact that Tx⊥z − Tz for all x, z ∈ H implies that

〈Tx, z〉 = 〈Tx, Tz + z − Tz〉 = 〈Tx, Tz〉 = 〈Tx + x− Tx, Tz〉 = 〈x, Tz〉 .

For part (c), the subspace property follows by linearity of T . If (yn)n∈N → y, with (yn)n∈N ⊂ K
and y ∈ H. By definition of K, yn = Tzn for suitable zn, and then Tyn = T 2zn = Tzn = yn.
In particular, as T is continuous, yn = Tyn → Ty ∈ K. Hence y = Ty ∈ K. Hence K is
closed. 2
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1.2.7 Exercises. Let T : H → H′ be a bounded linear operator between two Hilbert
spaces.

(a) T is isometric iff 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ H.
(Hint: Prove and apply the polarisation equation

〈x, y〉 =
1
4

(‖x + y‖2 − ‖x− y‖2 + i(‖x− iy‖2 + ‖x + iy‖2)
)

.

(b) T is isometric iff TT ∗ is a projection and T ∗T = IdH.

2

Corollary 1.2.8 For (xi)i∈I ⊂ H the following are equivalent.

(a) (xi)i∈I is total.

(b) {xi : i ∈ I}⊥ = {0}.
(c) span{xi : i ∈ I} = H.

Proof. (a) ⇔ (b) is clear. Let K = span{xi : i ∈ I}, then

K⊥ = {xi : i ∈ I}⊥ .

Here, the inclusion ”⊂” is clear. For the other inclusion, pick z ∈ {xi : i ∈ I}⊥. Then the
linearity of the scalar product implies 〈z, y〉 = 0 for all finite linear combinations z of the
xi. For every z ∈ K there exists a sequence (zn)n∈N of finite linear combinations such that
zn → z. Then 〈zn, y〉 = 0 implies 〈z, y〉. 2

Lemma 1.2.9 Let T : H → H′ be a bounded operator between Hilbert spaces.

(a) If T is isometric, then it is injective.

(b) T is unitary iff T is isometric and onto.

Proof. Tx = Ty implies 0 = ‖T (x− y)‖ = ‖x− y‖, and thus x = y. For part (b) recall from
1.2.7.(b) that T is isometric iff TT ∗ is a projection and T ∗T is the identity operator on H.
By definition, T is unitary iff TT ∗ is the identity operator on H′ a Hence the ”only if” part if
(b) is clear. For the converse direction, it remains to show that TT ∗ is the identity operator
on H′, and for this it is enough to show that TT ∗(H′) = H′. Since T is bijective, we need to
prove that T ∗ is surjective. But T ∗T is the identity on H, hence T ∗ is surjective. 2

Corollary 1.2.10 Let (xi)i∈I ⊂ H be an ONS. Then the coefficient operator T : H →
`2(I), Tx = (〈x, xi〉)i∈I is well-defined, bounded and onto. The following are equivalent:

(a) T is isometric.

(b) T is unitary.

(c) (xi)i∈I is an ONB.
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Proof. The coefficient operator is bounded nach 1.1.6 (c). It is surjective: If (ai)i∈I ∈ `2(I)
is given, then x =

∑
i∈I aixi converges in H, and 〈x, xj〉 = aj holds. Hence Tx = (ai)i∈I .

Now (a) ⇔ (b) follows from 1.2.9, and (a) ⇔ (b) from 1.1.9. 2

Remark 1.2.11 One important aspect of ONBs in finite dimensional spaces is that they
induce a coordinate system. Recall from linear algebra that a clever choice of coordinate
system can simplify certain problems considerably. For instance, the spectral theorem implies
that a selfadjoint operator is diagonal in a suitable basis. Hence in this coordinate system
properties of the operator such as invertibility, positive definiteness etc. can be immediately
read off the matrix of the operator with respect to the eigenbasis. (This observation generalises
to Hilbert spaces, at least for suitable operators and with a suitable modification of the term
”eigenbasis”.)

This idea of choosing a clever basis can be seen as one motivation of wavelets: As the
discussion in Section 1.6 shows, it is not easy to decide whether a function is piecewise smooth
by looking at its “Fourier coordinates”, whereas Chapter 2 shows that “wavelet coordinates”
can be employed for this purpose. 2

1.3 Function spaces

In this section we recall the basic notions of integration theory, as needed for the following.
Notions and results not mentioned here can be found e.g. in [13].

Definition 1.3.1 A measure space is a triple (X,B, µ) consisting of

• a set X

• a σ-algebra B, i.e. a set of subsets of X that contains X, and fulfills

– ∀C ∈ B: X \ C ∈ B;

– ∀Cn ⊂ B :
⋃

n∈NCn ∈ B;

• a measure µ, i.e. a map µ : B → R+
0 ∪{∞} that is σ-additive, meaning µ

(⋃
n∈NCn

)
=∑

n∈N µ(Cn), for all sequences (Cn)n∈N of disjoint subsets.

2

Example 1.3.2 (a) Let X = Rn, and B the σ-algebra of Borel subsets of X. By definition,
B is the smallest σ-algebra containing the cartesian products of intervals, i.e., the sets of the
form C = Πn

i=1[ai, bi]. The standard measure on X is the Lebesgue measure, which is fixed
by λ(Πn

i=1[ai, bi]) =
∏n

i=1(bi − ai).
(b) Let X = I, an arbitrary set, and B the power set of X, and consider the counting measure
µ on X. Then `2(I) = L2(X,µ). 2

1.3.3 Definition and Theorem Let (X,B, µ) be a measure space.

(a) f : X → Rn is called measurable if f−1(C) ∈ B for all Borel sets C. The space of
measurable functions X → C is denoted M(X).

(b) M+(X) is the set of measurable functions f : X → R+
0 .
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(c) There exists a uniquely defined integral associated to µ, i.e., a mapping I : M+(X) →
R+

0 ∪ {∞}, satisfying

• I(λf + g) = λI(f) + g, for all f, g ∈ M+(X) and λ ≥ 0. Here λ · ∞ = 0 if λ = 0,
and λ · ∞ = ∞ otherwise.

• I(χA) = µ(A). Here χA is the characteristic function, defined by χA(x) = 1 for
x ∈ A, and 0 elsewhere.

We write
∫
X f(x)dµ(x) = I(f).

(d) We let N(X) as the vector space of almost everywhere vanishing functions, i.e.,

N(X) = {f ∈ M(X) : ∃C ∈ B such that µ(C) = 0, f(x) = 0∀x 6∈ C }
= {f ∈ M(X) : I(|f |) = 0} .

(e) For 1 ≤ p < ∞, the space Lp(X, µ) = Lp(X) is defined as the quotient space

Lp(X) = {f ∈ M(X) :
∫

X
|f(x)|pdµ(x) < ∞}/N(X)

endowed with the Lp-norm

‖f‖p =
(∫

X
|f(x)|pdµ(x)

)1/p

(f) For p = ∞ we let

L∞(X) = {f ∈ M(X) : ∃g ∈ M(X), g bounded, f − g ∈ N(X)}/N(X)

with
‖f‖∞ = inf{α : |f(x)| < α almost everywhere }

(g) There exists a unique linear extension of I from M+(X) ∩ L1(X) to L1(X). We write∫
X f(x)dµ(x) or I(f) for this extension. Integrals of this kind are called absolutely

convergent. As a rule, integrals in this course either refer to the definition of the
integral on M+(X) (i.e., the integrand is positive), or the integral converges absolutely.

2

The main reason for writing down the definition of Lp-spaces is to draw attention to the
fact that Lp-functions are in fact equivalence classes. It is customary to use a somewhat
ambiguous language which refers both to equivalence classes and their representatives as
Lp-functions.

Theorem 1.3.4 Let (X,B, µ) be a measure space, 1 ≤ p ≤ ∞. Then Lp(X) is a normed
space, i.e., ‖ · ‖p fulfills

• ‖g‖p = 0 ⇒ g = 0

• ‖αg‖p = |α| ‖g‖p
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• ‖f + g‖p ≤ ‖f‖p + ‖g‖p

Moreover, Lp(X) is complete with respect to the metric d(f, g) = ‖f − g‖p; this makes Lp(X)
a Banach space. L2(X) is a Hilbert space, with scalar product

〈f, g〉 =
∫

X
f(x)g(x)dµ(x) .

1.3.5 Remark. (Pointwise convergence vs. norm convergence) Convergence in ‖·‖p

does not imply pointwise convergence, not even almost everywhere. But at least we have

‖fn − f‖ → 0 ⇒ ∃ subsequence (fnk
)k∈N such that fnk

(x) → f(x) almost everywhere .

The converse implication is even more problematic: fn → f pointwise usually does not imply
fn → f in the norm. However, there are additional criteria to ensure norm convergence:

(a) (Monotone Convergence) If 0 ≤ f1 ≤ f2 ≤ . . ., then
∫

X
f(x)dx = lim

n→∞ fn(x)dx

and
‖fn − f‖1 → 0 ⇔ f ∈ L1(X) .

(b) (Dominated Convergence) If |fn(x)| ≤ g(x) for all x ∈ X and a fixed g ∈ L1(X), then
f ∈ L1(X), ∫

X
f(x)dx = lim

n→∞ fn(x)dx

and ‖f − fn‖1 → 0.

(c) If fn → f uniformly, and if fn and f vanish outside a fixed set of finite measure, then
fn ∈ Lp(X) implies f ∈ Lp(X) and fn → f in ‖ · ‖p.

2

1.3.6 Dense subspaces of Lp Let 1 ≤ p < ∞. The following subspaces are dense in
Lp(Rn):

(a) The space of step functions,

T (Rn) = {
m∑

i=1

αiχCi : m ∈ N, αi ∈ C, Ci = [a1,i, b1,i]× . . . [an,i, bn,i]}

(b) C∞
c (Rn) = {f : Rn → C : supp(f) compact, and ∀m ∈ N : f ∈ Cm(Rn)} is dense.

Moreover, if I ⊂ Rn is open, then {f ∈ C∞
c (Rn) : suppf ⊂ I} is dense in Lp(I).

2

1.3.7 Proposition. (Inclusion between Lp-spaces.) Let (X,B, µ) be a measure space.

(a) If µ(X) < ∞ and 1 ≤ q ≤ p ≤ ∞, then Lp(X) ⊂ Lq(X).
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(b) For all 1 ≤ q ≤ p ≤ ∞ we have Lp(X) ⊃ Lq(X)∩L∞(X). In particular, `p(X) ⊃ `q(X).

2

1.3.8 Exercise. (The Haar basis)

(a) Define ψ = χ[0,1/2[ − χ[1/2,1], and, for j, k ∈ Z
ψj,k(t) = 2j/2ψ(2j(t− k)) .

Moreover let ϕ = χ[0,1]. Prove that {ϕ} ∪ {ψj,k : j ≥ 0, 0 ≤ k ≤ 2j − 1} is an ONB of
L2([0, 1]).
(Hint: Orthonormality is straightforward. For totality, first prove for all j0 ≥ 0 that the
span of {ϕ} ∪ {ψj,k : j0 ≥ j ≥ 0, 0 ≤ k ≤ 2j − 1} is given by the functions f : [0, 1] → C
which are constant on the ”dyadic intervals” [2−j0−1k, 2−j0−1(k + 1)].)

(b) Show that {ψj,k : j, k ∈ Z} is an ONB of L2(R).
(Hint: Again, totality is the nontrivial part. For this purpose use part (a) to show that
for all j0 ∈ Z the family (ψj,k)j≥j0,0≤k≤2j−j0−1 is an ONB of

Hj0 = {f ∈ L2([0, 2−j0 ]) :
∫ 2−j0

0
f(x)dx = 0} .

Then prove that
⋃−∞

j0=1Hj0 is dense in L2([0,∞[). A simple reflection argument yields
the same for L2(]−∞, 0]).)

2

1.4 Fourier Series

Theorem 1.4.1 For T > 0 consider the Hilbert space H = L2([−T/2, T/2]) and the sequence
(en)n∈Z ⊂ H defined by

en(t) = T−1/2e2πint/T .

Then (en)n∈Z is an ONB of H, called the Fourier basis.

As a consequence of the theorem we obtain the Fourier transform F : L2([−T/2, T/2]) →
`2(Z), which is the coefficient operator with respect to the Fourier basis. By 1.2.10 the Fourier
transform is a unitary operator. Every f ∈ L2([−T/2, T/2]) can be expanded in the Fourier
series

f =
∑
n∈Z

〈f, en〉en .

We use the notation f̂(n) = 〈f, en〉. The Fourier transform may be extended to the larger
space L1([−T/2, T/2]), retaining at least some properties:

Theorem 1.4.2 For f ∈ L1([−T/2, T/2]) and n ∈ Z, the right hand side of

f̂(n) = T−1/2

∫ T/2

−T/2
f(t)e−2πint/T dt

is absolutely convergent. The map f 7→ f̂ = (f̂(n))n∈Z is a linear operator F : L1([−T/2, T/2]) →
c0(Z), called the (L1-) Fourier transform. (c0(Z) denotes the space of sequences converging
to zero). The operator F is injective.
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Remark 1.4.3 The set [−T/2, T/2] may be replaced by any measurable set A ⊂ R with the
properties

• A ∩ nT + A has measure zero, for all n ∈ Z. (Here nT + A = {nT + a : a ∈ A}.)
• R \ (⋃

n∈Z nT + A
)

has measure zero.

2

1.5 Fourier integrals

An informal derivation of Fourier integrals from Fourier series can be obtained as follows: Let
f ∈ L2([−T/2, T/2]). Define for ω ∈ R the function

eω(x) = e2πiωx (x ∈ R) .

For S > T we can write (at least in the L2-sense)

f(x) =
∑
n∈Z

∫ S/2

−S/2
f(t)S−1/2e−2πitn/SdtS−1/2e2πixn/S

=
∑
n∈Z

〈f, en/S〉
en/S(x)

S

→
∫

R
〈f, eω〉eω(x)dω (S →∞),

where the last line is a strictly formal observation that the Riemann sums should converge to
the integral. This is obviously highly nonrigourous; in particular, the eω are not in L2(R). A
rigourous definition requires a detour via L1(R):

Theorem 1.5.1 Let f ∈ L1(R) be given, and define

f̂(ω) =
∫

R
f(t)e−2πiωtdt (ω ∈ R).

The (L1-) Fourier transform is the linear operator F : f 7→ f̂ .

(a) f̂ is continuous and bounded, with ‖f̂‖∞ ≤ ‖f‖1.

(b) Riemann-Lebesgue: lim|ω|→∞ f̂(ω) = 0.

(c) Fourier Inversion: If f̂ ∈ L1(R), then f is continuous with f(x) =
∫
R f̂(ω)e2πiωxdω.

(d) F is an injective operator.

Proof. Well-definedness and boundedness of f̂ follows by pulling the modulus into the
integral:

|f̂(ω)| =
∣∣∣∣
∫

R
f(x)e−2πiωxdx

∣∣∣∣
2

≤
∫

R
|f(x)|dx = ‖f‖1 ,
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where we used |e2πiωx| = 1. Continuity of f̂ is proved in [13, 9.6], which also takes care of
(b). For part (c) confer [13, 9.11]. Injectivity follows from (c): If f̂ = 0, then in particular
f̂ ∈ L1(R), and

f(x) =
∫

R
f̂(ω)e2πiωxdω =

∫

R
0dω = 0 .

2

1.5.2 Theorem and Definition. Plancherel Theorem If f ∈ L1(R) ∩ L2(R), then
f̂ ∈ L2(R), with ‖f̂‖2 = ‖f‖2. Hence F : L1 ∩ L2(R) → L2(R) is isometric with respect to
‖ · ‖2, and there exists a unique extension F : L2(R) → L2(R). This extension is necessarily
isometric, and turns out to be unitary. Again, we write f̂ := F(f). 2

Proof. For the proof confer [13, 9.13]. We only demonstrate the construction of the continu-
ation, which is an often-used argument: L1∩L2(R) is dense in L2(R), containing the subspace
C∞

c (R). Hence for every f ∈ L2(R) there exists a sequence (fn)n∈N ⊂ L1 ∩ L2(R) such that
fn → f in ‖ · ‖2. The Fourier transform is ‖ · ‖2-isometric on the intersection, hence (f̂n)n∈N
is a Cauchy sequence, hence has a limit. We declare f̂ to be this limit. 2

Theorem 1.5.3 (a) For all f ∈ L2(R): f(x) = ̂̂
f(−x) = f(x) almost everywhere. In

particular, if f̂ ∈ L1(R), then f is continuous with f(x) =
∫
R f̂(ω)e2πiωxdω.

(b) (Sharpening of the Plancherel Theorem) Let f ∈ L1(R). Then

f ∈ L2(R) ⇔ f̂ ∈ L2(R) .

Proof. Part (a) follows for elements of C∞
c (R) from the Fourier inversion formula, which

applies by Exercise 1.6.9 below. The operator T : f 7→ ̂̂
f(−·) is unitary, and we know that

it coincides with the identity on a dense subspace. But this entails that T is the identity
everywhere. 2

1.5.4 Interpretation of the Fourier Transform An exponential function eω(x) =
cos(2πωx)+ i sin(2πωx) is interpreted as ”pure frequency ω”. The (informal) relation f̂(ω) =
〈f, eω〉 suggests interpreting f̂(ω) as ”expansion coefficient” of f with respect to the pure
frequency component, and the Fourier transform as a change of coordinates (in a similar way
as outlined for ONBs in Remark 1.2.11). In this way the inversion formula

f(x) =
∫

R
f̂(ω)eω(x)dω

can be read as the decomposition of f into its frequency components.
Another important feature of the Fourier transform, treated in more detail in the next

section, is that it diagonalises translation and differentiation operators. 2

Definition 1.5.5 Let ω, x, a ∈ R, with a 6= 0. We define

(Txf)(y) = f(y − x) (Translation operator)
(Daf)(y) = |a|−1/2f(a−1y) (Dilation operator)
(Mωf)(y) = e−2πiωyf(y) (Modulation operator)

All these operators are easily checked to be unitary on L2(R). 2

20



Dilation and translation have a simple geometrical meaning. Tx amounts to shifting
a graph of a function by x, whereas Da is a dilation of the graph by a along the x-axis,
with a dilation by |a|−1/2 along the y-axis: If suppf = [0, 1], then supp(Daf) = [0, a] and
supp(Txf) = [x, x + 1].

1.5.6 Exercise

(a) Check the following relations on L2(R)

F ◦ Tx = Mx ◦ F , F ◦Da = Da ◦ F
F ◦Mω = T−ω ◦ F , Da ◦ Tx = Tax ◦Da

T ∗x = T−x , M∗
ω = M−ω , D∗

a = Da−1

(b) Verify for f ∈ L2(R) ∪ L1(R):

f(x) ∈ R (a.e.) ⇔ f̂(ω) = f̂(−ω) (a.e.)
f(x) = f(−x) (a.e.) ⇔ f̂(ω) ∈ R (a.e.)

2

One shortcoming of the Fourier transform, which will be discussed in more detail in
the next section and serves as a motivation for the introduction of wavelets is the lack of
localisation. There is quite a number of possible formulations of this lack of localisation.
A particularly simple one is the following: If a function has compact support, its Fourier
transform vanishes only on a discrete set.

Theorem 1.5.7 (Qualitative uncertainty principle) Let f ∈ L2(R) have compact sup-
port. Then its Fourier transform is the restriction of a holomorphic function on C to the real
axis. In particular, if f 6= 0, f̂ vanishes only on a discrete set.

Proof. Suppose that the L2−function f fulfills f = 0 outside of the compact set A. First
observe that f ∈ L2(A) ⊂ L1(A), by 1.3.7. We define a function F on C by letting

F (z) =
∫

R
f(x)e−2πizxdx =

∫

A
f(x)e−2πizxdx .

The mappings t 7→ e−2πitz are bounded on A, hence the integral defining F converges ab-
solutely. Further we define

G(z) =
∫

A
f(t)(−2πit)e−2πitdt ,

which converges absolutely as well. An application of the dominated convergence theorem,
using that t 7→ −2πite−2πit is bounded on A, yields

F (z0)− F (z)
z0 − z

→ G(z0) , z → z0.

Hence F has a complex derivative. 2

As a consequence we see that if g, h ∈ L1(R) only differ on a bounded interval, their
Fourier transforms differ everywhere except on a discrete set. Hence a local change of the
function g results in a global change of its Fourier transform.
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1.6 Fourier Transforms and Differentiation

In this section we discuss how the decay behavior of the Fourier transform f̂ can be used
to decide whether f ∈ Cn(R) for some n. The results highlight both the usefulness and the
restrictions of the Fourier transform: It is possible to derive smoothness properties from the
decay of the Fourier transform, but only global ones. Due to the lack of localisation of the
Fourier transform, functions violating the smoothness requirement in a single point cannot
be distinguished from functions which are highly irregular.

We start with informal arguments: Since the exponential functions eω are smooth func-
tions, with the oscillatory behavior controlled by the parameter ω, it seems natural to expect
that reproducing a highly irregular function requires many exponentials with large frequen-
cies. Thus the Fourier transform of such a function cannot be expected to be concentrated in
small frequencies.

An alternative argument goes like this: In general, the differentiation operator lowers
the regularity of a function; if f ∈ Cn(R), then f ′ ∈ Cn−1(R), but usually f ′ 6∈ Cn(R).
Hence differentiation increases irregularity. On the other hand, assuming we were allowed to
differentiate under the integral of the Fourier inversion formula

f(t) =
∫

R
f̂(ω)e2πiωtdω

we obtain
f ′(t) =

∫

R
f̂(ω)(2πiω)e2πiωtdω .

Hence we have ”derived” f̂ ′(ω) = f̂(ω)(2πiω). Thus differentiation results in a multiplication
with the frequency variable; small frequencies are attenuated while large frequencies become
more important. The first result of this section contains a rigourous formulation of this
observation:

Theorem 1.6.1 (a) Let f ∈ L1(R) ∩ Cn(R), with f (i) ∈ L1(R) for 1 ≤ i ≤ n. Then

F(f (n))(ω) = (2πiω)nf̂(ω) .

In particular |f̂(ω)| |ω|n → 0 for ω → 0.

(b) Conversely, if f ∈ L1(R) with |f̂(ω)| ≤ C|ω|−(n+α) for some α > 1, then f ∈ Cn(R).

