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1. Introduction

In search of elementary particles and their fundamental interactions, recently a major

discovery has been made. Physicists at the “Organisation européenne pour la recherche

nucléaire” (CERN) discovered a new particle, which possibly is identical to the Higgs

boson, which was predicted in 1964 [1]. It is the last missing particle of the Standard

Model, which was developed during the last century.

The Standard Model describes fundamental particles, of which all matter consists. They

can be divided into two groups, depending on their spin: fermions (half-integer spin)

and bosons (integer spin). The fermions are matter particles, the bosons are interaction

particles, which exchange three forces between particles: the electromagnetic, weak and

strong interaction. Only gravity can not be included in this model. The Higgs mechanism

explains a particle’s mass by its interaction with the Higgs field.

One of the most important tasks of the “Large Hadron Collider” (LHC) at CERN is to

measure the Higgs boson’s properties. For this purpose, at LHC protons are accelerated

in bunches up to energies of 4 TeV these days. The particles move with almost the speed

of light along a circular beam pipe until they are forced to collide at certain spots, which

is surrounded by detectors. The collision of two bunches is called “event”.

At the LHC there are four different experiments. They are designed to reconstruct events

by detecting the generated particles and their decay products. The detectors are optimized

for different measurements. One of them, the “A Toroidal LHC Apparatus” (ATLAS),

is designed to discover new physics particles. On that account it is amongst other tasks

supposed to provide “efficient tracking at high luminosity” [2]. For this purpose, the Pixel

Detector, which is a part of the ATLAS experiment, plays an essential role. Its setup and

constituents will be explained in chapter 2. Due to the current upgrade of the Pixel De-

tector the corresponding setup changes will be a part of this chapter, too.

For upgrades of the Pixel Detector a lot of research on different pixel designs is done. One

of the main aims is to improve radiation hardness. Another very recent issue is modifying

the pixel shape, as there can be advantages in non standard design pixels. Before new

modules are installed in the detector, they need to be tested. The characterization of

the sensor is performed with a testbeam measurement, whose setup will be illustrated in
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1. Introduction

chapter 3.

When the data is taken at the testbeam, it needs to be evaluated. This task is performed

by a program called “tbmon”, which provides dedicated analyses such as efficiency com-

putation. As data processing requires exact knowledge of the module design, the pixel

shape and arrangement must be well known to tbmon. Tbmon was programmed to only

handle rectangular pixels. Since other pixel shapes are investigated in addition to that, a

further development of the framework needs to be performed in order to support arbitrary

pixel geometries. This is the main task of this bachelor thesis.

In chapter 4 the structure and functionality of tbmon will be explained. The main issues,

when dealing with arbitrary pixel geometries, and their implementation will be illustrated

in chapter 5. The results that were achieved will be presented in chapter 6. As an ex-

ample two sensor setups are defined there, whose tbmon output demonstrates that the

implementation operates as required. In order to analyze testbeam data, some tbmon

methods need to be adjusted. In chapter 7 potential solutions for analyses techniques,

that need to be reworked, are proposed.
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2. The ATLAS Pixel Detector

2.1. ATLAS

Figure 2.1.: Sketch of the ATLAS detector.

Due to the LHC design, the experiments need to fulfill special requirements. In order

to achieve a high statistical significance of the measured quantities there are collisions of

proton bunches with a frequency of 40 MHz. Thus all detector readout and data storage

has to be managed in a 25 ns timing. Another issue is the high particle flux, which origi-

nates from the large number of interactions inside the detector. All used materials