Proof. For part (a) assume first that f ∈ L1 ∩ C1(R), with f ′ ∈ L1(R). Then

f(x) = f(0) +
∫ x

0
f ′(y)dy .

By assumption f ′ ∈ L1(R), hence the following limits exist:

lim
x→∞ f(x) = f(0) +

∫ ∞

0
f ′(y)dy

lim
x→−∞ f(x) = f(0)−

∫ 0

−∞
f ′(y)dy .
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Since f ∈ L1(R), the limits are zero. Hence, using first the dominated convergence theorem
and then partial integration,

f̂ ′(ω) = lim
R→∞

∫ R

−R
f ′(x)e−2πiωxdx

= lim
R→∞

(
f(x)e−2πiωx|R−R −

∫ R

−R
f(x)(−2πiωx)e−2πiωxdx

)

= 2πiωf̂(ω) .

This finishes the case n = 1; the general case follows immediately from this by induction. For
part (b) we assume that |f̂(ω)| ≤ C|ω|−β, for β > 2. Then the Fourier inversion formulae

f(x) =
∫

R
f̂(ω)e2πiωxdω

g(x) =
∫

R
f̂(ω)(2πiω)e2πiωxdω

converge absolutely. Moreover,
∣∣∣∣
f(x)− f(x0)

x− x0
− g(x)

∣∣∣∣ ≤
∫

R
|f̂(ω)|

∣∣∣∣
e2πiωx − e2πiωx0

x− x0
− 2πiωe2πiωx

∣∣∣∣ dω .

We want to show that the left-hand side goes to zero as x0 → x. Observe that the integrand on
the right hand side converges pointwise to zero. We want to apply the dominated convergence
theorem to prove that the integrals converge as well. Taylor’s formula implies

∣∣∣∣
e2πiωx − e2πiωx0

x− x0
− 2πiωe2πiωx

∣∣∣∣ ≤ 4π|ω| ,

yielding

|f̂(ω)|
∣∣∣∣
e2πiωx − e2πiωx0

x− x0
− 2πiωe2πiωx

∣∣∣∣ ≤ 4π|ω||f̂(ω)| ≤ C|ω|1−β ,

which is an integrable at infinity, for β > 2. Close to zero, we can estimate the integrand
simply by 4π|f̂(ω)|, yielding an overall integrable upper bound. Hence the dominated con-
vergence theorem applies. This takes care of the case n = 1. Again, the general statement
follows by induction. 2

In the script we will discuss pointwise properties of Lp-functions, such as differentiability.
This seems to contradict the fact that elements of Lp are equivalence classes of measurable
functions modulo almost everywhere vanishing functions. It is not a priori obvious that in
this setting smoothness is a useful notion: On R, one can take an arbitrarily smooth function,
add to this function the characteristic function of the rationals, and obtain something that is
nowhere continuous, but in the same equivalence class mod N(R).

Definition 1.6.2 A piecewise Cn-function is a pair (f, S(f)), where f : R→ C, S(f) ⊂ R
is discrete (i.e. without accumulation point), such that f is n times continuously differentiable
in R \ S(f). S(f) is called the set of singularities of f . We call f ∈ Lp(R) piecewise Cn if
there exists a representative of f which is piecewise Cn. 2
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The following proposition shows that speaking of piecewise Cn Lp-functions does make
sense. In fact, there exists a ”canonical” representative with a minimal set of singularities.

1.6.3 Proposition and Definition Let f ∈ Lp(R) be piecewise Cn. Then f has a piecewise
Cn representative (g, S(g)) with the property that for every other piecewise Cn representative
(h, S(h)) we have S(g) ⊂ S(h). This property fixes g uniquely on g. g is called ”canonical
representative”. 2

Remark 1.6.4 The last theorem contains conditions on the decay of f̂ for f to be Cn, namely

Necessary: |f̂(ω)| |ω|n → 0
Sufficient: |f̂(ω)| |ω|n ≤ |ω|−α (α > 1)

Note that there is a gap between the necessary and sufficient conditions. In fact, there are
functions sitting in this gap; see below.

On the other hand, the sufficient condition shows that if f is not Cn, even at a single
point in R, there does not exist α > 1 with a constant C > 0 such that |f̂(ω)| ≤ C|ω|α+n.
In other words, a single point of lower regularity influences the global decay behaviour of f̂ .
2

Example 1.6.5 (a) Consider f(x) = χ[−S,S](x) for some S > 0. Then f is piecewise C∞,
with singularities −S, S. Straightforward computation yields

f̂(ω) =
sin(2πωS)

πω
.

In particular, we obtain |f̂(ω)| ≤ C(1 + |ω|)−1. Moreover, this decay order is optimal, since
otherwise f̂ were integrable and hence f continuous by the Fourier inversion Theorem 1.5.1.

(b) Let f(x) = e−|x|. Then f is continuous and C∞ in R\{0}. A straightforward computation
establishes

f̂(ω) =
1

1 + 4π2ω2
.

Hence |f̂(ω)| ≤ C(1 + |ω|)−2, but f 6∈ C1. This shows that the sufficient decay condition in
Remark 1.6.4 cannot be extended to α = 1. 2

Remark 1.6.6 The examples can also be read as a sharpening of the remark following The-
orem 1.5.7. If f ∈ L1(R) is smooth except for a few isolated singularities, one can easily
construct a smooth g ∈ L1(R) which only differs from f in a neighborhood of the singulari-
ties. ĝ decays significantly faster than f̂ , i.e., the decay behavior of f is determined by the
difference f − g. This difference only depends on the behavior of f close to the singulari-
ties. Hence the Fourier transform is not well adapted to the treatment of piecewise smooth
functions. 2

1.6.7 Exercise Let f ∈ L1(R). Assume that
∫

R
|t|n|f(t)|dt < ∞

for some n ≥ 1, then f̂ ∈ Cn with
(
f̂
)(n)

= (−2πi)n(tnf)∧. 2
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1.6.8 Exercise Compute the Fourier transform of f(x) = e−x2/2.
(Hint: First derive the differential equation

(
f̂
)′

(ω) = −4π2ωf̂(ω)

and solve it. The correct normalisation is obtained by

f̂(0) =
∫

R
e−x2/2dx =

√
2π .

A proof for the second equality is not required.) 2

1.6.9 Exercise (a) A function f : R → C is called Schwartz-function when f ∈ C∞(R)
with |xmf (n)(x)| ≤ Cm,n(f), for all m,n ∈ N and x ∈ R, and suitable constants Cm,n(f). The
space of Schwartz-functions is denoted by S(R); note the obvious inclusion C∞

c (R). Prove
that

f ∈ S(R) ⇔ f̂ ∈ S(R) .

(b) Prove that S(R) ⊂ L1(R). Conclude that the pointwise inversion formula holds for
elements of S(R). 2
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Chapter 2

The continuous wavelet transform

2.1 Admissibility, Inversion Formula

Definition 2.1.1 ψ ∈ L2(R) is called admissible function (or mother wavelet) if ψ 6= 0
and

cψ =
∫

R

|ψ̂(ω)|2
|ω| dω < ∞ . (2.1)

2

Remark 2.1.2 Let ψ ∈ L2(R) with
∫
R |t||ψ(t)|dt < ∞. Then ψ ∈ L1(R) and

ψ is admissible ⇔ ψ̂(0) =
∫

R
ψ(t)dt = 0 (2.2)

Proof.
∫

R
|ψ(t)|dt =

(∫ 1

−1
+

∫

|t|>1

)
|ψ(t)|dt

≤
∫ 1

−1
|ψ(t)|dt +

∫

|t|>1
|t||ψ(t)|dt .

The first term is finite since the restriction of ψ to [−1, 1] is in L2([−1, 1]) ⊂ L1([−1, 1]), and
the second term is finite by assumption. Thus ψ ∈ L1(R). Moreover, ψ̂ is C1, by 1.6.7, hence
there exists a constant c such that for all |ω| < 1 the inequality |ψ̂(0) − ψ̂(ω)| ≤ c|ω| holds.
Thus if ψ̂(0) = 0, ∫ 1

−1

|ψ̂(ω)|2
|ω| dω ≤

∫ 1

−1
c2|ω|dω < ∞ ,

and in the other case, ψ̂(ω) > ε for all |ω| < δ, with fixed ε, δ > 0 entails

∫ 1

−1

|ψ̂(ω)|2
|ω| dω ≥

∫ δ

−δ

ε

|ω|dω = ∞ .

2
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Definition 2.1.3 Let f ∈ L2(R), ψ ∈ L2(R) admissible. The continuous wavelet trans-
form of f with respect to ψ (CWT, for short) is the function Wψf : R×R∗ → C, defined
by

(Wψf) (b, a) = 〈f, TbDaψ〉

=
∫

R
f(x)

1√
|a|ψ

(
x− b

a

)
dx .

2

Remark 2.1.4 Let f, g ∈ L2(R) (admissible or not). The function (Wgf)(b, a) = 〈f, TbDag〉
has the following properties: It is continuous and vanishes at infinity on R × R∗. The latter
means the following: Given any sequence of points ((an, bn))n∈N ⊂ R×R∗ without accumula-
tion point in R× R∗,

Wgf(bn, an) → 0, as n →∞ .

Proof. Exercise. (Hint: First plug in characteristic functions of compact sets. The Cauchy-
Schwarz inequality allows to extend the results to arbitrary elements of L2(R).) 2

2.1.5 Examples
(a) Haar wavelet: ψ = χ[0,1/2[ − χ[1/2,1]. ψ is admissible by (2.2).
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Figure 2.1: The Haar wavelet and its Fourier transform (only the absolute value)

(b) Mexican Hat wavelet: Define ψ(x) = − d2

d2y
(e−y2/2)(x) = (1 − x2)e−x2/2. By 1.6.1 we

compute the Fourier transform as

ψ̂(ω) = (2πiω)2F(e−·
2/2)(ω) = −4π2ω2

√
2πe−2π2ω2

.

In particular ψ̂(0) = 0, i.e. ψ is admissible by (2.2).
(c) Shannon wavelet: Define ψ by ψ̂ = χ[−1,−1/2] + χ[1/2,1]. The admissibility condition
(2.1) is easily checked. Using 1.5.3 (a) and 1.6.5 (a), the inverse Fourier transform of ψ is
computed as

ψ(x) =
sin(πx)

πx
(2 cos(πx)− 1) .

Unlike the previous two examples, the Shannon wavelets decays rather slowly; |ψ(x)| ∼ |x|−1.
In fact, ψ 6∈ L1(R), since ψ̂ is not continuous. Hence this example is not covered by (2.1.2).
2
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Figure 2.2: The mexican hat wavelet and its Fourier transform
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Figure 2.3: The Shannon wavelet and its Fourier transform

Theorem 2.1.6 Let f ∈ L2(R), ψ ∈ L2(R) admissible. Then Wψf ∈ L2(R × R∗, |a|−2dbda),
with ∫

R∗

∫

R
|Wψf(b, a)|2 db

da

|a|2 = cψ‖f‖2
2 . (2.3)

In other words: The operator f 7→ c
−1/2
ψ Wψf is an isometry L2(R) → L2(R× R∗, |a|−2dbda).

Proof. Using the Plancherel theorem and Remark 1.5.6
∫

R∗

∫

R
|Wψf(b, a)|2db

da

|a|2 =
∫

R∗

∫

R
|〈f, TbDaψ|2db

da

|a|2

=
∫

R∗

∫

R
|〈f̂ ,MbDa−1ψ̂〉|2db

da

|a|2

=
∫

R∗

∫

R

∣∣∣∣
∫

R
f̂(ω)|a|1/2ψ̂(aω)e2πibωdω

∣∣∣∣
2

db
da

|a|2

=
∫

R∗

∫

R
|F(ha)(−b)|2 db

da

|a|2 ,

where ha(ω) = f̂(ω)|a|1/2ψ̂(aω), which for fixed a is an L1-function. Thus applying 1.5.3 (b)
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we obtain that
∫

R∗

∫

R
|F(ha)(−b)|2 db

da

|a|2 =
∫

R∗

∫

R

∣∣∣f̂(ω)|a|1/2ψ̂(aω)
∣∣∣
2
dω

da

|a|2

=
∫

R∗

∫

R

∣∣∣f̂(ω)ψ̂(aω)
∣∣∣
2
dω

da

|a|
=

∫

R
|f̂(ω)|2

∫

R∗
|ψ̂(aω)|2 da

|a| dω

=
∫

R
|f̂(ω)|2

∫

R∗
|ψ̂(a)|2 da

|a| dω

= cψ‖f‖2
2 .

2

Given arbitrary nonzero f , the proof shows that the property Wψf ∈ L2(R×R∗, |a|−2dbda)
only depends on the choice of ψ.

2.1.7 Inversion Formulae
(a) The isometry property of the operator Wψ is often stated in the form of inversion
formulae, i.e., via the equations

f =
1
cψ

∫

R

∫

R∗
Wψf(b, a)(TbDaψ)

da

|a|2 db (2.4)

=
1
cψ
〈f, TbDaψ〉(TbDaψ)

da

|a|2 db . (2.5)

Here the right hand side converges only in the weak sense, which is just a restatement of the
isometry property. In particular, it should not be read pointwise (we will encounter pointwise
inversion formulae below).
(b) Let f, ψ ∈ L2(R), with ψ admissible. If f or ψ are real-valued, the upper half plane is
sufficient for reconstruction, i.e. instead of (2.4) we have

f =
2
cψ

∫

R

∫

R+

Wψf(b, a)(TbDaψ)
da

|a|2 db . (2.6)

Proof. Let
I+ =

∫

R

∫

R+

|Wψf(b, a)|2 da

|a|2 db

and I− defined analogously for the lower half plane. The same computation as in the proof
of (2.3) yields that

I+/− =
∫

R

∫

R+/−
|ha(ω)|2dω

da

|a|2 ,

where ha(ω) = f̂(ω)|a|1/2ψ̂(aω). Supposing ψ = ψ we would obtain ψ̂(aω) = ψ̂(−aω), and
thus |ha(ω)| = |h−a(ω)|. If f = f , then

|ha(ω)| = |f̂(ω)|a|1/2ψ̂(aω)| = |f̂(−ω)|a|1/2ψ̂(aω)| = |h−a(−ω)| .

In both case I+ = I−, and since I+ + I− = cψ‖f‖2
2, I+/− = cψ

2 ‖f‖2
2 follows. 2
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2.1.8 Interpretation (I)
The wavelet ψ is declared a detail of scale 1 at position 0. Then TbDaψ is a detail of scale a
at position b. The inversion formula

f =
1
cψ

∫

R

∫

R∗
Wψf(b, a)(TbDaψ)

da

|a|2 db

should be read as a decomposition of f into its details at varying scales and positions,
where Wψf(b, a) = 〈f, TbDaψ〉 is precisely the ”expansion coefficient” one expects from the
context of ONB’s. (Compare also to Fourier integrals.) However, the analogy to ONB’s
or Fourier integrals is only limited. In particular, the operator Wψ is never onto all of
L2(R× R∗, |a|−2dbda). That means, we cannot prescribe arbitrary coefficients, i.e., any func-
tion W ∈ L2(R×R∗, |a|−2dbda), and expect that it is the wavelet transform of an f ∈ L2(R).
Indeed, by 2.1.4 W would at least have to be continuous. A more explicit description of the
image space Wψ(L2(R) is contained in the following proposition. 2

Proposition 2.1.9 Let ψ ∈ L2(R) be admissible. Define for F ∈ L2(R × R∗, |a|−2dbda) the
function

(PF )(b, a) =
1
cψ

∫

R

∫ ∗

R
F (b′, a′)〈Tb′Da′ψ, TbDaψ〉 da′

|a′|2 db′ .

This converges absolutely for all (b, a) ∈ R × R∗, and F 7→ PF is the projection onto the
closed subspace Wψ(L2(R)). In particular, F ∈ Wψ(L2(R)) iff it satisfies the reproducing
kernel relation

F (b, a) =
1
cψ

∫

R

∫

R∗
F (b′, a′)〈Tb′Da′ψ, TbDaψ〉 da′

|a′|2 db′ . (2.7)

Proof. The key observation is that the ”kernel function”

(b′, a′, b, a) 7→ 〈Tb′Da′ψ, TbDaψ〉
is a wavelet transform itself, namely for fixed (b, a) we have

〈Tb′Da′ψ, TbDaψ〉 = [Wψ(TbDaψ)] (b′, a′) ,

and thus
(PF )(b, a) =

1
cψ
〈F, Wψ(TbDaψ)〉L2(R×R∗,|a|−2dbda)

is pointwise well-defined for all (b, a).
Now let us show that P is the orthogonal projection onto Wψ(L2(R)) ⊂ L2(R×R∗, |a|−2dbda);

note that it is a closed subspace, as the isometric image of a complete space. Write F = F1+F2

with F2⊥Wψ(L2(R)), F1 = Wψg for some g ∈ L2(R). Then

(PF )(b, a) =
1
cψ
〈F, Wψ(TbDaψ)〉L2(R×R∗,|a|−2dbda)

=
1
cψ
〈Wψg + F2,Wψ(TbDaψ)〉L2(R×R∗,|a|−2dbda)

=
1
cψ
〈Wψg, Wψ(TbDaψ)〉L2(R×R∗,|a|−2dbda)

= 〈g, TbDaψ〉L2(R) = F1 ,

where we have used the fact that isometries respect scalar products (1.2.7(a)). 2
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2.1.10 Interpretation of CWT (II) Let ψ ∈ L2(R) be admissible and f ∈ L2(R). In
this remark we want to look at restrictions of Wψf to horizontal lines, and their information
content. Recycling the argument from the proof of (2.3), we saw that

Wψf(b, a) = F(ha)(−b) = F−1(ha)(b) ,

where ha(ω) = f̂(ω)|a|1/2ψ̂(aω). Since Wψf ∈ L2(R × R∗, |a|−2dbda), Wψf(·, a) ∈ L2(R) for
almost all a ∈ R∗, with Fourier transform

ω 7→ f̂(ω)|a|1/2ψ̂(aω) .

In order to better appreciate this formula, it is useful to take a second look at the Fourier
transforms of the candidate wavelets we have seen so far: Taking the Shannon wavelet ψ,
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Figure 2.4: Fourier transforms of Shannon, Mexican Hat and Haar wavelets

we obtain Da−1ψ̂ =
√
|a| (χ[−1/a,−1/2a] + χ[1/2a,1/a]

)
. It follows that the Fourier transform of

Wψf(·, a) is precisely the restriction of f̂ to the ”frequency band”

Ωa = {ω : 1/2a ≤ |ω| ≤ 1/a} .

On the other hand, the (however poor) decay behaviour of the Shannon wavelet implies that
〈f, TbDaψ〉 contains information about f near b, i.e., we have a (however loose) interpretation

Wψf(b, a) ≈ coefficient corresponding to frequency band Ωa and position b .

If we are interested in strengthening the dependence of Wψf(b, a) on the behaviour of f only
in a neighborhood of b, a wavelet with compact support is a good choice, such as the Haar
wavelet. However, a look at the Fourier transform of this wavelet shows that we have paid
for this in terms of Fourier transform localisation.

There are still many possible compromises between the two extrema, such as e.g. the
mexican hat wavelet. On the Fourier transform side, the sharp “boxcar” shape of the shannon
wavelet is then replaced by two bumps, with sharp decrease towards ±∞. This is still superior
to the shape of the Fourier transform of the Haar wavelet. The dilation parameter moves
the bumps across the halfaxes, just as with the boxcar before. On the other hand, the loss
of localisation on the Fourier transform side buys a much better decay of the wavelet ψ.
Hence the wavelet coefficient Wψ(b, a)f depends much more on the behaviour of f in a small
neighborhood of b than this is the case for the Shannon wavelet.

Summarising, handwaving arguments have provided us with an interpretation

Wψf(b, a) ≈ frequencies from Ωa, contained in Sb,a (2.8)
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where Ωa is an interval with center and length proportional to a (and its negative) and S is
an interval with center b and length proportional to 1/a. How well this interpretation works,
depends on the choice of ψ: The sharper the localisation (measured by some decay of ψ and
ψ̂), the better.

Hence a wavelet with compact supported both in time and frequency would be optimal,
since it would allow to make the interpretation precise. But by 1.5.7 such a function does not
exist. 2

2.1.11 Exercise (Convolution) (a) Show for f, g ∈ L1(R), that the function

f ∗ g(x) :=
∫

R
f(t)g(x− t)dt

is almost everywhere well-defined (i.e., the right-hand side is almost everywhere defined), and
is in L1(R), with ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
(b) Prove the convolution theorem, i.e., f̂ ∗ g(ω) = f̂(ω)ĝ(ω).
(c) Now let f, g ∈ L2(R), then

(f ∗ g)(x) :=
∫

R
f(t)g(x− t)dt

converges absolutely for all x ∈ R, by the Cauchy-Schwarz inequality. Prove that f ∗g ∈ L2(R)
iff f̂ · ĝ ∈ L2(R) (Hint: Use 1.5.3). Show that in this case, f̂ ∗ g = f̂ · ĝ.
(d) Show that Wψf(b, a) = f ∗Da(ψ∗), where ψ∗(x) = ψ(−x). 2

Remarks 2.1.12 (Linear Filters)
(a) Let m : R→ C be a bounded measurable function. Then the associated multiplication
operator Sm : L2(R) → L2(R), Sm(f)(x) = m(x)f(x) is a bounded linear operator. An
operator R : L2(R) → L2(R) is called (linear) filter if there exists m ∈ L∞(R) such that
R = F−1 ◦ Sm ◦ F , i.e. ∀f ∈ L2(R),

(Rf)∧(ω) = f̂(ω)m(ω) .

The following filters best convey the idea:

• Ideal lowpass: ml = χ[−T,T ].

• Ideal bandpass: mb = χ[−ω2,ω1] + χ[ω1,ω2].

• Ideal bandpass: mh = 1− χ[−T,T ].

These examples illustrate the ”filter” language: Each (low-/band-/high-) pass filter picks out
those frequencies of f which are in the prescribed range, and kills the others.

Another class of filters is given by convolution operators, f 7→ f ∗ g, where g is some
function with bounded Fourier transform (e.g., g ∈ L1(R)). Here the frequencies are usually
not just kept or killed, but rather attenuated or enhanced (depending on whether |ĝ(ω)| is
small or large). An exception is the Shannon wavelet, which acts as a a bandpass filter.

Returning to ideal bandpass filters, if we pick the examples ml and mh as above, using
the same T , we obtain a first simple example of a filterbank:

f 7→ (Rml
f, Rmh

f)
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decomposes f into its low-frequency and high-frequency parts. The particular choice of ml

and mh in addition allow to reconstruct f , simply letting f = Rml
f +Rmh

f . In fact, one can
easily see that any decomposition

R =
·⋃

i∈Z
Ωi

of the frequency axis into intervals gives rise, via the corresponding bandpass filters, to a
filterbank

f 7→ (Rif)i∈Z ,

with the property that f =
∑

i∈ZRif . To see the connection between this notion and CWT,
we let Ωi = [−2−i,−2−1+1[ ∪ ]2−i+1, 2−i]. Then we see that Rif(b) = Wψf(b, 2i), where
ψ denotes the Shannon wavelet. Thus the Shannon CWT can be seen as a (highly redun-
dant) filterbank. This observation generalises by the previous exercise about convolutions to
arbitrary wavelets:

Whenever ψ is admissible, the associated CWT acts as a continuously indexed filterbank,
i.e., a family of convolution operators

Wψ : f 7→ (f ∗Daψ
∗)a∈R∗ .

This view of CWT as a filterbank can be best understood by studying a similar transform,
called ”dyadic wavelet transform”. This will be done in an exercise below.

Let us give an illustration of the filterbank terminology. Consider the function f : [0, 1] →
R given by

f(x) = sin(96πx) + sin(64π2x2) .

f is the sum of two components, the first one of constant frequency, while in the second one
corresponds the frequency increases with time. Visual inspection of the plot tells little more
than that the function becomes more “wiggly” with time. On the other hand, looking at the
continuous wavelet transform with the Shannon wavelet as analysing wavelet we clearly see
the two components as two strips: One of constant scale, and the other one with decreasing
scale (and thus increasing frequency).

Comparison for other wavelets shows similar behaviour, though somewhat blurred due to
less sharp concentration in frequency.

However, the best results are obtained for the so-called Morlet wavelet, which is defined
essentially as a gaussian, shifted on the frequency side:

ψ(x) = e−x2/2eiω0x + κ(x) .

Here κ is a (negligible) correction term ensuring ψ̂(x) = 0. The quick decay in both time and
frequency yield the following sharp picture:

These examples yield a first illustration of the properties of continuous wavelet transforms.
They also show the advantage of having a large arsenal of wavelets. Signals of the type (2.9)
are called “chirps”. They arise in signal processing, for instance in audio signals. However, we
just used them for illustration purposes; our main signal class are piecewise smooth functions.

This discussion should also remind the reader of Remark 1.2.11: Picking a wavelet, we
introduce a coordinate system in L2(R) corresponding to the family of scaled and shifted copies
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Figure 2.5: A signal with one component of constant frequency and one component of varying
frequency
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Figure 2.6: The wavelet coefficients for the Shannon wavelet.

of the wavelet. And choosing the right wavelet yields a particularly compact representation
of “interesting” signals such as chirps.

(b) An extreme case of a linear filter is a translation operator. As a general rule, linear
filters commute (this is obvious on the Fourier side). There is a converse: If an operator T
commutes with all translations, then it is necessarily a linear filter. 2

Lemma 2.1.13 (a) If f, g have compact support, so does f ∗ g.
(b) Assume that f, g ∈ L2(R) or f, g ∈ L1(R). Then f ∗ g = g ∗ f .

2.1.14 Exercise: Dyadic Wavelet Transform For given f, ψ ∈ L2(R) we let the dyadic
wavelet transform of f with respect to ψ be the function living on R× Z, defined as

W̃ψf(b, n) = Wψf(b, 2n) = 〈f, TbD2nψ〉 .

ψ is called dyadically admissible if for all f ∈ L2(R) the normequality

‖f‖2
2 =

∑
n∈Z

2−n

∫

R
|W̃ψf(b, n)|2db (2.9)
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Figure 2.7: The wavelet coefficients for the Haar wavelet. The Haar wavelet is too poorly
concentrated on the frequency side to give a clear picture.
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Figure 2.8: The wavelet coefficients for the Mexican Hat wavelet, which does a slightly better
job than the Haar wavelet.

holds.

(a) Show that ψ is dyadically admissible iff
∑
n∈Z

|ψ̂(2nω)|2 = 1

holds, for almost all ω ∈ R. Show that it is enough to check ω with 1/2 < |ω| ≤ 1.

(b) Conclude that if ψ is dyadically admissible, the mappings g 7→ g ∗ (D2nψ) and g 7→
g ∗ (D2nψ∗) define bounded convolution operators on L2(R).

(c) Show, for dyadically admissible ψ the reconstruction formulae

f =
∑
n∈Z

2−n(f ∗ (D2nψ∗)) ∗ (D2nψ)

=
∑
n∈Z

2−n(W̃ψf(·, n)) ∗ (D2nψ)

with convergence in ‖ · ‖2.

(d) Show that if ψ is dyadically admissible, it is also admissible in the sense of (2.1).

2

2.1.15 The affine group The parameter space R × R∗ of the CWT may be identified
canonically with the group of affine mappings R→ R. Indeed, for (b, a) ∈ R× R∗ we define a
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Figure 2.9: The wavelet coefficients for the Morlet wavelet

map rb,a via rb,a, rb,a(x) = ax + b. Then concatenation of two such mappings corresponds to
the multiplication

(b, a) ◦ (b′, a′) = (b + ab′, aa′) ,

which endows G = R× R′ with a group multiplication. The inversion is easily shown to be

(b, a)−1 = (−a−1b, a−1) .

Moreover, it is a locally compact topological group, which means that the group operations
are continuous (and R× R′ with the product topology is locally compact). It turns out that
some of the conditions and definitions in this section can be interpreted in the context of this
group. Moreover, analogous constructions can be used to define CWT in many other settings,
e.g., in higher dimensions.

(a) The mapping π : (b, a) 7→ TbDa is a continuous group homomorphism G → U(L2(R)),
where the right-hand side is the group of unitary operators on L2(R). Here continuity
refers to the so-called strong operator topology, meaning that gn → g in G entails
π(gn)f → π(g)f , for all f ∈ L2(R).

(b) The measure dµ(b, a) = db da
|a|2 is leftinvariant, meaning that for every set A ⊂ G and

every g ∈ G, the set gA = {gh : h ∈ A} has the same measure: µ(gA) = µ(A). An
alternative formulation is the following: Given F ∈ L2(R × R∗, |a|−2dbda), the left
translate, defined to be the function F(b0,a0)(b, a) = F ((b0, a0)−1(b, a)) is in L2(R ×
R∗, |a|−2dbda), with

‖F(b0,a0)‖2 = ‖F‖2 .

The left translates define the left regular representation λG of G on L2(R×R∗, |a|−2dbda),
by

λG(b0, a0)(F ) = F(b0,a0) .

(c) The CWT L2(R) → L2(R×R∗, |a|−2dbda) is an intertwining operator between π and
λG. This means that

Wψ(π(b′, a′)f) = λG(b′, a′)(Wψf) .

In concrete formulas, this means

Wψ(Tb′Da′f) = Wψf(b− a′−1b′, aa′−1) .

(d) The admissibility condition (2.1) also has a representation-theoretic interpretation.
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2

2.1.16 Windowed Fourier transform and the Heisenberg group A close relative of
wavelets is the short-time or windowed Fourier transform. This transform is the first attempt
to obtain localised Fourier coefficients; it was introduced 50 years ago by D. Gabor. We pick
a window function g ∈ L2(R), ideally such that g, ĝ are suitably localised close to zero.
Given f ∈ L2(R), the windowed Fourier transform of f with respect to the window g is
given by

Vgf(x, ω) = 〈f, MωTxg〉 .

Just as with wavelets, this can be viewed as a family of expansion coefficients: MωTxg is an
atom (roughly) of frequency −ω (roughly) at position x. Accordingly, Vgf(x, ω) = 〈f,MωTxg〉
is the contribution of this atom to f . A similar (in fact, simpler) proof than for the admissi-
bility condition in Theorem 2.1.6 shows

‖Vgf‖2
L2(R2) = ‖f‖2

2‖g‖2
2 .

Hence, picking any nonzero g ∈ L2(R), we obtain an inversion formula

f =
1

‖g‖2
2

∫

R

∫

R
(Vgf)(x, ω) MωTxgdxdω .

Just as for the wavelets case, the windowed Fourier transform can be understood in terms
of representations of locally compact groups: We let H = R2 × T. Here T denotes the
multiplicative group {z ∈ C : |z| = 1}, and H is endowed with the group law

(x, ω, z)(x′, ω′, z′) = (x + x′, y + y′, zz′e2πiω′x) .

Then π(x, ω, z)f = zMωTxf defines a unitary representation of H, and we have that

Vgf(x, ω) = 〈f, π(x, ω, 1)g〉 .

Just as for the affine group, there exists an invariant measure, this time given by the
product of Lebesgue measure on R2 and the rotation-invariant measure on T. Using this
observations, certain properties of wavelet and short time Fourier transform can be studied
in a joint framework, together with wavelets in higher dimensions.

Besides the similarities, there are several striking differences:

1. Any nonzero L2-function can be used as a window.

2. The parameter ω is directly interpretable as a frequency parameter. Changes in fre-
quency are obtained by direct shifting in frequency domain. In the wavelet case, this
is achieved by scaling. As a consequence, the resolution (i.e., the window size) in time
and frequency does not change with the frequency.

3. Existence of localised orthonormal bases.
A highly nontrivial and important difference has to do with discrete systems. For practi-
cal reasons, one would like to replace the integral inversion formula by a sum, which boils
down to replacing the full system (MωTxg)ω,x∈R by a discrete system (MβkTαmg)k,m∈Z,
for suitable α, β, ideally in such a way that the discrete set is an ONB. In addition, one
would like to retain the view of the expansion coefficients as time-frequency atoms, and
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that view requires a certain amount of localisation. However, there exists the following
negative result:
Theorem (Balian/Low). Let (MβkTαmg)k,m∈Z be an ONB of L2(R). Then

∫

R
|g(t)|2t2dt

∫

R
|ĝ(ω)|2ω2dω = ∞ .

Hence, either g or ĝ are badly localised, with unpleasant consequences for either the
spatial or frequency information content of the expansion coefficients. By contrast,
Chapter 3 will be concerned with the proof of the following result:
Theorem (Daubechies): For every n ∈ N there exists a compactly supported wavelet
ψ ∈ Cn(R) generating a wavelet orthonormal basis.
Observe that ψ(n) ∈ L2(R) and the compact support then entail

∫

R
|ψ(t)|2t2ndt

∫

R
|ĝ(ω)|2ω2ndω < ∞.

2

2.2 Wavelets and Derivatives I

In the following two sections we want to discuss the connection between decay of wavelet
coefficients and (local) smoothness of the analysed function. In order to get an idea of the
results to be established, observe that by 1.6.4, we have an almost equivalence

f ∈ Cn(R) Ω |f̂(ω)ωn| → 0 , as ω → 0

(see 1.6.4 for the precise formulation). On the other hand, we established in (2.8) an inter-
pretation of the sort

Wψf(b, a) ≈ Fourier coefficient corresponding to frequency proportional to 1/a and position b .

Combining the two heuristics (with proper normalisation), we expect a connection

f ∈ Cn( near x ) Ω |an+1/2Wψf(b, a)| → 0 , for a → 0 and b near x .

Even though our argument is only heuristic, there is a way of making it precise. As a key
to the proof we require additional properties of the wavelets. The first one is the number of
vanishing moments:

Definition 2.2.1 g : R→ C has n vanishing moments (n ∈ N) if for all 0 ≤ j < n:
∫

R
tig(t)dt = 0 ,

with absolute convergence. 2

Vanishing moments have a simple interpretation on the Fourier transform side: If g has
n vanishing moments, then by 1.6.7 ĝ ∈ Cn(R), and ĝ(i)(0) = 0 for all 0 ≤ i ≤ n − 1. Thus
the number of vanishing moments is the order to which ĝ vanishes at 0.
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The number of vanishing moments will be a key property in dealing with smooth functions.
The following simple argument shows why: Given any ψ with n vanishing moments and any
polynomial p of degree less than n, we may write (with some abuse of notation) that 〈ψ, p〉 = 0.
Hence, if f is n-fold differentiable at a point x, we can write

f = f(x0) + p(x− x0) + r(x− x0) ,

where p is the Taylor polynomial of f of degree n−1 and r(x−x0) is a term of order (x−x0)n.
Hence, with a wavelet, say, of compact support nd n vanishing moments, we expect

〈f, TbDaψ〉 = 〈p + r, TbDaψ〉 = 〈r, TbDaψ〉 = O(|a|n+1/2)

Next we clarify some of the notions which come up when dealing with local smoothness
of functions.

Definition 2.2.2 The space L1
loc(R) consists of all measurable functions g : R→ C with the

properties, that g ·χK ∈ L1(R), for all compact sets K ⊂ R. It is immediate from the definition
that Lp(R) ⊂ L1

loc(R) for all p ≥ 1. Given f ∈ L1
loc(R), a function F is called antiderivative

of f if

∀x, y ∈ R : F (x)− F (y) =
∫ y

x
f(t)dt .

Antiderivatives are continuous and unique up to an additive constant. If f has a vanishing
moment, F (x) =

∫ x
−∞ f(x)dx is called the canonical antiderivative. If F is differentiable

at x ∈ R, with f(x) = F ′(x), then x is called Lebesgue point of f (not of F !). 2

The definition of a Lebesgue point is not identical with that in [13]; however, the difference
only concerns a set of Lebesgue measure zero. In particular, the next theorem is not affected
(see [13, 7.7].)

Theorem 2.2.3 (Lebesgue Differentiation Theorem) Let f ∈ L1
loc(R), and define M = {x ∈

R : x is not a Lebesgue point of f}. Then M has measure zero.

Lemma 2.2.4 (Partial integration) Let f, g ∈ L1
loc(R) and F, G be antiderivatives. Then, for

all x, y ∈ R, ∫ y

x
F (t)g(t)dt = (FG)|yx −

∫ y

x
f(t)G(t)dt .

Proof. W.l.o.g. F (x) = G(x) = 0. Hence we need to show

0 =
∫ y

x

∫ t

x
f(s)g(t)dsdt +

∫ y

x

∫ t

x
f(t)g(s)dsdt−

∫ y

x

∫ y

x
f(t)g(s)dsdt

=
∫ y

x

∫ t

x
f(s)g(t)dsdt−

∫ y

x

∫ y

t
f(t)g(s)dsdt

=
∫

∆1

h1(s, t)dsdt−
∫

∆2

h2(s, t)dsdt ,

where ∆1 = {(s, t) : s ≤ t}, ∆2 = {(s, t) : s ≥ t}, h1(s, t) = f(s)g(t) and h2(s, t) = f(t)g(s).
Now a change of variables φ : (s, t) 7→ (t, s) shows that the two integrals indeed cancel. 2

39



2.2.5 Exercises (a) Give a measurable function F which is a.e. differentiable, such that
the equation

F (x)− F (y) =
∫ y

x
F ′(t)dt

does not hold.
(b) Give F, G measurable and a.e. differentiable such that partial integration does not hold
for F, G, F ′, G′. 2

Definition 2.2.6 Let f : R → C and α ≥ 0 be given. Then f has decay rate α if there
exists C > 0 such that for all x ∈ R the inequality |f(x)| ≤ C(1 + |x|)−α holds. 2

We observe that f ∈ Lp(R), for all p ≥ 1, whenever f has decay rate α > 1/p. If f ∈ S(R),
then f (n) has decay rate α, for all n ≥ 0 and α > 1.

Proposition 2.2.7 (a) Let f be measurable with decay rate α > n + 1, and with n vanishing
moments. Then the canonical antiderivative F of f has n− 1 vanishing moments and decay
rate α − 1. We define inductively : F =: first canonical antiderivative, first canonical
antiderivative of F =: second canonical antiderivative etc.
(b) Conversely assume that F ∈ Cn−1(R) such that Fn−1 is almost everywhere differentiable,
and Fn−1 is an antiderivative of F (n). If in addition

∫

R
|t|n|F (n)(t)|dt < ∞ ,

then F has n vanishing moments.

Proof. (a) Let us first prove the decay rate. Given x > 0,

|F (x)| ≤
∫ ∞

x
C(1 + |t|)−αdt =

C

α− 1
t1−α|∞x+1

=
C(1 + x)1−α

α− 1

and an analogous argument works for x < 0. But this implies that
∫

R
|t|n|F (t)|dt < ∞ ,

as well as
∫

R
tn−1F (t)dt = lim

T→∞

∫ T

−T
tn−1F (t)dt

= lim
T→∞

(
tnF (t)

n

∣∣∣∣
T

−T

−
∫ T

−T
tnf(t)dt

)

and the first term vanishes because F has decay rate α−1 > n, and the second term vanishes
because f has n vanishing moments. Part (b) is proved with n-fold partial integration. 2

Note that the assumptions for the proposition are complicated but rather mild. One ap-
plication of part (b) lies in manufacturing functions with vanishing moments: Simply picking
F ∈ Cn

c (R) and letting ψ = F (n) yields a ψ with n vanishing moments and compact support.
The following lemma is probably not in the most general form. Its function is to clarify

when differentiation can be pulled into the convolution product.
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Lemma 2.2.8 Let f, F, g, G be functions with the following properties:

(i) g has decay rate α > 1,
∫
R g(x)dx = 0, G is the canonical antiderivative of g.

(ii) f ∈ L2(R), and F is an antiderivative of F .

(iii) F is bounded or supp(g) is compact.

Then f ∗ g = (F ∗ g)′ = (f ∗G)′

Proof. We compute for h > 0 the difference quotient
∣∣∣∣
(f ∗G)(x)− (f ∗G)(x− h)

h
− f ∗ g(x)

∣∣∣∣ =
∣∣∣∣
∫

R
f(y)

(
G(x− y)−G(x− h− y)

h
− g(x− y)

)
dy

∣∣∣∣

≤ ‖f‖2

(∫

R

∣∣∣∣
G(x− y)−G(x− h− y)

h
− g(x− y)

∣∣∣∣
2

dy

)1/2

.

The integrand goes pointwise to zero on the Lebesgue set of g, i.e., almost everywhere by
2.2.3. Moreover, assuming w.l.o.g. that |h| < 1/2,
∣∣∣∣
G(x− y)−G(x− h− y)

h
− g(x− y)

∣∣∣∣ =
∣∣∣∣
∫ x−y

x−y−h

g(t)− g(x− y)
h

dt

∣∣∣∣

≤ 1
h

∫ x−y

x−y−h
sup{|g(ξ)− g(x− y)| : ξ ∈ [x− y − h, x− y]}

≤ |g(x− y)|+ sup{|g(ξ)| : ξ ∈ [x− y − h, x− y]}
≤ C((1 + |x− y|)−α + (1 + |x− y| − |h|)−α)
≤ C((1 + |x− y|)−α + (1/2 + |x− y|)−α)

shows that the integrand can be uniformly estimated by an integrable function. Thus Lebesgue’s
dominated convergence theorem applies to yield (f ∗G)′(x) = (f ∗ g)(x).

Moreover,

(F ∗ g)(x) = lim
T→∞

∫ T

−T
F (y)g(x− y)dy

= lim
T→∞

(
−F (T )G(x− T ) + F (−T )G(x + T ) +

∫

f
(y)G(x− y)dy

)
.

Now the first two terms vanish by assumption (iii), thus f ∗G remains. 2

Lemma 2.2.9 (Approximate Identities) Let g be bounded and measurable, f with decay rate
α > 1. Then

lim
a→0

(g ∗ a−1/2(Daf))(x) = g(x)
∫

R
f(t)dt

pointwise whenever g is continuous at x, as well as uniformly on all intervals on which g is
uniformly continuous.
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Proof. Given ε > 0, pick δ > 0 such that |g(x)− g(x− t)| < ε for all |t| < δ. Then
∣∣∣∣g(x)

∫

R
f(t)dt− g ∗ |a|−1/2(Daf)(x)

∣∣∣∣ =
∣∣∣∣
∫

R
g(x)|a|−1f(t/a)dt−

∫

R
g(x− t)|a|−1f(t/a)dt

∣∣∣∣

=
∣∣∣∣
∫

R
(g(x)− g(x− t))|a|−1f(t/a)dt

∣∣∣∣

≤
∫

|t|<δ
|g(x)− g(x− t)||a|−1|f(t/a)|dt

+
∫

|t|>δ
2‖g‖∞C(1 + |t/a|)−α da

|a|

≤ ε‖f‖1 + 2‖g‖∞
∫

|t|>δ/|a|
C(1 + |t|)−αda .

For fixed a, the first term can be made arbitrarily small. Moreover, since t 7→ (1 + |t|)−α is
integrable, the second term tends to zero as a → 0. 2

We can now state the first characterisation of smooth functions by use of wavelets. Note
that this theorem is a global statement holding for the same set of functions as the Fourier es-
timates. Thus the full advantage of using wavelet instead of Fourier transform (i.e., compactly
supported functions instead of complex exponentials) is not yet visible.

Theorem 2.2.10 Let f ∈ L2(R)∩Cn(R), for some n ≥ 1. Let ψ be a wavelet with n vanishing
moments and decay rate α > n + 1. Assume in addition that either (f (i) is bounded, for
0 ≤ i ≤ n− 1) or (supp(ψ) is compact). Then

a−n|a|−1/2Wψf(b, a) → f (n)(b)
∫

R
ρ(x)dx

where ρ is the nth canonical antiderivative of ψ∗. The convergence is uniform in b on all
interval I on which f (n) is uniformly continuous and bounded. In particular on these intervals
the wavelet coefficients obey the uniform decay estimate

|Wψf(b, a)| ≤ CI |a|1/2+n .

Proof. By 2.1.11 we have

(Wψf)(b, a) = (f ∗Da(ψ∗)) (b) = (f ∗Da(ρ(n)))(b) .

An n-fold application of the chain rule yields Da(ρ(n)) = an(Daρ)(n). Thus, applying first
2.2.8 and then 2.2.9, we obtain

a−n|a|−1/2Wψf(b, a) = |a|−1/2a−n(f ∗ an(Daρ)n)(b)

= |a|−1/2(f (n) ∗ (Daρ))(b)

→ f (n)(b)
∫

R
ρ(x)dx

This implies both pointwise and uniform convergence. In particular, there exists a0 > 0 such
that

|Wψf(b, a)| ≤ |a|1/2+n|1 + f (n)(b)
∫

R
ρ(x)dx| ≤ |a|1/2+n|1 + ‖f‖∞

∫

R
ρ(x)dx| ,
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for all |a| < a0. However, for |a| > a0,

|(Wψf)(b, a)| ≤ ‖f‖2‖g‖2 ≤ ‖f‖2‖g‖2

|a0|n+1/2
|a|n+1/2

hence the uniform estimate is shown. 2

2.2.11 Further interpretation

(Wψf)(b, a) = an|a|−1/2(f (n) ∗Daρ)

= |a|−1/2(f ∗Daρ)(n)(b)

yields two new interpretations of CWT. The first sees as Wψf(·, a) as smoothed nth derivative
of f , with a as smoothing parameter. The second interpretation changes order of differenti-
ation and smoothing, f 7→ f ∗ Daρ 7→ (f ∗ Daρ)(n), which is also applicable to nonsmooth
functions f . This will be the next thing on our agenda. 2

We next want to discuss local properties of functions in terms of their wavelet coefficients.
Note that here finally wavelets will turn out to be superior to the Fourier transform, where
an isolated singularity ruins the general picture. Since wavelets can be chosen as compactly
supported, the wavelet transform only ”sees” portions of the function f of size proportional to
a, and thus only the behaviour of f on these portions matters. The following lemma contains
a localisation statement which is also valid for rapidly decreasing wavelets instead of compact
supported ones, such as the Mexican Hat wavelet.

Lemma 2.2.12 Let ψ ∈ L2(R) be a wavelet, f ∈ L2(R) with f |I = 0 for a compact interval
[x0, x1].

(a) If supp(f) ⊂ [−T, T ], define M = {(b, a) : x0+|a|T ≤ b ≤ x1−|a|T}. Then Wψf(b, a) =
0, for all (b, a) ∈ M .

(b) Suppose that ψ has decay rate α > 1/2. For T > 0 define

M = {(b, a) ∈ I × R∗ : x0 +
√
|a|T ≤ b ≤ x1 −

√
|a|T} .

Then there exists a constant C, depending on f and T , such that |Wψf(b, a)| ≤ C|a|α/2−1/4,
for all (b, a) ∈ M .

Proof. In the case (a), we observe that (b, a) ∈ M implies supp(TbDaψ) ⊂ I, and thus
Wψf(b, a) = 0 by assumption. In the second case, we first compute

|Wψf(b, a)| =

∣∣∣∣∣
∫

R\I
f(x)|a|−1/2ψ

(
x− b

a

)
dx

∣∣∣∣∣
≤ ‖f‖2‖(TbDaψ) · (1− χI)‖2

by the Cauchy-Schwarz inequality. Define s = min(b− x0, x1− b), for (b, a) ∈ M this implies
s ≥

√
|a|T . Moreover,

∫

R
|a|−1

∣∣∣∣ψ
(

x− b

a

)∣∣∣∣
2

dx =
∫

R\[(x0−b)/a,(x1−b)/a]
|ψ(x)|2dx ≤

∫

|x|≥s/|a|
|ψ(x)|2dx
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since by choice of s we have [−s/|a|, s/|a|] ⊂ [(x0 − b)/a, (x1 − b)/a]. Using the decay rate of
ψ, we can estimate

∫

|x|≥s/|a|
|ψ(x)|2dx ≤ C(s/|a|)1−2α ≤ C(

√
|a|T/|a|)1−2α ≤ C ′|a|α−1/2

Therefore ‖(TbDaψ) · (1− χI)‖2 ≤ C|a|α/2−1/4. 2

We can now apply the localisation argument to extend the theorem to more general
functions.

Theorem 2.2.13 Let f ∈ L2(R), I = [x0, x1] ⊂ R a compact interval. Let f be a function
that is in (x0, x1) n times continuously differentiable, and such that

lim
x→x0,x>x0

f (n)(x) , lim
x→x1,x<x1

f (n)(x)

exist. Let ψ be a wavelet with n vanishing moments, and assume that either suppψ is compact
or that ψ has decay rate α > 2n + 3/2. Then

a−n|a|−1/2Wψf(b, a) → f (n)(b)
∫

R
ρ(x)dx , as a → 0

and
|Wψf(b, a)| ≤ C|a|1/2+n

both hold uniformly in M , where M is the set defined in the previous lemma.

Proof. The existence of limx→x0,x>x0 f (n)(x) and limx→x1,x<x1 f (n)(x) imply that f (n) is
bounded and uniformly continuous. Moreover, it is easily shown (inductively) that
limx→x0,x>x0 f (i)(x) and limx→x1,x<x1 f (i)(x) also exist, for 0 ≤ i < n. Then f |I can be
extended to a Cn

c -function f̃ . By 2.2.10 the statements of the theorem hold for f̃ . By Lemma
2.2.12 the error in replacing f by f̃ can be estimated by

|a|−n−1/2|Wψf(b, a)−Wψf̃(b, a)| ≤ C|a|α−1/2|a|−n−1/2 = C|a|α−n−1 → 0 .

This concludes the proof. 2

2.3 Wavelets and Derivatives II

In this section we want to show a converse of Theorem 2.2.13, i.e., wavelet coefficient decay
entails smoothness. As could be expected, pointwise wavelet inversion will play a role in this
context. First we need a statement about approximate units which is somewhat more general
than what we showed in 2.2.9.

Theorem 2.3.1 Let f ∈ L2(R), g : R→ C with decay order α > 1. Then

lim
a→0

[f ∗ (Dag)] (x) = f(x)
∫

R
g(t)dt

at all Lebesgue points of R.

Proof. For the case that
∫
R g(t)dt 6= 0 see [15, 9.13]. The general case is easily concluded

from this. 2
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Theorem 2.3.2 (Pointwise wavelet inversion)
Let ψ ∈ L2(R) be a bounded wavelet with compact support. For f ∈ L2(R) and ε > 0 define

fε(x) =
1
cψ

∫

|a|>ε

∫

R
(Wψf)(b, a) TbDaψ(x) db

da

|a|2 .

Here the right-hand side converges absolutely. Then, for all Lebesgue-points x of f , limε→0 fε(x) =
f(x).

Proof. Step 1. Absolute convergence of the integral
∫

|a|>ε

∫

R
|Wψf(b, a)||TbDaψ(x)|db

da

|a|2 ≤ ‖f‖2‖ψ‖2

∫

|a|>ε

∫

R

∣∣∣∣ψ
(

x− b

a

)∣∣∣∣ db
da

|a|5/2

= ‖f‖2‖ψ‖2

∫

|a|>ε
‖ψ‖1

da

|a|3/2
< ∞ .

Step 2. fε = f ∗Gε, where

Gε(t) =
1
cψ

∫

|a|<1/ε
(ψ∗ ∗ ψ)(at)da .

Indeed,

fε(x) =
1
cψ

∫

|a|>ε

∫

R

∫

R
f(y)|a|−1/2ψ

(
y − b

a

)
dy|a|−1/2ψ

(
x− b

a

)
db

da

|a|2

=
1
cψ

∫

R
f(y)

∫

|a|>ε

∫

R
|a|−1ψ∗

(
b− y

a

)
ψ

(
x− b

a

)
db

da

|a|2 dy

=
1
cψ

∫

R
f(y)v

∫

|a|>ε

∫

R
ψ∗(b)ψ

(
x− y

a
− b

)
db

da

|a|2 dy

= (f ∗ G̃ε)(x) ,

where

G̃ε(t) =
1
cψ

∫

|a|>ε

∫

R
ψ∗(b)ψ

(
t

a
− b

)
db

da

|a|2

=
1
cψ

∫

|a|>ε
(ψ∗ ∗ ψ)

(
t

a

)
da

|a|2

=
1
cψ

∫

|a|<1/ε
(ψ∗ ∗ ψ)(at)da

= Gε(t) .

Step 3. Gε = ε−1/2(DεG1).

Gε(t) =
1
cψ

∫

|a|<1/ε
(ψ∗ ∗ ψ)(at)da

=
1
cψ
· 1
ε

∫

|a|<1
(ψ∗ ∗ ψ)

(
at

ε

)
da

= 1/εG1(t/ε) .
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Step 4. G1 is continuous with compact support.
Indeed, suppose that suppψ ⊂ [−T, T ], then supp(ψ∗ ∗ ψ) ⊂ [−2T, 2T ]. Thus, for all t with
|t| > 2T ,

G1(t) =
1
cψ

∫

|a|<1
(ψ∗ ∗ ψ)(at)da

=
1
cψ

1
|t|

∫

|a|<t
(ψ∗ ∗ ψ)(a)da

=
1
cψ

1
|t|

∫

R
(ψ∗ ∗ ψ)(a)da

=
1

|t|cψ
F(ψ∗ ∗ ψ)(0)

=
1

|t|cψ
|ψ̂(0)|2

= 0 .

Moreover, ψ∗ ∗ ψ is uniformly continuous, and thus G1 is continuous.
Step 5.

∫
RG1(t)dt = 1.

For this purpose we show that

Ĝ1(t) =
1
cψ

∫ ∞

t

|ψ̂(ω)|2 + |ψ̂(−ω)|2
ω

dω . (2.10)

Note that once this equality is established, we obtain Ĝ1(0) = 1 by taking the limit t → 0
(observing that G1 ∈ L1(R), thus Ĝ1 is continuous), and Step 5 is proved.

For the proof of (2.10 observe that G1 solves the differential equation

d

dt
[t ·G1(t)] =

2
cψ

Re(ψ∗ ∗ ψ)(t) .

Indeed, for t > 0,

t ·G1(t) =
1
cψ

∫ t

0
(ψ∗ ∗ ψ)(x) + (ψ∗ ∗ ψ)(−x)dx

=
2
cψ

∫ t

0
2Re(ψ∗ ∗ ψ)(x)dx ,

since (ψ∗ ∗ ψ)∗ = (ψ∗ ∗ ψ). This proves the differential equation for positive t. For negative t
it follows since G1 is an even function, and hence [t ·G1(t)]′ is even, as is Re(ψ∗ ∗ ψ).

Now, on the Fourier transform side, using 1.6.1, 1.6.7 and the relation

F (g)(ω) = ĝ(−ω)

the differential equation translates to

−ωĜ1
′
(ω) =

1
cψ

(
|ψ̂(ω)|2 + |ψ̂(−ω)|2

)
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hence solving for Ĝ1 gives

Ĝ1(t) =
1
cψ

∫ ∞

t

|ψ̂(ω)|2 + |ψ̂(−ω)|2
ω

dω + C .

G1 ∈ L1(R) implies Ĝ1(t) → 0 as t →∞, and thus C = 0. This proves 2.10.
Step 6. Summarising: fε = f ∗ ε−1/2(DεG1), where G1 is bounded with compact support and∫
RG1(x)dx = 1. Thus Theorem 2.3.1 implies the convergence statement. 2

It is remarkable to note that the most time-consuming step in this proof was to show that
G1 has the correct normalisation.

Now we can finally prove the converse of Theorem 2.2.13. Note how the assumptions on
the wavelet have changed: No vanishing moment condition is needed; instead, we require
smoothness.

Theorem 2.3.3 Let f, ψ ∈ L2(R), where ψ is admissible with supp(ψ) ⊂ [−T, T ], ψ ∈ Cn+2.
Given a compact interval [x0, x1] ⊂ R and a0 > 0, define the set

N = {(b, a) : x0 − |a|T < b < x1 + |a|T, |a| < a0} .

Assume that the exists a constant C > 0 such that for all (b, a) ∈ N , |Wψf(b, a)| ≤ C|a|α,
with α > n + 1/2. Then f is in (x0, x1) n times continuously differentiable.

Proof. The choice of the set N is motivated by the following calculation. Obviously, for
the reconstruction of f(x), only those (b, a) contribute for which x ∈ supp(TbDaψ). Thus, if
we let 0 < ε < δ < a0 and define fε and fδ according to Theorem 2.3.2, we can compute

fε(x)− fδ(x) =
1
cψ

∫

ε<|a|<δ

∫

R
(Wψf)(b, a)(TbDaψ)(x)db

da

|a|2

=
1
cψ

∫

ε<|a|<δ

∫ x+|a|T

x−|a|T
(Wψf)(b, a)(TbDaψ)(x)db

da

|a|2

and [x− |a|T, x + |a|T ]× {a} ⊂ N , for all |a| < a0, x ∈ [x0, x1]. Hence the estimate

|Wψf(b, a)| ≤ C|a|α

applies to the integrand.
We now proceed the proof of the statement by induction over n.

The case n = 0: Plugging in the estimate, we obtain

|fε(x)− fδ(x)| ≤ 1
cψ

∫

ε<|a|<δ

∫

R
|a|α|a|−5/2

∣∣∣∣ψ
(

x− b

a

)∣∣∣∣ dbda

=
1
cψ
‖ψ‖1

∫

ε<|a|<δ
|a|α−3/2da .

This holds uniformly in x ∈ [x0, x1]. The assumption α > 1/2 implies that
∫ a0

0 |a|α−3/2da <
∞, hence we obtain the uniform limit

lim
δ→0,ε<δ

|fε(x)− fδ(x)| = 0 .
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Moreover, as seen in Step 2. of the Proof of 2.3.2, fε = f ∗Gε is continuous. Thus the family
(fε)ε<1 consists of continuous functions which are Cauchy with respect to the sup-norm. Thus
there exists a uniform limit f̃ to which the fε converge; which is necessarily continuous. On
the other hand fε → f on all Lebesgue points, therefore f = f̃ is continuous.
Induction step: We first need a few auxiliary statements concerning the derivatives of fε.
Part (a).For 0 ≤ l ≤ n,

f (l)
ε (x) =

1
cψ

∫

|a|<ε

∫

R
Wψf(b, a)a−l|a|−1/2ψ(l)db

da

|a|2

We prove this by induction. The case l = 0 is the definition of fε. Given the induction
hypothesis for l ≥ 0, define

gε(x) =
1
cψ

∫

|a|>ε

∫

R
Wψf(b, a)a−(l+1)|a|−1/2ψ(l+1)

(
x− b

a

)
db

da

|a|2

Using the induction hypothesis we have

f
(l)
ε (x)− f

(l)
ε (x− h)

h
− gε(x) =

1
cψ

∫

|a|>ε
(Wψf)(b, a)a−l|a|−1/2

(
ψ(l)

(
x−b
a

)
ψ(l)

(
x−b−h

a

)

h
− a−1ψ(l+1)

(
x− b

a

))
db

da

|a|2

where the integrand goes to zero pointwise, as h goes to zero. Moreover, assuming |h| < 1 we
can estimate the integrand as

∣∣∣∣∣(Wψf)(b, a)a−l|a|−1/2

(
ψ(l)

(
x−b
a

)
ψ(l)

(
x−b−h

a

)

h
− a−1ψ(l+1)

(
x− b

a

))∣∣∣∣∣
≤ ‖f‖2‖ψ‖2|a|−l−5/2 sup{|ψ(l+2)(t/a)| : t between x− b− 1, x− b + 1}

Now it is not hard to see that the right hand side is an integrable function, thus the dominated
convergence theorem applies to yield the desired statement.
Part (b). (f (n+1)

ε )ε<1 is uniformly Cauchy in [x0, x1].
For ε < δ < a0 we have

|f (n+1)
ε (x)− f

(n+1)
δ (x)| ≤ 1

cψ

∫

ε<|a|<δ

∫

R
|a|α|a|−n−1|a|−1/2

∣∣∣∣ψ(n+1)

(
x− b

a

)∣∣∣∣ db
da

|a|2

=
1
cψ
‖ψ(n+1)‖1

∫

ε<|a|<δ
|a|α−(n+1)−5/2da

→ 0 ,

as δ → 0. To see the latter convergence, note that by assumption α > (n+1)+3/2, and thus
α− (n + 1)− 5/2 > −1. But then

∫ a0

0
|a|α−(n+1)−5/2da < ∞ .
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Part (c). (f (n+1)
ε )ε<1 consists of continuous functions.

This follows by similar arguments as in the proof of Theorem 2.3.2: f
(n+1)
ε = f ∗Hε, with

Hε(x) =
1
cψ

∫

|a|>ε
a−(n+1)(ψ∗ ∗ ψ(n+1))(at)da .

As in Step 2. of that proof one can show that Hε is continuous with compact support. Hence
f

(n+1)
ε is continuous.

Part (d). By Parts (b) and (c), g = limε→0 f
(n+1)
ε exists with uniform convergence in [x0, x1],

and thus g is continuous. Hence finally
∣∣∣∣∣
f (n)(x)− f (n)(x− h)

h
− g(x)

∣∣∣∣∣

≤
∣∣∣∣∣
f

(n)
ε (x)− f

(n)
ε (x− h)

h
− g(x)

∣∣∣∣∣ +

∣∣∣∣∣
f (n)(x)− f

(n)
ε (x)

h

∣∣∣∣∣ +

∣∣∣∣∣
f (n)(x− h)− f

(n)
ε (x− h)

h

∣∣∣∣∣

≤ sup{|f (n+1)
ε (t)− g(x)||t− x| < h}+

2
h
‖f (n) − f (n)

ε ‖

≤ sup{|f (n+1)
ε (t)− g(t)||t− x| < h}+

2
h
‖f (n) − f (n)

ε ‖2
h
‖f (n) − f (n)

ε ‖+

sup{|g(t)− g(x)||t− x| < h} .

Given fixed h, this holds for all ε, thus we finally obtain that
∣∣∣∣∣
f (n)(x)− f (n)(x− h)

h
− g(x)

∣∣∣∣∣ ≤ sup{|g(t)− g(x)| : |t− x| < h} .

But now continuity of g implies that the right hand side goes to zero as h → 0, thus we have
shown that f (n+1) = g. 2

2.4 Singularities

In this section we want to sketch how wavelet analysis can be employed to look at points
where a function is less regular (by comparison to neighbouring points). The result is not
phrased in the form of a theorem; it is rather a heuristic than a rigourous mathematical
statement. However, the principle serves as a motivation for many algorithms using wavelets,
and it uses both the necessary and sufficient conditions that we have established so far. The
main definition is the following:

Definition 2.4.1 Let f ∈ L2(R), ψ ∈ L2(R) admissible. A point (b, a) ∈ R × R∗ is called
maximum position if b is a (local) maximum of the function |Wψf(·, a)|. Here we only
accept maxima which are strict either in a left or right neighborhood. 2

Remark 2.4.2 We consider the following setup: f : [x0, x1] → C, and z ∈ (x0, x1) a point
with the following properties:

f |(x0,z) ∈ Cn, f |(z,x1) ∈ Cn , but f |(x0,x1) 6∈ C(n−1)
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One possible example could be two C1-curves with a jump at point z. Next we pick a
compactly supported wavelet with enough vanishing moments and smoothness, such that
Theorems 2.2.13 and 2.3.3 are applicable. Let T > 0 be such that supp(ψ) ⊂ [−T, T ]. We
define sets

N = {(b, a) : z − |a|T ≤ b ≤ z + |a|T}
and

M = {(b, a) : x0 + |a|T ≤ b ≤ x1 − |a|T} .

Then N consists of two cones (upper and lower half) with vertex sitting at (z, 0). Fix k ∈ N.
Since f is smooth outside of z, Theorem 2.2.13 implies that in M \N

|Wψf(b, a)| ≤ C|a|1/2+n .

On the other hand, Theorem 2.3.3 implies that this relation cannot hold on all of M ∩{(b, a) :
|a| ≤ 1/k}, since otherwise we could conclude f ∈ Cn−1. Hence there exists a pair (b̃k, ak) ∈ N
with |ak| < 1/k, and Wψf(b̃k, ak) > C|ak|1/2+n. Now pick a maximum of the function
|Wψf(·, ak)| on the interval [z−|ak|T, z+ |ak|T ], which yields a point (bk, ak). Then obviously

Wψ(bk, ak) ≥ Wψ(b̃k, ak) > C|ak|1/2+n .

Summarising, we have obtained a sequence (bk, ak)k∈N of maxima positions with the following
properties:

(a) |Wψf(bk, ak)| > C|ak|1/2+n, for all k.

(b) ak → 0, bk → z.

Moreover, if (b′k, a
′
k)k∈N is another sequence of maxima positions with a′k → 0, b′k → y 6= z,

then we find for all k large enough that (a′k, b
′
k) 6∈ N , therefore |Wψf(a′k, b

′
k)| ≤ C|a′k|1/2+n.

Hence z is uniquely characterised by (a) and (b).
(This argument can be extended to other smoothness classes, such as Hölder regularity. See
[7].) 2

2.4.3 Maxima Lines If ψ ∈ L2(R) ∩ C2(R), all maxima positions of Wψf are solutions of
the (in-)equalities

d

db
|Wψf(b, a)|2 = 0 ,

d2

d2b
|Wψf(b, a)|2 < 0 . (2.11)

But then (2.11) can be solved for b as a function of a, i.e., there exists a continuous mapping
φ : [a0−ε, a0+ε] → R such that {(φ(a), a) : a ∈ [a0−ε, a0+ε]} consists of maxima positions. In
other words, (a0, b0) lies on a maxima line. If we regard only maxima positions as significant
which lie on such maxima lines, we obtain the following ”algorithm” for the detection of
singularities:

1. Compute the maxima lines.

2. Follow those maxima lines (φ(a), a)a, that propagate towards the axis a = 0.

3. The limits (z, 0) of such maxima lines are candidates for singularities.

4. If (z, 0) is the limit of the maxima line (φ(a), a), use the decay behaviour of Wψf(φ(a), a)
to decide whether z is a singularity.
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Figure 2.10: Maxima lines for the test signal.

This algorithm is implemented in matlab: Maxima lines are displayed in the CWT gui. 2

2.4.4 Heuristic justification of the maxima line algorithm The robust detection of
singularities is an old problem in signal and image analysis. It turns out that the algorithm
we have derived above is very similar to a procedure explaining edge detection in the human
vision by Marr [8], albeit without any reference to smoothness estimates. An alternative
justification may be obtained as follows:

A classical tool for the detection of sudden jumps is the differentiation operator. Local
maxima of the derivative are candidates for jumps. However, often this operation yields a
large number of such candidates, and a criterion to discriminate among these is needed. A
possible way to reduce their number consists in first smoothing the signal, say by some dilated
bump ρ. Here the dilation parameter controls the size of ρ and thus the amount of smoothing.
Hence we are looking of the local maxima of the function

(f ∗Daρ)′ .

Comparing this with Remark 2.2.11 we find that up to normalisation, these points are just
the maximum positions of a continuous wavelet transform! Now, as the scaling a increases,
the smoothing increases, and the jumps detected at scale a are less likely to be at their
true positions. Conversely, small scales produce more maxima. Instead of looking for an
”optimal” scale a which gives the best tradeoff between these two undesirable effects, the
algorithm consists in looking for maxima positions that build chains across scales. This can
be seen as an attempt to combine information belonging to several scales to obtain a more
robust detector of singularities. 2

2.5 Summary: Desirable properties of wavelets

In this chapter we have encountered three properties of wavelets (in varying combination):

1. Smoothness: ψ ∈ Cn
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2. Vanishing moments

3. Decay rate

These properties may be summarised under the slogan of ”time-frequency-localisation”: 1.
describes decay of ψ̂ as ω →∞, 2. describes such a decay for ω → 0. 3. obviously expresses
decay of ψ for t →∞.
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Chapter 3

Wavelet ONB’s and Multiresolution
Analysis

A wavelet ONB of L2(R) is by definition an ONB (ψj,k)j∈Z,k∈Z of L2(R) of the form

ψj,k = D2jTkψ ,

for a suitable choice of ψ ∈ L2(R). ψ is often called a discrete wavelet. While this definition
is fairly simple, it is not clear that such functions ψ exist. We have already encountered
one example (the Haar wavelet), but whether there are more such functions is not at all
obvious. In this chapter we discuss a construction, called multiresolution analysis, which
allows to construct such discrete wavelets in a rather systematical fashion; moreover, desirable
properties such as smoothness, vanishing moments and compact support are also provided by
the construction.

Discrete wavelet systems give rise to discrete wavelet transforms: Every wavelet ONB
induces a unitary map

W d
ψ : f 7→ (〈f, ψj,k〉)j,k∈Z

with inversion formula
f =

∑

j,k∈Z
〈f, ψj,k〉ψj,k .

Thus we have a discrete analog of the isometry property (Theorem 2.1.6) and inversion formula
(Theorem 2.1.7) of the continuous wavelet transform. But the analogy goes further: By a
result of Daubechies [3] it is known that every ψ giving rise to a wavelet ONB is also admissible
in the sense of Definition 2.1.1, and thus

W d
ψf(j, k) = 〈f,D2jTkψ〉 = Wψf(2jk, 2j) .

Hence the discrete wavelet transform is nothing but the continuous wavelet transform, sam-
pled on the dyadic grid

Γ = {(2jk, 2j) : j, k ∈ Z} .

In particular, we can conclude from the last chapter that discrete wavelet coefficients of
piecewise smooth functions vanish quickly, sufficiently many vanishing moments provided.
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3.1 Multiresolution analysis

Definition 3.1.1 A multiresolution analysis (MRA) is a sequence of closed subspaces
(Vj)j∈Z of L2(R) with the following list of properties:

(M1) ∀j ∈ Z : Vj ⊂ Vj+1.

(M2)
⋃

j∈Z Vj = L2(R).

(M3)
⋂

j∈Z Vj = {0}.

(M4) ∀j ∈ Z,∀f ∈ L2(R) : (f ∈ Vj ⇔ D2j (f) ∈ V0).

(M5) f ∈ V0 ⇒ ∀m ∈ Z : Tmf ∈ V0.

(M6) There exists ϕ ∈ V0 such that (Tmϕ)m∈Z is an ONB of V0. ϕ is called scaling function
of (Vj)j∈Z.

2

The properties (M1) - (M6) are somewhat redundant. They are just listed for a better
understanding of the construction. The following discussion will successively strip down
(M1)-(M6) to the essential.

Remarks 3.1.2 (a) Properties (M4) and (M6) imply that the scaling function ϕ uniquely
determines the multiresolution analysis: We have

V0 = span(Tkϕ : k ∈ Z)

by (M6) (which incidentally takes care of (M5)) and

Vj = D2−jV0

is prescribed by (M4). What is missing are criteria for (M1) − (M3) and (M6). However,
note that in the following the focus of attention shifts from the spaces Vj to the scaling func-
tion ϕ.
(b) The parameter j can be interpreted as resolution or (inverse) scale or (with some
freedom) frequency parameter. Thus the inclusion property (M1) has a quite natural inter-
pretation: Increasing resolution amounts to adding information.

If we denote by Pj the projection onto Vj , we obtain the characterisations

(M2) ⇔ ∀f ∈ L2(R) : ‖f − Pjf‖ → 0 , as j →∞
(M3) ⇔ ∀f ∈ L2(R) : ‖Pjf‖ → 0 , as j → −∞

Pjf can be interpreted as an approximation to f with resolution 2j . Thus (M2) implies that
this approximation converges to f , as resolution increases. 2

3.1.3 Exercise (”Shannon-MRA”) Let

V0 = {f ∈ L2(R) : supp(f̂) ⊂ [−1/2, 1/2]}

and ϕ(x) = sinc(x) := sin πx
πx . Prove that
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(a) (Tkϕ)k∈Z is an ONB of V0. (Hint: Use the Fourier transform.)

(b) V0 consists of continuous functions, with

〈f, Tkϕ〉 = f(k) , ∀k ∈ Z , ∀f ∈ V0 .

Thus we obtain an expansion

f(x) =
∑

k∈Z
f(k)sinc(x− k)

with convergence both in L2(R) and uniformly. (Hint for uniform convergence: Use that
f̂ ∈ L2([−1/2, 1/2]) ⊂ L1(R).)

(c) Defining Vj = D2−jV0, we obtain

Vj = {f ∈ L2(R) : supp(f̂) ⊂ [−2j−1, 2j−1]} .

Conclude that (Vj)j∈Z is an MRA.

2

Using dilation one can show more generally for f ∈ L2(R) with supp(f̂) ⊂ [−Ω/2, Ω/2] the
sampling expansion

f(x) =
∑

k∈Z
f

(
k

Ω

)
sinc

(
x− k

Ω

)
.

Ω is called bandwidth f , whereas 1/Ω is called sampling rate. The fact that bandwidth
and sampling rate are inverse of each other can be seen as one motivation for the use of the
dyadic grid in sampling wavelet transforms.

We now start to discuss criteria for the properties (M1)− (M6). As we already remarked,
it is enough to do this in terms of the scaling function.

Lemma 3.1.4 (Characterisation of (M6).)
Let ϕ ∈ L2(R), and V0 = span(Tkϕ : k ∈ Z). Then

(Tkϕ)k∈Z ONB of V0 ⇔
∑

`∈Z
|ϕ̂(ψ + `)|2 = 1 , a.e. ψ ∈ R (3.1)

Proof. Using 1.2.8, we know that

(Tkϕ)k∈Z ONB of V0 ⇔ (Tkϕ)k∈Z ONS
⇔ ∀k ∈ Z : 〈Tkϕ, ϕ〉 = δk,0

⇔ ∀k ∈ Z : 〈T̂kϕ, ϕ̂〉 = δk,0

⇔ ∀k ∈ Z : δk,0 =
∫

R
e−2πiωkϕ̂(ω)ϕ̂(ω)dω

=
∑

`∈Z

∫ `+1

`
e−2πiωk|ϕ̂(ω)|2dω

=
∫ 1

0
e−2πiωk

∑

`∈Z
|ϕ̂(ω + `)|2dω
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Hence ϕ gives rise to an ONS iff the function

g(ω) = |ϕ̂(ω + `)|2 ,

which can be viewed as an L1-function on the interval [0, 1], has the same Fourier coefficients
as the constant function, and since the Fourier transform is injective on L1[0, 1] (by 1.4.2) it
follows that this is the case iff g ≡ 1. 2

We already commented on the fact that we only discuss MRA’s in terms of their scaling
function. The following simple but crucial lemma will allow to replace the scaling function by
something yet simpler, the scaling coefficients (simpler because they are a discrete sequence
of numbers).

Lemma 3.1.5 (Scaling equations, Characterisation of (M1))
Let ϕ ∈ L2(R), V0 = span(Tkϕ : k ∈ Z), Vj = D2−jV0. Then (Vj)j∈Z has the inclusion property
(M1) of an MRA iff there exists (ak)k∈Z ∈ `2(Z) such that ϕ fulfills the scaling equation

(S1) ϕ
(x

2

)
=

∑

k∈Z
akϕ(x− k) ,

in the L2-sense.

Proof. Obviously (Vj)j∈Z fulfills (M1) iff V0 ⊂ V1. Since (Tk/2ϕ)k∈Z, it is obvious that (S1)
is equivalent to ϕ ∈ V1, which is clearly necessary for V0 ⊂ V1. It is also sufficient: If ϕ ∈ V1,
then (Tkϕ)k∈Z ⊂ V1 since V1 is invariant under halfinteger shifts. But then V0 ⊂ V1. 2

As an aside, we note that ak =
√

2〈ϕ,D2−1Tkϕ〉.

3.1.6 Remark and Definition The sequence (ak)k∈Z is called scaling filter or sequence
of scaling coefficients. We define the associated mask as

mϕ(ξ) =
∑

k∈Z

ak

2
e−2πikξ ,

which converges in L2([−1/2, 1/2]). (In fact, up to normalisation mϕ is just the Fourier
transform of (ak)k∈Z.) Then we obtain the following important reformulation of (S1)

(S2) ϕ̂(ξ) = mϕ(ξ/2)ϕ̂(ξ/2) .

Indeed, at least in the L2-sense, we have

ϕ̂(ω) =
∑

k∈Z

ak√
2
(D1/2Tkϕ)∧(ω)

=
∑

k∈Z

ak√
2
(D2(Mkϕ̂)(ω)

=
∑

k∈Z

ak√
2
e−2πikω/2 1√

2
ϕ̂(ω/2)

=

(∑

k∈Z

ak

2
e−2πikω/2

)
ϕ̂(ω/2)

= mϕ(ξ/2)ϕ̂(ξ/2)
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Iterating (S2) will turn out to yield an ”ansatz” for constructing ϕ from mϕ via

ϕ̂(ξ) = ϕ̂(0)
∏

j>0

mϕ(ξ/2j) . (3.2)

2

3.1.7 Exercise Compute the scaling coefficients associated to the Shannon MRA. What is
the decay order? 2

The following theorem gives criteria for multiresolution analyses in the most condensed
form. Note that the previous lemmas contain criteria to check (M1) and (M6). Note also
that the continuity requirement for ϕ̂ is not very restrictive; it holds whenever ϕ ∈ L1(R).

Theorem 3.1.8 Let ϕ ∈ L2(R), and let (Vj)j∈Z denote the associated sequence of subspaces.
Assume that ϕ̂ is continuous at zero. Then the following are equivalent:

(i) Properties (M1) and (M6) are fulfilled, and in addition |ϕ̂(0)| = 1.

(ii) (Vj)j∈Z is an MRA.

Proof. (i) ⇒ (ii):
Only (M2) and (M3) remain to be shown. Let g ∈ L2(R), and assume in addition that
supp(g) ⊂ [−R,R]. Then

‖Pjg‖2
2 =

∑
m∈Z

|〈g,D2−jTmϕ〈|2

=
∑
m∈Z

∣∣∣∣
∫ R

−R
g(x) (D2−jTmϕ) (x)dx

∣∣∣∣
2

≤ ‖g‖2
2

∑
m∈Z

∫ R

−R
|(D2−jTmϕ)(x)|2dx

= ‖g‖2
2

∑
m∈Z

∫ R

−R
|2j/2ϕ(2jx−m)|2dx

= ‖g‖2
2

∑
m∈Z

∫ −m+2jR

−m−2jR
|ϕ(x)|2dx .

As soon as 2jR < 1/2, we have

∑
m∈Z

∫ −m+2jR

−m−2jR
|ϕ(x)|2dx =

∫

R
|ϕ(x)|2 · χAj (x)dx (3.3)

where
Aj =

⋃
m∈Z

[m− 2jR, m + 2jR] .

Since χAj → 0 pointwise a.e., as j → −∞, the dominated convergence theorem yields that
the right-hand side of (3.3) converges to zero for j → −∞, which proves (M3) for g. For
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g ∈ L2(R) arbitrary and ε > 0 pick g1, R > 0 with ‖g − g1‖ < ε/2,g1 · χ[−R,R] = g1. We just
proved that ‖Pjg1‖ < ε/2 for j small enough. It follows that

‖Pjg‖ ≤ ‖Pjg1‖+ ‖Pj(g − g1)‖ ≤ ε/2 + ‖g − g1‖ = ε ,

and (M2) is proved for arbitrary g. (In functional-analytic terms: We need to show Pj → 0
in the strong operator topology; since the Pj are bounded in the norm, it is sufficient to check
this on a dense subspace.)
For the proof of (M2) let f⊥Vj . Pick g ∈ L2(R) with ĝ = f̂ · χ[−R,R], and ‖f − g‖ < ε. By
assumption, ‖Pjf‖ = 0, and thus

‖Pjg‖ ≤ ‖Pjf‖+ ‖Pj(f − g)‖ ≤ ε .

Then we compute

‖Pjg‖2 =
∑
m∈Z

|〈g, D2−jTmϕ〉|2

=
∑
m∈Z

∣∣〈ĝ, (D2−jTmϕ)∧〉∣∣2

=
∑
m∈Z

∣∣∣∣
∫

R
ĝ(ω)ϕ̂(2−jω)2−j/2e2πim2−jωdω

∣∣∣∣
2

=
∑
m∈Z

∣∣∣∣
∫ R

−R
hj(ω)em(ω)dω

∣∣∣∣
2

where
hj(ω) = ĝ(ω)ϕ̂(2−jω) and em(ω) = 2−j/2e2πim2−jω .

As soon as
[−R, R] ⊂ [−2j−1, 2j−1]

the sequence (em)m∈Z is an ONB in

L2([−2j−1, 2j−1]) ⊃ L2([−R,R])

which allows to continue

∑
m∈Z

∣∣∣∣
∫ R

−R
hj(ω)em(ω)dω

∣∣∣∣
2

=
∫ R

−R
|hj(ω)|2dω

=
∫ R

−R
|f̂(ω)|2|ϕ̂(2−jω)|2dω

→ ‖g‖2|ϕ̂(0)|2

since the continuity of ϕ̂ at zero implies ϕ̂(2−jω) → ϕ̂(0) uniformly on [−R, R]. It follows
that for j big enough

‖g‖2 ≤ ‖Pjg‖2

ϕ̂(0)
+ ε ≤ ε(

1
ϕ̂(0)

+ 1)

whence

‖f‖2 ≤ ‖g‖2 + ‖f − g‖2 ≤ ε

(
1

ϕ̂(0)
+ 2

)
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for all ε > 0. Thus f = 0; and (M3) is established.
(ii) ⇒ (i):
The calculation showing (M2) for the converse direction shows that ‖Pjg‖2 → ‖g‖2|ϕ̂(0)|2,
while property (M2) implies ‖Pjg‖2 → ‖g‖2. Thus any nonzero g yields |ϕ̂(0)| = 1, while
(M2) and (M3) obviously hold. 2

Note that we have only used the assumptions on ϕ to prove (M2); (M3) is in fact satisfied
by all sequences of subspaces obtained from the translates and dilates of a single function along
a dyadic grid.

3.1.9 Example (Haar multiresolution analysis) Define

V0 = {f ∈ L2(R) : ∀n ∈ Z : f |[n,n+1[ constant } .

Then, using ϕ = χ[0,1[, it is not hard to see that (Tkϕ)k∈Z is an ONB of V0. ϕ induces an
MRA. This can be checked directly, but we intend to use the theorem: (M1) is fulfilled, since
obviously

V1 = {f ∈ L2(R) : ∀n ∈ Z : f |[n/2,n/2+1/2[ constant } .

We already checked (M6), and ϕ = χ[0,1] is in L1(R), and thus ϕ̂ is continuous, with ϕ̂(0) =∫
R ϕ(x)dx = 1. Thus the theorem applies to yield that (Vj)j∈Z is indeed a multiresolution

analysis, the Haar multiresolution analysis. The scaling equation takes here a particularly
boring form:

ϕ(x) = ϕ(2x) + ϕ(2x− 1)

2

3.2 Wavelet-ONB from MRA

So far, wavelets have not made an appearance; in particular, there should be no confusion be-
tween wavelets with scaling functions. In a sense which is made precise in the next definition,
wavelets inhabit the gap between scaling functions of different scales.

Definition 3.2.1 Let (Vj)j∈Z denote an MRA. A space Vj is called approximation space
of scale j. Denote by Wj the orthogonal complement of Vj in Vj+1, so that we have the
orthogonal decomposition Wj⊕Vj = Vj+1. Wj is called the detail space of scale j. ψ ∈ W0

is called a wavelet associated to (Vj)j∈Z if (Tkψ)k∈Z is an ONB of W0. 2

Theorem 3.2.2 Let ψ be a wavelet associated to the MRA (Vj)j∈Z, and define ψj,k =
D2−jTkψ (j, k ∈ Z).

(a) (ψj,k)k∈Z is an ONB of Wj, for all j ∈ Z.
(b) (ψj,k)k∈Z,j<j0 is an ONB of Vj0, for all j0 ∈ Z.
(c) (ψj,k)j,k∈Z is a wavelet ONB of L2(R).

Proof. Concerning part (a), it is obvious that Wj = D2−jW0, and (ψj,k)k∈Z is just the image
of the ONB (Tkψ)k∈Z under the unitary isomorphism, thus is an ONB itself.

For part (b) note that 〈ψj,k, ψi,m〉 = 0 whenever j < i, since ψj,k ∈ Vj ⊂ Vi−1, and ψi,m

is contained in the orthogonal complement of Vi−1. Together with part (a) this implies that

59



(ψj,k)k∈Z,j<j0 is an ONS. Now suppose that f ∈ Vj0 with f⊥ψj,k for all j < j0 and k ∈ Z.
Then in particular f⊥ψj0−1,k, for all k ∈ Z, and thus f ∈ W⊥

j0−1 = Vj0−1. (Here ⊥ refers
to the orthogonal complement in Vj , and the equality follows from V ⊥⊥ = V .) Proceeding
inductively, we obtain f ∈ Vj , for all j < j0. But now (M3) implies f = 0.

Now for part (c), the orthogonality has been shown in (b). Moreover, part (b) and (M2)
imply that the wavelet system is total, hence an ONB. 2

Our next aim is to show that wavelets can associated to every MRA, and in a rather
straightforward fashion, too. The following somewhat technical lemma will turn to be useful
on several occasions:

Lemma 3.2.3 Let ϕ be the scaling function of an MRA, with associated mask mϕ. Then the
following relation holds:

(S3) |mϕ(ω)|2 + |mϕ(ω + 1/2)|2 = 1 ( a.e. ω)

Proof. Assuming that ϕ is a scaling function, an application of Lemma 3.1.4 together with
relation (S2) implies that

1 =
∑

`∈Z
|ϕ̂(ω + `)|2

=
∑

`∈Z

∣∣∣∣mϕ

(
ω + `

2

)
ϕ̂

(
ω + `

2

)∣∣∣∣
2

=
∑

`∈Z

∣∣∣∣mϕ

(
ω + 2`

2

)
ϕ̂

(
ω + 2`

2

)∣∣∣∣
2

+
∣∣∣∣mϕ

(
ω + 2` + 1

2

)
ϕ̂

(
ω + 2` + 1

2

)∣∣∣∣
2

=
∣∣∣mϕ

(ω

2

)∣∣∣
2 ∑

`∈Z

∣∣∣ϕ̂
(ω

2
+ `

)∣∣∣
2
+

∣∣∣∣mϕ

(
ω + 1

2

)∣∣∣∣
2 ∑

`∈Z

∣∣∣∣ϕ̂
(

ω + 1
2

+ `

)∣∣∣∣
2

=
∣∣∣mϕ

(ω

2

)∣∣∣
2
+

∣∣∣∣mϕ

(
ω + 1

2

)∣∣∣∣
2

.

Here we have used that mϕ is a 1-periodic function, as well as Lemma 3.1.4 again. 2

The argument for the following lemma was actually used in the derivation of the scaling
equation; we will therefore not repeat it here.

Lemma 3.2.4 Let ϕ ∈ L2(R) be such that (Tkϕ)k∈Z is an ONS, and let V = span(Tk : k ∈ Z).
Then

f ∈ V ⇔ ∃mf 1-periodic, ,mf ∈ L2([0, 1]) with f̂(ω) = mf (ω)ϕ̂(ω)

We can now characterise the wavelets associated to an MRA.

Proposition 3.2.5 Let (Vj)j∈Z be an MRA with scaling function ϕ. Let ψ ∈ W0, then

ψ =
∑

k∈Z
bk(D2−1Tkϕ)

for a suitable sequence (bk)k∈Z ∈ `2(Z). Defining

mψ(ω) =
∑

k∈Z

bk√
2
e−2πikω .
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Then ψ is a wavelet associated to (Vj)j∈Z iff the orthogonality relations hold almost everywhere

(W1) |mψ(ω)|2 + |mψ(ω + 1/2)|2 = 1

(W2) mψ(ω)mϕ(ω) + mψ(ω + 1/2)mϕ(ω + 1/2) = 0

Proof. The same calculation as in the proof of (S2) shows that

ψ̂(ξ) = mψ(ξ/2)ϕ̂(ξ/2) .

Hence the same argument as the one proving 3.2.3 can be used for (W1). On the other hand,
since Tkψ ∈ W0⊥V0, we have

0 = 〈Tkψ, ϕ〉
=

∫

R
e−2πikωψ̂(ω)ϕ̂(ω)dω

=
∑

`∈Z

∫ `+1

`
e−2πikωψ̂(ω)ϕ̂(ω)dω

=
∫ 1

0
e−2πikω

∑

`∈Z
ψ̂(ω + `)ϕ̂(ω + `)dω

=
∫ 1

0
e−2πikω

∑

`∈Z
mψ

(
ω + `

2

)
mϕ

(
ω + `

2

) ∣∣∣∣ϕ̂
(

ω + `

2

)∣∣∣∣
2

dω

=
∫ 1

0
e−2πikωH(ω)dω

where

H(ω) =
∑

`∈Z
mψ

(
ω + `

2

)
mϕ

(
ω + `

2

) ∣∣∣∣ϕ̂
(

ω + `

2

)∣∣∣∣
2

=
∑

`∈Z
mψ

(
ω + 2`

2

)
mϕ

(
ω + 2`

2

) ∣∣∣∣ϕ̂
(

ω + 2`

2

)∣∣∣∣
2

+mψ

(
ω + 2` + 1

2

)
mϕ

(
ω + 2` + 1

2

) ∣∣∣∣ϕ̂
(

ω + 2` + 1
2

)∣∣∣∣
2

= mψ

(ω

2

)
mϕ

(ω

2

)∑

`∈Z

∣∣∣ϕ̂
(ω

2
+ `

)∣∣∣
2

+mψ

(ω

2
+ 1/2

)
mϕ

(ω

2
+ 1/2

)∑

`∈Z

∣∣∣∣ϕ̂
(

ω + 1
2

+ `

)∣∣∣∣
2

= mψ

(ω

2

)
mϕ

(ω

2

)
+ mψ

(ω

2
+ 1/2

)
mϕ

(ω

2
+ 1/2

)
.

Applying uniqueness of Fourier series to the function H, we conclude (W2). Hence we have
in fact shown that

(W1), (W2) ⇔ (Tkψ)k∈Z ∪ (Tkϕ)k∈Z ⊂ V1 ONS .
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We show next that the right hand side is even an ONB of V1. For this purpose observe that
(S3), (W1), (W2) can be summarised as

(mϕ(ξ),mϕ(ξ + 1/2))t, (mψ(ξ),mψ(ξ + 1/2))t ⊂ C2 is an ONB. (3.4)

Now suppose f ∈ V1 is orthogonal to all Tkϕ and Tkψ. Writing

f̂(ξ) = mf (ξ/2)ϕ̂(ξ/2)

for a suitable 1-periodic L2-function, the same argument as the one proving (W2) shows that
almost everywhere

mψ(ω)mf (ω) + mψ(ω + 1/2)mf (ω + 1/2) = 0

and
mϕ(ω)mf (ω) + mϕ(ω + 1/2)mf (ω + 1/2) = 0 .

Now these two relations amount to saying that the scalar product of (mf (ξ),mf (ξ + 1/2))t

with the two basis vectors from (3.4) vanishes. Thus (mf (ξ),mf (ξ + 1/2))t = 0, almost
everywhere, and thus f = 0. Therefore the system (Tkψ)k∈Z ∪ (Tkϕ)k∈Z is total in V1. But
then (Tkψ)k∈Z is total in W0, for if f ∈ W0 then f⊥Tkϕ for all k ∈ Z. If in addition f⊥Tkψ
for all k, then f = 0. 2

Theorem 3.2.6 (Existence theorem for wavelets)
Let ϕ ∈ L2(R) denote an MRA of L2(R), with scaling coefficients (ak)k∈Z. Then

ψ(x) =
∑
n∈Z

(−1)1−na1−nϕ(2x− n) (3.5)

defines a wavelet associated to the MRA.

Proof. We first compute mψ(ω),

mψ(ω) =
∑
n∈Z

a1−n(−1)1−ne−2πinω

= e−2πiω
∑
n∈Z

a1−n(−1)1−ne−2πi(n−1)ω

= e−2πiω
∑
n∈Z

a1−n(−1)1−ne−2πi(1−n)ω

= e−2πiω
∑
n∈Z

a1−ne−2πi(1−n)(ω+1/2)

= e−2πiω
∑
n∈Z

ane−2πin(ω+1/2)

= e−2πiωmϕ(ω + 1/2) .

This implies

|mψ(ω)|2 + |mψ(ω + 1/2)|2 = |mϕ(ω + 1/2)|2 + |mϕ(ω + 1)|2 = 1 ,
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e.g., (W1). In addition

mψ(ω)mϕ(ω) + mψ(ω + 1/2)mϕ(ω + 1/2)

= e−2πiωmϕ(ω + 1/2)mϕ(ω) + e−2πi(ω+1/2mϕ(ω + 1)mϕ(ω + 1/2)

= e−2πiω(mϕ(ω + 1/2)mϕ(ω)−mϕ(ω + 1)mϕ(ω + 1/2))
= 0 ,

which is (W2). Thus 3.2.5 implies that ψ is a wavelet. 2 An alternative way of prescribing
a wavelet could be by fulfilling the orthogonality relations (W1) and (W2) from Proposition
3.2.5 pointwise almost everywhere on the Fourier transform side. However, unlike the choice
in 3.2.6, the associated wavelet, obtained by Fourier inversion, is not easily accessible. On
the other hand, the choice of ψ in 3.2.6 is simple, but it does not seem very transparent.
However, there are several desirable and nontrivial properties that ψ (as constructed in the
theorem) inherits from ϕ, such as real values, or compact support: If ϕ has compact support,
it is obvious that the scaling sequence is finite. Thus ψ is a finite linear combination of shifts
of a function with compact support, thus also has compact support. In general, if we do not
postulate additional properties, neither the scaling functions nor the wavelet associated to an
MRA are uniquely given. The following example makes this precise for the Shannon-MRA.
We will see below however that requiring compact support does make the wavelet and scaling
function unique up to integer shifts.

3.2.7 Exercise (Shannon-MRA revisited) Let (Vj)j∈Z be the Shannon MRA.

(a) Prove that ϕ̃ is a scaling function associated to (Vj)j∈Z iff |ϕ̂| = χ[−1/4,1/4].

(b) Prove that ψ ∈ L2(R) is a wavelet associated to the MRA iff |ψ(ω)| = χ[−1/2,−1/4] +
χ[1/4, 1/2]. Conclude that ψ cannot be in L1(R), in particular, it cannot have compact
support.

(c) Prove that (ak)k∈Z is the sequence of scaling coefficients for some scaling function of the
MRA iff mϕ fulfills

|mϕ(ω)| = χ[−1/4,1/4] .

2

3.3 Wavelet-ONB’s with compact support

The aim of this section is the construction of MRA’s such that the associated wavelets have
additional properties such as compact support, smoothness and decay.

Remark 3.3.1 If the scaling function ϕ associated to an MRA has compact support, then in
particular 〈ϕ,D2−1Tkϕ〉 = 0 for large k. Hence the associated scaling sequence has compact
support also, as does the wavelet associated to ϕ by 3.2.6.

It is therefore a reasonable approach to start from a finite sequence of scaling coefficients
(ak), such that a solution ϕ of the associated scaling equation exists and induces an MRA.

For the construction of ϕ we use the ”ansatz” already sketched in Remark 3.1.6, i.e.,
iterating the scaling equation on the Fourier transform side. 2

63



Theorem 3.3.2 Let (ak)k=T,...,S be a finite sequence of complex numbers, define m(ω) =∑S
k=T

ak
2 e−2πikω. Assume that m fulfills

1. |m(ω)|2 + |m(ω + 1/2)|2 = 1 for all ω ∈ R.

2. m(0) = 1.

3. m(ω) 6= 0 for all ω ∈ [−1/4, 1/4].

Define
Φ(ω) =

∏

j>1

m(2−jω) . (3.6)

Then the product converges uniformly on compacta, yielding a continuous function Φ. ϕ =
F−1(Φ) is the scaling function of an MRA, with supp(ϕ) ⊂ [S, T ], and scaling coefficiets given
by (ak)k=T,...,S.

Remark 3.3.3 Property 1. is just the relation (S1), and thus necessary by 3.2.3. Property
2. is obviously necessary for the product (3.6) to converge at ω = 0. Hence the only new
and not strictly necessary condition is 3. In fact a certain weakening of 3., known as Cohen’s
condition, also ensures convergence; confer [6, 5] for details. 2

Proof. We need to show

(i) Φ is well-defined and in L2(R).

(ii) F−1(ϕ) fulfills the conditions of Theorem 3.1.8, and supp(ϕ) ⊂ [S, T ].

We start the proof of (i) with pointwise convergence. Condition 1. implies in particular
|m(ω)| ≤ 1. Moreover the trigonometric polynomial m is continuously differentiable, hence
there exists a constant C > 0 with |m(ξ) − 1| ≤ C|ξ|. (Here we used m(ξ) = 1.) Hence
|m(2−jξ)− 1| ≤ C2−j |ξ|, and thus

∣∣∣∣∣∣

j0+1∏

j=1

m(2−jξ)−
j0∏

j=1

m(2−jξ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

j0∏

j=1

m(2−jξ)

∣∣∣∣∣∣
C2−j0 |ξ| ≤ C2−j0 |ξ| .

Hence a simple telescope sum argument involving the geometric series yields existence of

lim
j0→1

j0∏

j=1

m(2−jξ) ,

in fact, we obtain uniform convergence on every bounded set (|ξ| ≤ R yields uniform estimates
in [−R, R]). Hence Φ is a locally uniform limit of continuous functions, thus continuous itself.
m(0) = 1 yields Φ(0) = 1. By construction, Φ(ξ) = m(ξ/2)Φ(ξ/2), which will account for
property (M1) of an MRA once we have shown that Φ ∈ L2(R). Hence it remains to prove
Φ ∈ L2(R), and property (M6). For this purpose we introduce the auxiliary functions

ΦN (ξ) =
N∏

j=1

m(2−jξ) · χ[−2N−1,2N−1]
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and the quantities

Ik
N =

∫ 2N−1

−2N−1

|ΦN (ξ)|2e2πikξdξ

In the following computations we will repeatedly use the fact that

ω 7→
N∏

j=1

m(2−jξ)

is periodic with period 2N . We first prove

(∗) Ik
N = δ0,k , ∀N ∈ N,∀k ∈ Z .

Indeed,

Ik
1 =

∫ 1

−1
|m(ξ/2)|2e−2πikξdξ

=
∫ 0

−1

(|m(ξ/2)|2 + |m(ξ/2 + 1/2)|2) e−2πikξdξ

= δ0,k ,

using property 1. Now assume Ik
N = δ0,k for N ≥ 1. Then

Ik
n+1 =

∫ 2N

−2N

∣∣∣∣∣∣

N+1∏

j=1

m(2−jξ)

∣∣∣∣∣∣

2

e−2πkξdξ

=
∫ 2N

−2N

∣∣m(2−N−1ξ)
∣∣2

∣∣∣∣∣∣

N∏

j=1

m(2−jξ)

∣∣∣∣∣∣

2

e−2πkξdξ

=
∫ 0

−2N

(∣∣m(2−N−1ξ)
∣∣2 +

∣∣m(2−N−1ξ + 1/2)
∣∣2

)
∣∣∣∣∣∣

N∏

j=1

m(2−jξ)

∣∣∣∣∣∣

2

e−2πkξdξ

1.=
∫ 0

−2N

∣∣∣∣∣∣

N∏

j=1

m(2−jξ)

∣∣∣∣∣∣

2

e−2πkξdξ

=
∫ 2N−1

−2N−1

∣∣∣∣∣∣

N∏

j=1

m(2−jξ)

∣∣∣∣∣∣

2

e−2πkξdξ

= Ik
N = δk,0 ,

using the induction hypothesis. Now (∗) and |m(ξ)| ≤ 1 imply in particular for all N ≥ 1
that ∫ 2N−1

−2N−1

|Φ(ξ)|2dξ ≤
∫ 2N−1

−2N−1

|ΦN (ξ)|2dξ ≤ I0
N = 1 ,

in particular Φ ∈ L2(R), with ‖Φ‖2
2 ≤ 1. Next we need to prove property (M6) for Φ, which

by 3.1.4 is the same as ∑

`∈Z
|Φ(ξ + `)|2 = 1 .
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Using the Fourier transform on the interval, this amounts to proving

(∗∗) δ0,k =
∫

0,k

∑

`∈Z
|Φ(ξ + `)|2e−2πikξdξ

=
∫

R
‖Φ(ξ)|2e−2πikξdξ .

In view of (∗) it is enough to prove

(∗ ∗ ∗) lim
N→∞

Ik
N =

∫

R
|φ(ξ)|2e−2πkξdξ .

By definition of Φ and ΦN we obtain for ξ ∈ [−2N−1, 2N−1] the equation

ΦN (ξ)Φ(2−Nξ) = Φ(ξ) . (3.7)

Our aim is to estimate |ΦN |2 from above by a single L1-function (using (3.7)), and then use
the pointwise convergence ΦN → Φ to apply the dominated convergence theorem for the
proof of (∗ ∗ ∗). For the upper estimate pick a constant α > 0 with ||m(ξ)|2 − 1| ≤ α|ξ| on
[−1/2, 1/2]; note that |m(ξ)|2 is continuously differentiable. This entails

|m(ξ)|2 ≥ |1− α|ξ|| .

Moreover, assumption 3. together with continuity of m implies in fact

|m(ξ)| ≥ c > 0

on [−1/4, 1/4]. Pick j0 such that 2−j0−1α < 1. Then, for all ξ ∈ [−1/2, 1/2],

|Φ(ξ)|2 =
j0∏

j=1

|m(2−jξ|2 ·
∞∏

j=j0+1

|m(2−jξ|2

≥ c2j0

∞∏

j=j0

|1− 2−j−1α|2

= c2j0

∞∏

j=1

|1− 2−j0−1α

≥ c2j0

∞∏

j=1

|1− 2−j |2

≥ c2j0C

with a constant C > 0 (see next lemma). In any case, we have produced a strictly positive
lower bound C0 for Φ on [−1/2, 1/2]. Therefore, (3.7) shows

|ΦN (ξ)| ≤ C0|Φ(ξ)| ,

and we have finally proved the integrable upper bound for the |ΦN |2. Thus (∗ ∗ ∗) is proved,
which in turn proves (M6).

The last thing to show is that supp(φ) ⊂ [S, T ]. This requires the Paley-Wiener theorem
which characterises Fourier transforms of compactly supported functions, and we refer the
reader to [16, Lemma 4.3] for this additional argument. 2
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Lemma 3.3.4
∏∞

j=1
2j−1
2j > 0.

Proof. We have

log




N∏

j=1

2j − 1
2j


 =

n∑

j=1

log(1− 2−j) .

Then for x ∈ [0, 1)

log(1− x) = −
∫ x

0

1
1− t

dt

= −
∫ x

0

∞∑

k=0

tkdt

= −
∞∑

k=0

xk+1

k + 1

= −
∞∑

k=1

xk

k
.

Hence

log




N∏

j=1

2j − 1
2j


 = −

N∑

j=1

∞∑

k=1

1
k2jk

.

Computing

−
∞∑

j=1

∞∑

k=1

1
k2jk

= −
∞∑

k=1

1
k

∞∑

j=1

(2−k)j

= −
∞∑

k=1

1
k

(
1

1− 2−k
− 1

)

= −
∞∑

k=1

1
k(2k − 1)

> −∞ .

Hence the sum of logs converges absolutely, and thus
∏∞

j=1
2j−1
2j > 0. 2

We already mentioned trigonometric polynomials, i.e., functions of the form

m(ω) =
T∑

k=S

ake
−2πikω = p(e−2πiω) .

Here we can write p(z) = z−Sq(z), and q is the polynomial

q(z) =
T−S∑

k=0

ak+Szk .

In particular we may use factorisation properties of polynomials. This observation is used in
the next proposition, which addresses the problem of ensuring enough vanishing moments in
the construction procedure.
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Proposition 3.3.5 Let ϕ be a scaling function with compact support. Then

mϕ(ω) = (e−2πiω − 1)`m̃(ω)

for an integer ` ≥ 1 and a trigonometric polynomial m̃. Then, if ψ is the wavelet associated
to ϕ by Theorem 3.2.6, then ψ has ` vanishing moments.

Proof. mϕ is a trigonometric polynomial, hence continuous, and

(S2) |mϕ(ω)|2 + |mϕ(ω + 1/2)|2 + 1

holds everywhere on R. In particular, |mφ(0)|2 = 1 implies mφ(1/2) = 0. This implies the
factorisation mϕ(ω) = (e−2πiω − 1)`m̃(ω), with ` ≥ 1. For the associated wavelet we have

ψ̂(ω) = mψ(ω/2)ϕ̂(ω/2)

= mϕ(ω/2 + 1/2)e−2πiωϕ̂(ω/2) ,

compare the proof of 3.2.6. Plugging in the factorisation of mϕ, we obtain

ψ̂(ω) =
(
1− eπiω

)`
m̃(ω/2 + 1/2)ϕ̂(ω/2) .

The first factor yields a zero of order ` at zero. Since supp(ψ) is compact, we have t 7→
tnψ(t) ∈ L1(R). Thus we may apply 1.6.7 to obtain that the n-th moment vanishes, for
0 ≤ n < `. 2

The following property can be seen as an interpolation property of MRA with compact
supports and vanishing moments:

Proposition 3.3.6 Let ϕ be a scaling function with compact support, such that the associated
wavelet has ` vanishing moments. Define

cm,k =
∫

R
xmϕ(x− k)dx ,

for all 0 ≤ m < ` and all k ∈ Z. Then, for almost all x ∈ R,
∑

k∈Z
cm,kϕ(x− k) = xm (3.8)

Note that since supp(ϕ) is compact, the sum on the left hand side is finite for all x. Conver-
gence is thus not a problem. Moreover, it is obvious that the equality holds for all x ∈ R if ϕ
is continuous.

Proof. By construction of the Wj we have

L2(R) = V0 ⊕
⊕

j≥1

Wj

and (Tkϕ)k∈Z
⋃

(D2−jTkψ)j≥1,k∈Z is an ONB of L2(R). Fix R > 0 and N ∈ N such that
supp(ψ), supp(ϕ) ⊂ [−N, N ]. Define f(x) = xmχ−R−2N,R+2N . Then

f(x) =
∑

k∈Z
c̃kϕ(x− k) +

∑

j≥1,k∈Z
dj,kψj,k(x) (3.9)
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almost everywhere on R. Here the c̃k and dj,k are the expansion coefficients of f with respect
to the ONB. Now pick x ∈ [−R, R]. If (j, k) ∈ N × Z is such that x ∈ supp(ψj,k), it follows
that supp(ψj,k) ⊂ [−2N −R, 2N + R], since

supp(ψj,k) ⊂ [2−j(−N + k), 2−j(N + k)]

which has length less than N , and supp(ψj,k) is assumed to contain x. Hence we obtain

dj,k =
∫ N+R

−N−R
xmψj,k(x)dx

=
∫

R
xmψj,k(x)dx

=
∫

R
xm2j/2ψ(2jx− k)dx

=
∫

R
2−j/2

(
x− k

2j

)m

ψ(x)dx

= 0 ,

since a polynomial of order m is a linear combination of monomials of order up to m, which
is also not ”seen” by the wavelet. Now a similar argument shows that c̃k = cm,k for all k
with x ∈ supp(Tkϕ). Thus (3.8) and (3.9) coincide on [−R, R]. Letting R → ∞ yields the
full statement. 2

The following proposition settles a uniqueness issue. If we start with a finite scaling
sequence and construct a compactly supported scaling function and wavelet from it by the
procedure from Theorem 3.3.2, then these functions are unique up to shifts.

Proposition 3.3.7 Let ϕ, ϕ̃ ∈ L2(R) be compactly supported. Assume that (Tkϕ)k∈Z and
(Tkϕ̃)k∈Z are ONB’s of the same closed subspace V ⊂ L2(R). Then there exists ` ∈ Z and
c ∈ C with |c| = 1 such that φ = cT`ϕ̃.

Proof. Exercise. (Hint: From 3.2.4 we know ϕ̂ = ̂̃ϕ ·m1, and ̂̃ϕ = ϕ̂ ·m2. Here m1,m2 are
trigonometric polynomials, since ϕ, ϕ̃ have compact supports. It follows that m1m2 = 1, and
this implies the desired statement.) 2

The following theorem is the most important result of this chapter: There exist compactly
supported wavelet ONB’s with arbitrary smoothness and number of vanishing moments. In
particular, part (c) of the theorem implies that one has to increase the discrete filter size
roughly by 10 in order to obtain an increase in regularity by one differentiation order.

Theorem 3.3.8 (Daubechies)
There exists a family of finite scaling sequences aN = (ak,N )k∈Z, N ∈ N with the following
properties

(a) The solution ϕN of the associated scaling equation is a real valued scaling function of
an MRA.

(b) supp(aN ) ⊂ {0, . . . , 2N −1}, supp(ϕN ) ⊂ [0, 2N −1] and supp(ψN ) ⊂ [1−N,N ], where
ψN is chosen according to Theorem 3.2.6.

(c) ψN has N vanishing moments.
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(d) ϕN , ψN ∈ CbαN−εc, for all ε > 0 and all N > N(ε). Here α = 1− ln 3
2 ln 2 ≈ 0.20775.

Proof. (Only a sketch. Confer [3, 16, 5] for details.)
Step 1. Define the function

MN (ω) = 1− cN

∫ ω

0
sin2N−1(2πt)dt

with 1
cN

=
∫ 1
0 sin2N−1(2πt)dt. Then MN is a trigonometric polynomial of degree 4N which

fulfills the relations

MN (ω) + MN (ω + 1/2) = 1 , MN (ω) ≥ 0 .

Step 2. By a theorem due to Szegö there exists a trigonometric polynomial

mN (ω) =
2N−1∑

k=0

ak,N

2
e−2πiωk

with |mN |2 = MN . (Caution: mN is not unique, and taking
√

MN usually does not work;
this function need not be a trigonometric polynomial.)
Step 3. Properties (1) and (2) from Theorem 3.3.2 are guaranteed by the construction. (3)
(or the weaker yet sufficient ”Cohen’s criterion”) follow from additional considerations.
Step 4. Smoothness properties follow from 1.6.1 and estimates of the decay of ϕ̂. 2

3.3.9 Examples The first three filters are given by

N a0 a1 a2 a3 a4 a5 a6

1 1 1
2 1+

√
3

4 13+
√

3
4

3−√3
4

1−√3
4

3 0.0498 −0.1208 −0.1909 0.6504 1.1411 0.4705

2

Remark 3.3.10 For N = 1 we obtain the scaling function ϕ1 = χ[0,1] and the Haar wavelet.
At the other end of the scale, it can be shown that limN→∞ ϕ̂N (ω) = χ[−1/2,1/2], i.e., in a
sense we obtain the Shannon-MRA as the limit case. 2

3.3.11 Plotting scaling functions and wavelets. For most orthonormal wavelets there
does not exist a closed analytic expression; plotting the graph of such a function is therefore
something of a challenge. A possible way out consists in regarding the scaling equation

ϕ(x) =
∑

k∈Z
akϕ(2x− k)

as a fixed point equation. The standard approach to the solution of such fixed point equations
consists in iteration. Hence we might want to pick

ϕ0(x) =
{

1 x = 0
0 |x| ≥ 1
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and linearly interpolating in between, and then define

ϕn+1(x) =
∑

k∈Z
akϕn(2x− k) .

It can be shown that this converges pointwise to ϕ, at least for the Daubechies wavelets
(see [12] for details). (Note that at least for the Haar wavelet this convergence can not be
uniform.) Moreover the ϕn are easily computed: It is obvious that ϕn is piecewise affine with
the nodes contained in 2−nZ. It thus suffices to know the values gn,k = ϕn(2−nk). But these
obey the recursion formula

g0,k = δ0,k

gn+1,` =
∑

k∈Z
gn,`−2nkak .

This recursion is implemented in the matlab wavelet toolbox under the name wavefun.
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Figure 3.1: Plots of the fifth Daubechies wavelet obtained by one and four iterations. The
four iterations plot contains both the approximated scaling function and the wavelet. Four
iterations already yield a rather good approximation.

2

Remark 3.3.12 In the course of this script three different normalisations of the scaling
coefficients have been used. Letting ak =

√
2〈ϕ,D2−1Tkϕ〉, we used the relations

ϕ(x) =
∑

k∈Z
akϕ(2x− k)

=
∑

k∈Z

ak√
2

(D2−1Tkϕ) (x)

as well as in the definition of mϕ

mϕ(ω) =
∑

k∈Z

ak

2
e−2πikω .

The different normalisations are the most convenient choices for their respective contexts.
The differences are only partly the result of the author’s sloppiness; in fact all normalisations
can be found in the literature. But this implies that in order to use filters given in the
literature one needs to know to which convention the source at hand refers. For this purpose
the relation

1 = |mϕ(0)| =
∣∣∣∣∣
∑

k

ak

2

∣∣∣∣∣
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is useful. In particular, if some filter coefficients (ãk)k∈Z are found in the literature, then
letting

ak =
2

|∑k ãk| ãk

yields the normalisation used in this script.
In particular, calling the matlab routine wfilters yields the scaling coefficients (ãk)k∈Z, in

the normalisation ãk = ak√
2
. 2

3.4 Spline Wavelets

Daubechies’ construction starts from a clever choice of scaling coefficients, constructs the
scaling function and finally the MRA. This way we are guaranteed finite scaling filters (the use
of that will become clear in the next chapter) but we do not really have a good understanding
of the spaces Vj associated to the scaling function (we don’t even know their basic building
blocks explicitly). An alternative way might consist in prescribing the spaces (Vj)j∈Z in a
suitable way, and then obtain the scaling coefficients from the inclusion property. In this
section we want to sketch such a construction for a particular family of spaces, namely spline
spaces.

Definition 3.4.1 Let a > 0 and m ∈ N. Define

Sm(aZ) := {f : R→ C : f ∈ Cm−1(R), f |[ak,a(k+1)[ polynomial of degree ≤ m} .

f ∈ Sm(aZ) is called spline of order m with nodes in aZ. 2

The aim of this section is to sketch a proof of the following theorem:

Theorem 3.4.2 Fix m ∈ N, and let for j ∈ Z

Vj = Sm(2−jZ) ∩ L2(R) .

Then (Vj)j∈Z is an MRA. There exists a scaling function ϕ and a wavelet ψ which fulfill the
following estimates

|ψ(x)| ≤ Ce−α1|x| , |ϕ(x)| ≤ C−α2|x| ,

and the associated scaling coefficients satisfy

|ak| ≤ Ce−α3|k| ,

with suitable αi > 0.

The following definition will not give the scaling functions, but basic building blocks which
are fairly close to the scaling functions:

Definition 3.4.3 (B-splines)
Define Nm (for m ≥ 0) recursively by N0 = χ[0,1] and Nm+1 = N0 ∗Nm. 2

With Lemma 3.1.4 in mind, the following lemma can be read as a description how far the
translates of a B-spline are from being an ONB.
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Lemma 3.4.4 For all m ∈ N there exist constants 0 < C1 ≤ C2 < ∞ such that for all ω

C1 ≤
∑

k∈Z
|N̂m(ω + k)|2 ≤ C2 (3.10)

Proof. By construction N̂m(ω) = (N0(ω))m. Moreover,

N̂0(ω) =
e−2πiω − 1
−2πiω

(ω 6= 0) , N̂0(0) = 1 .

In particular N̂m(ω) 6= 0 on [−1/2, 1/2]. Since the N̂m are continuous, we thus obtain
|N̂m(ω)|2 ≥ C1 > 0 on [−1/2, 1/2], which entails the lower estimate of (3.10). For the other
estimate we first observe that (TkN0)k∈Z is in fact an ONS, which by 3.1.4 entails

∑

k∈Z
|N̂0(ω + k)|2 = 1 ,

in particular |N̂0| ≤ 1. Hence
∑

k∈Z
‖N̂m(ω + k)|2 =

∑

k∈Z
‖N̂0(ω + k)|2m ≤

∑

k∈Z
‖N̂0(ω + k)|2 = 1 ,

and the upper estimate is proved. 2

The lemma now implies that the Box splines are in fact close to an ONB:

Lemma 3.4.5 (TkNm)k∈Z is a Riesz system, i.e., the mapping

T : `2(Z) 3 (ak)k∈Z 7→
∑

k∈Z
akTkNm

is a bijection between `2(Z) and Ṽ0 = span(TkNm : k ∈ Z), with

C1‖a‖2
2 ≤ ‖Ta‖2

L2 ≤ C2‖a‖2
2 .

Here C1 and C2 are the constants from 3.4.4. Moreover, we have the characterization

f ∈ Ṽ0 ⇔ ∃mf 1-periodic with f̂ = mf N̂m . (3.11)

Proof. See [16, 2.8,2.10]. 2

The following lemma shows how one computes from a Riesz system (as described in the
previous lemma) an ONB, by a suitable orthonormalisation process.

Lemma 3.4.6 Define

ϕ̂m(ω) =
N̂m(ω)√∑

k∈Z |N̂m(ω + k)|2
.

Then (Tkϕm)k∈Z is an ONB of Ṽ0.
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Proof. (Sketch.) The construction of ϕm guarantees by 3.1.4 that (Tkϕm)k∈Z is an ONS.
That it spans Ṽ0, follows from the fact that ϕ̂m = mϕm · N̂m, where

mϕm(ω) =
1√∑

k∈Z |N̂m(ω + k)|2

is a 1-periodic function that is bounded from above and below. But this fact together with
the characterisation (3.11) and Lemma 3.2.4 yields that (Tkϕm)k∈Z spans V0. 2

Proof of Theorem 3.4.2 (Sketch).

1. Ṽ0 = Sm(2−jZ) ∩ L2(R) (see [16, 3.11]).

2. Property (M6) is due to Lemma 3.4.6.

3. Property (M1) can be checked directly from the definitions.

4. The continuity of ϕ̂m and ϕ̂(0) 6= 0 are also checked by elementary arguments.

Hence Theorem 3.1.8 applies to show that (Vj)j∈Z is an MRA. 2
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Chapter 4

Discrete Wavelet Transforms and
Algorithms

This chapter contains the most important aspect of wavelets from the point of view of signal
and image processing applications. The previous chapters have shown that wavelets are
useful building blocks possessing a rather intuitive interpretation in terms of position and
scale. What made wavelets popular was the realisation that there exist fast and simple
algorithms which yield the decomposition into these building blocks. Moreover, the notion of
multiresolution analysis, which at first appears like a clever but rather special construction,
is the direct source of these algorithms.

For the efficient description of the algorithms we need some results concerning Fourier
analysis on Z.

4.1 Fourier transform on Z

Definition 4.1.1 Given a = (ak)k∈Z, we define the Fourier transform of a as a function on
[−1/2, 1/2] given by

F(a)(ω) =
∑

k∈Z
ake

−2πikω .

Here the sum converges in the L2-sense; in fact, since the exponential functions are an ONB
of L2([−1/2, 1/2]), the operator F is a unitary map `2(Z) → L2([−1/2, 1/2]). We also use
â = F(a). Depending on the context it may be convenient to regard F(a) as a periodic
function on R, or as living on a suitable interval of length 1. 2

Definition 4.1.2 Given f, g ∈ `2(Z), we define their convolution product f ∗ g by

(f ∗ g)(n) =
∑

k∈Z
f(k)g(n− k) .

2

4.1.3 Exercises.

(a) The translation operator Tk : `2(Z) → `2(Z) is given by (Tka)(n) = a(n−k). Show that
Tkf = f ∗ δk, where δk(n) = δk,n.
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(b) (Discrete differentiation.) A discrete analog to differentiation is given by the operator
(Df)(n) = f(n)−f(n−1)

2 . Compute D̂f .

(c) Let g be a sequence. Show that f 7→ f ∗ g is a bounded operator on `2(Z) iff g ∈ `2(Z)
with ĝ ∈ L∞([−1/2, 1/2]). Show that in this case the convolution theorem holds, i.e.,

(f ∗ g)∧ = f̂ · ĝ .

(d) For f ∈ `2(Z) let f∗ be defined as f∗(k) = f(−k). Compute f̂∗ and show that if the
convolution operator T : g 7→ g ∗ f is bounded, its adjoint is given by T ∗ : g 7→ g ∗ f∗.

2

Remark 4.1.4 It is obvious that there are no arbitrarily large frequencies on Z. In fact, it
is not instantly clear whether one can define a meaningful ordering of frequencies from low to
high: After all, depending on whether we regard the Fourier transform as living on [−1/2, 1/2],
or on another interval of length 1, different notions of ”high” frequencies are the result. In
the following, we want to argue in favour of taking [−1/2, 1/2] as reference interval: The case
|ω| = 1/2 corresponds to the exponential k 7→ (−1)k. The oscillation between two neighboring
points k, k + 1 is 2, i.e., the maximal possible oscillation for exponentials. Conversely ω = 0
corresponds to the constant function. These examples suggest that a meaningful comparison
of frequencies is possible if we restrict to the interval [−1/2, 1/2].

Another argument in favor of this view is obtained from the discrete differentiation op-
erator. Recall from Section 1.6 that the continuous differentiation operator attenuates small
frequencies and enhances large frequencies. Similarly, noting that (Df) = f ∗ d, we obtain on
the Fourier transform side D̂f = f̂ · d̂ for a suitable function d (which ?), and |d̂| vanishes at
zero and increases towards ±1/2. Hence D attenuates frequencies around zero, and enhances
those close to ±1/2.

Finally, we mention that this point of view corresponds to a specific way of embedding
`2(Z) into L2(R), using the sampling theorem: The operator

S : (ak)k∈Z 7→
∑

k∈Z
akTksinc

is clearly isometric, with (Sa)(k) = k and

Ŝa(ω) =
{

â(ω) ω ∈ [−1/2, 1/2]
0 elsewhere

2

4.2 The fast wavelet transform

Throughout this section we fix an MRA (Vj)j∈Z with scaling function ϕ, wavelet ψ and scaling
coefficients (ak)k∈Z. Given f ∈ V0, we can expand it with respect to two different ONBs:

f =
∑

k∈Z
c0,kTkϕ

=
∑

k∈Z
d−1,kD2Tkψ +

∑

k∈Z
c−1,kD2Tkϕ
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Here we use the notations

cj,k = 〈f, D2−jTkϕ〉 ”approximation coefficient”
dj,k = 〈f, D2−jTkψ〉 ”detail coefficient”

In the following we will use dj = (d−j,k)k∈Z and cj = (c−j,k)k∈Z. (Note the sign change in the
index!) At the heart of the fast wavelet transform are explicit formulae for the correspondence

c0 ↔ (c1, d1) .

For this purpose we require one more piece of notation

Definition 4.2.1 (Up- and downsampling)
The up- and downsampling operators ↑2, ↓2 are given by

(↓2 f)(n) = f(2n) (”down”)

(↑2 f)(n) =
{

0 n odd
f(k) n = 2k

(”up”)

We have (↑2)
∗ =↓2, as well as ↓2 ◦ ↑2= Id. In particular, ↑2 is an isometry. 2

Theorem 4.2.2 The bijection c0 ↔ (c1, d1) is given by

Analysis: cj+1 =↓2 (cj ∗ `) , dj+1 =↓2 (cj ∗ h)

and
Synthesis: cj = (↑2 cj+1) ∗ h∗ + (↑2 dj+1) ∗ `∗

Here the filters h, ` are given by `(k) = a−k√
2

and h(k) = (−1)1+ka1+k√
2

.

Proof. We first compute for n, k ∈ Z that

〈Tkϕ,D2Tnϕ〉 = 〈T−nD2Tkϕ,ϕ〉
= 〈D2Tk−2nϕ,ϕ〉
= 〈ϕ,D2Tk−2nϕ〉
=

ak−2n√
2

.

Hence

c−1,n = 〈f, D2Tnϕ〉
=

∑

k∈Z
c0,k〈Tkϕ,D2Tnϕ〉

=
∑

k∈Z
c0,k

ak−2n√
2

=
∑

k∈Z
c0,k`(2n− k)

=
(
c0 ∗ `

)
(2n) .
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Analogous computations yield

〈Tkϕ,D2Tnψ〉 =
(−1)1−(k−2n)a1−(k−2n)√

2

and thus d−1,n =
(
c0 ∗ h

)
(2n).

The formula for synthesis is either checked directly, or by observing that the map c0 7→
(c1, d1) is unitary, hence inverted by its adjoint. The adjoint is easily computed using 4.1.3
and 4.2.1. 2

Remarks 4.2.3 (a) The ”Cascade Algorithm: Iteration of the analysis step yields cj , dj

for j ≥ 1. This can be sketched as the ”cascade”

c0 → c1 → c2 → . . . → cj−1 → cj

↘ ↘ ↘ ↘ ↘
d1 d2 dj−1 dj

whereas the synthesis step is given by

cj → cj−1 → cj−2 → . . . → c1 → c0

↗ ↗ ↗ ↗ ↗
dj dj−1 d2 d1

The decomposition step corresponds to the orthogonal decompositions

V0 → V−1 → V−2 → . . . → V−j+1 → V−j

↘ ↘ ↘ ↘ ↘
W−1 W−2 W−j+1 W−j

(b) Complexity: For a sequence a = (ak)k∈Z with finite support define the length of the
support as

L(a) = 1 + max{k : ak 6= 0} −min{k : ak 6= 0} .

Now let a coefficient sequence c0 be given with L(c0) = N , and assume that the filters h, `
are finite with length L. Then L(c0 ∗ h) = L + N − 1 = L(c0 ∗ `), and thus

L(c1) = L(↓2 (c0 ∗ `)) = bL + N − 1
2

c ± 1

and similarly for L(d1). Thus (c1, d1) has only insignificantly more nonzero coefficients. (Note
that “in practice” signals tend to be rather long, whereas wavelet filters usually are of the
order of 10 to 30 coefficients.)

Moreover, the decomposition step c0 7→ (c1, d1) requires NL multiplications. Since in the
iteration step only cj is decomposed, we can estimate the complexity for the computation of
c0 7→ (cj , dj , dj−1, . . . , d1) by

j−1∑

i=0

2L(ci) · L ≤ 2
j−1∑

i=0

(2−iN + L)L .

Only j ≤ log2 N is meaningful, thus we finally see that the number of multiplications for the
computation of (cj , dj , dj−1, . . . , d1) requires O(NL) multiplications. The same holds for the
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inverse transform.
(c) Interpretation: By their origin, dj and cj can be interpreted as detail- resp. approxima-
tion coefficients of a certain function f ∈ L2(R). However, the usual case in the applications
of wavelets to signal processing is that the original data are given in form of the sequence c0,
to which the cascade algorithm is applied. The resulting coefficients can be interpreted in
different ways:

(i) Associate the continuous-time function

f =
∑

k∈Z
c0(k)Tkϕ ,

then the output of the cascade algorithm consists of certain detail and approximation
coefficients of f with respect to the wavelet ψ and the scaling function ϕ. Therefore we
could use the results concerning wavelet coefficient decay of piecewise smooth functions
to derive estimates for the dj . The problem with this approach is that ϕ is usually not
known explicitly, and information about f is not easily accessible.

(ii) c0 is considered as a sampled band-limited function: c0 = f̃ |Z, suppf̂ ⊂ [−1/2, 1/2],
where

f̃(x) =
∑

k∈Z
c0(k)sinc(x− k) .

The projection of f̃ onto V0 can be computed via the scalar products c̃0(k) = 〈f̃ , Tkϕ〉,
and we feed c̃0 into the cascade algorithm. In short, we have recovered the interpretation
of the output of the cascade algorithm by introducing a preprocessing step c0 7→ c̃0.

In this context the Coiflets, introduced by Coifman, are particularly useful, since they
are constructed such as to yield

〈f, Tkϕ〉 ≈ f(k)

for suitable functions f . In other words, using Coiflets one can regard c0 as sampled
values of a certain function f and at the same time interpret the output of the cascade
algorithm as detail and approximation coefficients of f . (See [6] for details.)

(iii) Instead of referring to a suitable embedding into the continuous setting, one can also
regard the transform c0 7→ (c1, d1) as an operator `2(Z) → `2(Z) ⊕ `2(Z), and study it
as an operator of independent interest. The following discussion will be along this line.
In particular, we will not always assume that `, h are obtained from a multiresolution
analysis on R. Instead, we investigate which pairs `, h make the discrete wavelet trans-
form work, and how the discrete wavelet transforms can be interpreted. Some of the
arguments will look very similar to what we encountered in Chapter 3.

2

4.2.4 One-Step FWT as filterbank Let (ak)k∈Z be the scaling coefficients of an MRA
and `, h the filters associated to the MRA by 4.2.2. Denote by mϕ the mask associated to
the scaling coefficients. Then a simple computation shows ̂̀(ω) =

√
2 mϕ(−ω) and ĥ(ω) =√

2 mψ(−ω). In particular, mϕ(0) = 1 and mϕ(±1/2) = 0 imply that convolution with ` picks
out the frequencies around 0 and attenuates frequencies around ±1/2; in fact, that was our
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Figure 4.1: Plot of |̂̀|, |ĥ| for the filters for the fifth Daubechies wavelet

motivation for denoting this filter by ”`”, for ”low frequencies”. On the other hand, ĥ(0) = 0
imply that convolution with h picks out the frequencies around ±1/2.

In summary, the pair (`, h) acts as a filterbank on `2(Z). Again, this becomes most obvious
for the Shannon MRA. 2

Theorem 4.2.5 Let `, h ∈ `2(Z) with bounded Fourier transforms. Let

T : `2(Z) → `2(Z)× `2(Z) , c 7→ (↓2 (c ∗ `), ↓2 (c ∗ h)) .

Then T is unitary iff

(PR)

{
1√
2

( ̂̀(ω)
̂̀(ω + 1/2)

)
,

1√
2

(
ĥ(ω)

ĥ(ω + 1/2)

)}
⊂ C2 is an ONB

holds for almost all ω ∈ [−1/2, 0]. In this case, the inverse operator is given by

(c, d) 7→ (↑2 c) ∗ `∗ + (↑2 d) ∗ h∗ .

Note that property (PR) summarises the relations (S3), (W1) and (W1), as used in the proof
of 3.2.5. (PR) is short-hand for ”perfect reconstruction”.

Proof. First note that

↓2 (c ∗ `)(k) =
∑
m∈Z

c(m)`(2k −m)

=
∑
m∈Z

c(m)`∗(m− 2k)

= 〈c, T2k`
∗〉 ,

and by a similar computation ↓2 (c ∗ h)(k) = 〈c, T2kh
∗〉. Hence T is the coefficient map

associated to the system

(+) (T2kh
∗)k∈Z ∪ (T2k`

∗)k∈Z ,

and we have to show that (+) is an ONB. Now similar calculations as in the proof of 3.2.5
show that this is the case iff (PR) holds. 2

Remark 4.2.6 Just as in Theorem 3.2.6 we can associate to any filter ` fulfilling the first
half of (PR) in a canonical manner a filter h via

h(n) = (−1)1−n`1−n

2
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The following theorem can be found (with weaker assumptions) in [2].

Theorem 4.2.7 Wavelet-ONB in `2(Z)
Let `, h ∈ `2(Z) be given with (PR). Assume in addition that ` is finitely supported. Given
c ∈ `2(Z), define inductively

c0 = c , cj+1 =↓2 (cj ∗ l) , dj+1 =↓2 (cj ∗ h) .

(a) The discrete wavelet transform

Wd : c 7→ (dj(k))j≥1,k∈Z

is a unitary operator `2(Z) → `2(N× Z).

(b) dj(k) = 〈c, T2jkψj〉 and cj(k) = 〈c, T2jkϕj〉, with suitable ψj , ϕj ∈ `2(Z) (for j ≥ 1).

(c) ψj and ϕj can be computed recursively via

ϕ0 = δ0

ϕj+1 = ϕj ∗
(
↑j
2 `∗

)

ψj+1 = ϕj ∗
(
↑j
2 h∗

)

Proof. We first prove (b) and (c) by induction: Noting that c0 = c ∗ δ0, we find in the
induction step

cj+1(k) = ↓2 (cj ∗ `)(k)

=
∑
n∈Z

cj(n)`(2k − n)

IH=
∑
n∈Z

〈c, T2jnϕj〉`(2k − n)

= 〈c,
∑
n∈Z

`(2k − n)(T2jnϕj)〉 ,

where IH indicates an application of the induction hypothesis. Now we can compute the
∑
n∈Z

`(2k − n)(T2jnϕj)(m) =
∑
n∈Z

ϕj(m− 2jn)`(2k − n)

=
∑
n∈Z

ϕj(m− 2j(n + 2k))`(−n)

=
∑
n∈Z

ϕj(m− 2jn− 2j+1k))`∗(n)

= T2j+1kϕj+1

where ϕj+1 is given as

ϕj+1(m) =
∑
n∈Z

ϕj(m− 2jn)`∗(n)

=
∑
n∈Z

ϕj(m− n)(↑j
2 `∗)(n)

= (ϕj ∗ (↑j
2 `∗))(m) .
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Replacing ` by h in the calculations yield the formula for ψj , and we have shown (b) and (c).
Now Theorem 4.2.5 implies that the mapping

c 7→ (cj , dj , dj−1, dj−2, . . . , d1)

is unitary, and hence by 1.2.10 the family

(T2jkϕj)k∈Z ∪ (T2ikψ)1≤i≤j,k∈Z

is an ONB of `2(Z). Since this holds for all j ≥ 1, we obtain in particular that ((T2ikψ)1≤i≤j,k∈Z
is an ONS in `2(Z). Hence the only missing property is totality. For this purpose define

Pj(f) :=
∑

k∈Z
〈f, T2jkϕj〉T2jkϕj ,

which are the projections onto the orthogonal complement

((T2ikψ)1≤i≤j,k∈Z)
⊥ .

Hence we need to prove Pj(f) → 0, for all f ∈ `2(Z). Since the space of finitely supported
sequences is dense in `2(Z), it is enough to prove Pj(f) → 0 for finite sequences (compare the
proof of Theorem 3.1.8). For this purpose we need two auxiliary statements

• ‖ϕ̂j‖1 → 0, as j →∞. (Confer [2] for a proof.)

• L(ϕj) ≤ L(`) · 2j . (This is an easy induction proof, using that L(↑j
2 `∗) = 2jL(`)− 2j .)

As a result,

‖Pj(δk)‖2
2 =

∑
m∈Z

|〈δk, T2jmϕj〉|2

=
∑
m∈Z

|ϕj(k − 2jm)|2

≤ (L(`) + 1) ‖ϕj‖∞
≤ (L(`) + 1) ‖ϕ̂j‖1 → 0 ,

as j →∞. This concludes the proof of totality, hence (a) is shown. 2

Remarks 4.2.8 (a) The family (Pj)j∈Z of projections defines a decreasing sequence Vj =
Pj(`2(Z)) of closed subspaces which share many properties of an MRA in L2(Z). (Exercise:
Check which properties are shared.)
(b) The finiteness of the filters are only used for totality of the system. Hence any pair `, h
with property (PR) yields an ONS in `2(Z).
(c) Note that the filterbank properties of the DWT, i.e., ` as low-pass and h as high-pass
filter, enter nowhere in the proof (in fact, we could as well exchange the two). These are
additional properties which we have to build into the filters.
(d) Theorem 4.2.7 implies that the map c 7→ dj factors into a convolution with ψ∗j , followed
by a subsampling of 2j . In particular, we can interpret the mapping

c 7→ (d1, d2, d3, . . .)
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as a (subsampled) filterbank. Plotting |ψ̂j |2 allows to visualise how the different wavelets
separates the different frequencies. For plotting purpose, it is useful to observe that on the
Fourier transform side the recursion formulae read

ϕ̂j+1(ω) = ̂̀(2jω) · ϕ̂j(ω) , ψ̂j+1(ω) = ĥ(2jω) · ϕ̂j(ω) .
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Figure 4.2: Filterbank plots for the fifth Daubechies wavelet and one and four iterations,
respectively.

(e) Part (b) of the theorem shows that the fast wavelet transform computes the expansion
coefficients of f with respect to an ONB of `2(Z). Once again, the elements of this ONB are
indexed by scale and position parameters.

Note that the recursion formula in part (c) of the theorem is, up to indexing and nor-
malisation, identical to the recursion formula obtained for the pointwise computation of the
scaling function in Remark 3.3.11. Hence, whenever the filters `, h are associated to an MRA
in L2(R), and in addition the recursion scheme in 3.3.11 converges (as it does for Daubechies
wavelets), the large scale discrete wavelets ψj ∈ `2(Z) look more and more like the associated
continuous wavelet ψ sampled on 2−jZ. 2

Proposition 4.2.9 (Vanishing moments)
Let `, h be finite filters fulfilling the condition (PR). Assume that h is associated to ` as in
remark 4.2.6. Then

̂̀(ω) = (e−2πiω + 1)rm̃(ω)

with r ≥ 1 and m̃ is a trigonometric polynomial. If f ∈ `2(Z) and f |I a polynomial of degree
< r, then for all wavelets T2jkψj with support contained in I, we have

0 = 〈f, T2jkψj〉 = dj(k) .

Proof. The factorisation is obtained by the same argument as in the proof of 3.3.5.
Hence ĥ(ω) = ̂̀(ω + 1/2)e−2πiω has a zero of order r at 0. Moreover, for finite filters ψj it is
elementary to prove that

∑

k∈Z
ksψj(k)e−2πikω = (2πi)−sψ̂j

(s)
(ω) .

But ψ̂j(ω) = ĥ(2jω)ϕ̂j−1(ω) also has a zero of order r at 0, thus for s < r

0 =
ψ̂j

(s)
(0)

(2πi)s
=

∑

k∈Z
ksψj(k)

which implies the statement of the proposition. 2
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4.3 2D Fast Wavelet Transform

The 2D Fast Wavelet Transform accounts for a large part of the popularity of wavelets in
applications, specifically in image processing applications. In this section we outline the
algorithm and its properties. The algorithm operates on elements of `2(Z2), which in the
following are also called ”(discrete) images”. We will also speak of directions: The first
coordinate is the horizontal coordinate, the second coordinate corresponds to the vertical
direction.

Convolution and translation operators on `2(Z2) are defined in precisely the same way as
in 1D.

The 1-step 2D fast wavelet transform can be defined as a concatenation of linewise and
columnwise 1D wavelet decomposition steps. Assume for the following that we are given
1D discrete filters `, h ∈ `2(Z) which fulfill property (PR). For f ∈ `2(Z), we denote by
f(n1, ·) ∈ `2(Z) the restriction to {n1} × Z. Define f(·, n2) analagously. Then we define the
one step decomposition of 2D FWT as an operator S2 : `2(Z2) → `2(Z2)4, by the following
operations:

• For f ∈ `2(Z2), define c, d ∈ `2(Z2) by

c(n1, ·) =↓2 (f(n1, ·) ∗ `) , d(n1, ·) =↓2 (f(n1, ·) ∗ h)

• define c1 and d1,j , j = 1, 2, 3 by

c1(·, n2) = ↓2 (c(·, n2) ∗ `)
d1,1(·, n2) = ↓2 (c(·, n2) ∗ h)
d1,2(·, n2) = ↓2 (d(·, n2) ∗ `)
d1,3(·, n2) = ↓2 (d(·, n2) ∗ h)

• S2 is defined by S2(f) = (c1, d1,1, d1,2, d1,3).

We can rewrite the definition of S by use of the tensor product notation: If we define
for f, g ∈ `2(Z) the tensor product (f ⊗ g)(n, k) = f(n)g(k), and in addition define the
two-dimensional downsampling operator by

(↓2 f)(n, k) = f(2n, 2k)

then we may write
c1 =↓2 (f ∗ L) , d1,j =↓2 (f ∗Hj)

where L = `⊗ `, H1 = `⊗ h, H2 = h⊗ ` and H3 = h⊗ h. (Proof: Exercise.)
Similarly as in the case of the 1D wavelet transform, we obtain

Theorem 4.3.1 Let `, h ∈ `2(Z) be finite filters satisfying property (PR). Then the operator
S2 is unitary. Hence the inverse operator is given by

(c, d1, d2, d3) 7→ (↑2 c) ∗ L∗ +
3∑

i=1

(↑2 di
) ∗H∗

i .
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Here ↑2 is defined by

(↑2 f)(n, k) =
{

f(n/2, k/2) (n/2, k/2) ∈ Z2

0 otherwise

Proof. Exercise. (Show, e.g., that S2 factors into unitary maps, using the 1D case.) 2

4.3.2 Cascade Algorithm Again, the one-step decomposition can be iterated along the
following scheme

c0 → c1 → c2 → . . . → cj−1 → cj

↘ ↘ ↘ ↘ ↘
(d1,i)i=1,2,3 (d2,i)i=1,2,3 (dj−1,i)i=1,2,3 (dj,i)i=1,2,3

with associated inversion given by

cj → cj−1 → cj−2 → . . . → c1 → c0

↗ ↗ ↗ ↗ ↗
(dj,i)i=1,2,3 (dj−1,i)i=1,2,3 (d2,i)i=1,2,3 (d1,i)i=1,2,3

The column- and linewise definition of the wavelet transform allows a first interpretation of
the resulting coefficients: Assuming that ` and h act as low- and highpass filters, we see
that the different coefficient sets store different information contained in the image. More
precisely:

• c1 contains a low resolution copy of the image f , being obtained by low-pass filtering
in both directions

• d1,1 was obtained by low-pass filtering in the horizontal directions, followed by high-pass
filtering in the vertical directions. As a result, only changes along the vertical direction
are detected (e.g., edges in horizontal direction).

• d1,2 records changes along the horizontal direction.

• d1,3 records ”diagonal” details.

Note that the properties concerning number of nonzero coefficients (for finite images) and
algorithm complexity, which we observed in Remark 4.2.3 for the 1D case, remain intact in
the 2D case. In fact, the implementation of the filters L,Hi is somewhat cheaper due to their
tensor product structure: If `, h have length L, the associated 2D filters have size L2. On the
other hand, first filtering horizontally with one filter and then vertically with the other one
only requires 2L× ( signal length) computation steps, not the expected L2× ( signal length).
2

The effect of iterating the one-step decomposition ad infinitum is described in the next
theorem. It shows that the wavelet transform computes the expansion coefficients of the input
signal with respect to a particular ONB of `2(Z).

Theorem 4.3.3 Let `, h ∈ `2(Z) fulfill property (PR). Given f ∈ `2(Z2), let dj,i ,(j ∈ N, i =
1, 2, 3) denote the coefficients obtained by the cascade algorithm.
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(a) The 2D discrete wavelet transform

W 2
d : f 7→ (

dj,i
)
j∈N,i=1,2,3

is a unitary map `2(Z2) → `2(N× {1, 2, 3} × Z).

(b) Let ψj , ϕj ∈ `2(Z) be the discrete-time wavelets and scaling functions computed in The-
orem 4.2.7. Defining Ψj,1 = ϕj ⊗ ψj, Ψj,2 = ψj ⊗ ϕj and Ψj,3 = ψj ⊗ ψj. Then

dj,i(k) = 〈f, T2−jkΨj,i〉 .

Hence once again we obtain building blocks indexed by scale and position parameters,
and a third parameter which can be interpreted as orientation.
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DB5, Level 4, Vertical Wavelet
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DB5, Level 4, Diagonal Wavelet
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Figure 4.3: 2D scaling functions and wavelets at level 4, for the fifth Daubechies wavelet.
From top left to bottom right: Scaling function, horizontal wavelet, vertical wavelet, diagonal
wavelet

Remark 4.3.4 If `, h ∈ `2(Z) are associated to an MRA of L2(R) with scaling function
ϕ ∈ L2(R) and wavelet ψ ∈ L2(R), we can define a sequence of subspaces of L2(R2) by letting

• V0 = span{Tk(ϕ⊗ ϕ) : k ∈ Z2}
• Vj = D2−jV0

It can be shown that these subspaces have all properties of an MRA (with Z2 replacing Z).
Also, the one-step fast wavelet transform can be associated to a change of ONB’s in V0, in
just the same way that we derived the 1D FWT from an MRA of L2(R) in the beginning of
section 4.2. 2
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4.4 Signal processing with wavelets

In this section we sketch two standard applications of wavelets in signal processing, namely
denoising and compression. For simplicity we restrict attention to the 1D case, though the
discussion will show that the extension to 2D (e.g., images) is straightforward. Note that the
descriptions given here are very sketchy, and not state of the art. For more details we refer
to [6].

Roughly speaking, the use of wavelets for the two applications rests on two properties

• Existence of an inverse transform (orthogonality)

• ”Meaningful” signals have only few big coefficients

The first property suggests a ”transform domain processing” strategy: First compute the
wavelet coefficients, do something clever to them, compute the inverse transform of the result.
(Here the speed of transform and inverse transform algorithms is helpful, too.) The second
property provides a heuristic for the (decisive) coefficient modification step. We will see below
how the assumption can be exploited. Finally, orthogonality allows to control the `2 norm of
the result.

Denoising deals with removal of (usually stochastic) noise from signals. Hence the follow-
ing remark uses a number of very basic stochastic notions.

4.4.1 Denoising The denoising problem is described as follows: We are given a finite
sequence x. x is called ”observed signal”; we assume it to be of the form x = y + n. Here
y is a (deterministic, unknown) signal, the ”true signal”, and n is a ”noise term”, i.e., the
realisation of L(x) random variables. We assume that the n(k) are independent, normally
distributed with mean value zero and (common) variance σ2. We do not assume that we
know σ2. Now the denoising problem may be formulated as: Given x, estimate y. In order
to formalise this, we call any x → Φ(x), where Φ(x) is a sequence with the same support as
x, an estimator. We are looking for Φ which fulfills the optimality criterion

Minimise the mean square error E(‖y − Φ(x)‖2)

As we already outlined above, we work in wavelet domain. More precisely, the proposed
denoising algorithm consists of three steps:

1. Wavelet decomposition: x 7→ (cj , dj , . . . , d1).

2. d̂i(k) := ϑi(k)di(k), for suitable factors ϑi(k)

3. (cj , d̂j , . . . , d̂1) 7→ x̂ =: Φ(x)

It turns out that it is possible to compute the optimal ϑi(k). (Note that this does not yield
the minimal means square error estimator; only among those that fit into the above scheme.)
In the following let ϕj,k = T2jkϕj and define ψj,k analogously. Then we have

di(k) = 〈y, ψj,k〉+ 〈n, ψj,k〉 ,

and thus we can compute

y − Φ(x) = −
∑

k∈Z
〈n, ϕj,k〉ϕj,k +

∑

i,k

(1− ϑi(k))〈y, ψi,k〉ψi,k −
∑

i,k

θi(k)〈n, ψi,k〉ψi,k .
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Hence, using linearity of the expected value and the unitarity of the wavelet transform we
can compute

E(‖y − Φ(x)‖2) =
∑

k∈Z
E(|〈n, ϕj,k〉|2) +

∑

k∈Z,i=1,...,j

E
(∣∣(1− ϑi(k))〈y, ψi,k〉 − ϑi(k)〈n, ψi,k

∣∣2
)

.

This implies that we can optimise the ϑi(k) separately. In order to further simplify the term to
be minimised, we make the following basic observations, which are due to vanishing moments
of the wavelets and linearity of expected values:

(a) E(〈n, ψi,k〉) = 0 by linearity of the expected value, and since ψi has at least one vanishing
moment.

(b) For arbitrary random variables y and constants z ∈ C, E(|z + y|2) = |z|2 + 2RezE(y) +
E(|y|2).

(c) E(|〈n, ψi,k〉|2) = σ2.

Applying part (b) to

z = (1− ϑi(k))〈y, ψi,k〉 , y = ϑi(k)〈n, ψi,k〉

we obtain that

E
(∣∣(1− ϑi(k))〈y, ψi,k〉 − ϑi(k)〈n, ψi,k

∣∣2
)

=

= |(1− ϑi(k))〈y, ψi,k〉|2 + |ϑi(k)|2E(|〈n, ψi,k〉|2)
= |(1− ϑi(k))|2|〈y, ψi,k〉|2 + |ϑi(k)|2σ2 .

Recall that we need to minimise this as a function of ϑi(k). But now this is just basic calculus
(computing zeroes of the derivative) that yields the optimal value

ϑi(k) =
|〈y, ψi,k〉|2

|〈y, ψi,k〉|2 + σ2
.

Hence we have derived that the optimal weights are between 0 and 1. Note however that we
have expressed ϑi(k) in terms of two unknown quantities, σ2 and y.

For the estimation of σ2 we use an assumption on y: 〈y, ψi,k〉 = 0 for most k. (This
holds for instance if y is piecewise polynomial and ψ1 has a sufficient number of vanishing
moments.) Then

|〈x, ψi,k〉| = |〈n, ψi,k〉| ,

for most k. We know that the random variables 〈n, ψi,k〉 are mean zero, independent and
normally distributed with variance σ2. An estimator taken from the literature is

σ̂ =
Med(|〈x, ψi,k〉|)

0.6745
.

Here Med(x1, . . . , xn) is the median defined as y ∈ R such that y ≥ xi for n/2 indices and
y ≤ xi for n/2 indices. (Simply sort the xi in ascending order and take for y the middle
element.) The choice of the median is motivated by the following: It is more robust with
regard to outliers, which in our setting would correspond to those k for which 〈y, ψ1,k〉 6= 0.
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For the computation of the ϑi(k) we would still have to know the scalar products 〈y, ψi,k〉.
We replace this optimal choice by a simple thresholding scheme, namely fix a threshold

T = σ
√

2 ln N

and let

ϑi(k) =
{

1 |〈x, ψ1,k| ≥ T
0 otherwise

This thresholding scheme was proposed by Donoho and Johnston, who proved error estimates
and showed that asymptotically the algorithm yields optimal results.

We have thus obtained the following wavelet thresholding algorithm:

1. Compute the wavelet coefficients, x 7→ (cj , dj , dj−1, . . . , d1).

2. Compute the threshold

Ti =
Med(|di(k)| : k ∈ Z)

√
2lnN

0.6745
.

3. Define

d̂i(k) =
{

di(k) if di(k) > Ti

0 otherwise

4. Compute wavelet inversion: (cj , d̂j , . . . , d̂1) 7→ Φ(x).

2

4.4.2 Compression Lossy compression is a procedure which replaces an original signal
(byte sequence, grey level image, etc.) by an approximation which is simpler to store (i.e.,
needs less bits).

The naive approach to wavelet based compression is this: For any ”decent” (e.g., piecewise
polynomial) signal x and most wavelets ψj,k we have 〈x, ψj,k〉 ≈ 0. Hence a simple compression
scheme would consist of the following steps:

• Pick a compression rate r > 1

• Store only the N/r biggest wavelet coefficients (N = signal length)

• The signal reconstructed from these coefficients yields an approximation of x which has
the smallest `2 error among all approximations with N/r terms.

While this proposal captures one idea behind wavelet based compression, it is unrealistic since
it ignores the fact that real numbers can only be stored approximately, and that the right
choice of assigning bits to this task is essential to compression.

In addition, it is not enough to store the values of the coefficients but also their posi-
tion/index. Note that for an image of size 256 × 256, the indexing takes 16 bits, whereas
single pixel values are often only coded in 8 bits. This shows that indexing may not be
neglected.

A more elegant solution, which is based on coding theoretic notions, is the following lossy
compression scheme, which we will explain in the following.
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1. Compute the wavelet coefficients, x 7→ (cj , dj , dj−1, . . . , d1).

2. (cj , dj , . . . , d1) 7→ (c̃j , d̃j , . . . , d̃1), where the c̃j and d̃i are quantised (rounded) values;
typically

d̃j(k) =
mj(k)

∆j
≈ dj(k)

for some integer numbers mj(k), and stepsizes ∆j .

3. Code the values ∆j and the integers used to approximate di and cj (e.g., by a Huffman
code), store the result.

The compression rate is controlled by the stepsizes ∆j ; the larger ∆j , the smaller the number
of symbols used to approximate wavelet and scaling coefficients. Computing the image (or
rather: its compressed approximation x̃) from the stored data is a simple two-step procedure:

1. Read and decode the approximated coefficients (c̃j , d̃j , . . . , d̃1)

2. Compute the inverse wavelet transform (c̃j , d̃j , . . . , d̃1) 7→ x̃

To understand how this scheme compresses data, we need a few notions from coding theory,
which will now be explained (rather sketchily). Suppose that we are given an ”alphabet” A,
which is a finite set, and a ”word” W = a1 . . . aN ∈ AN . A mapping Φ : a 7→ Φ(b), assigning
to each element of the alphabet a sequence of bits (possibly of varying length), is called
”coding”. (We ignore questions of uniqueness, prefix-codes etc. for reasons of simplicity.) We
are looking for a coding for which the bit-sequence W̃ = Φ(b1)Φ(b2) . . .Φ(bN ) has minimal
length.

There exist theoretical bounds for the length of W̃ . For a ∈ A let

p(a) =
]{i : ai = a}

N

denote its relative frequency in the word W . We define the entropy of W as

H(W ) = −
∑

a∈A
p(a) log2(p(a))

using the convention 0 log2 0 = 1. Then there is the following
Theorem: (Shannon) The optimal coding yields a length W̃ ≈ N (H(W ) + const), for a
(small) constant const.

The key idea behind the theorem is this: The number of bits used to store elements of
the alphabet should depend on the relative frequency. Those that occur very often should
use less bits. If all symbols occur with the same frequency, nothing can be gained. Note
that the maximiser of the entropy functional is given by the uniform distribution, i.e., it is
attained whenever all elements of the alphabet occur with equal frequency, with associated
entropy log2(|A|). Note also that the ”indifferent” coding, i.e., every symbol gets the same
number of bits, results in a length of N log2 |A|, and thus the quotient log2(|A|)/H(W ) can
be interpreted as a compression rate.

Now we have the means to quantify the tradeoff governing wavelet compression: Com-
puting and quantising the coefficients results in a loss of information, which can be measured
by the `2-error incurred by quantising (note that here the ONB property of wavelets enters).
On the other hand, the transform step results in a decrease of entropy, which by Shannon’s
theorem can be directly translated into a compression rate. 2
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Remark 4.4.3 Compression by coding wavelet coefficients has become one of the chief appli-
cations of wavelets in image processing. In particular, the image coding standard JPEG2000
uses wavelets. However, the coders do not refer to the information-theoretic setup described
in the last remark, but rather use wavelet-specific structures, exploiting the fact that large
coefficients tend to be organised along certain trees in the index set of the wavelet coefficients.
Thus the problem of storing the coefficient indices can be solved effectively. 2
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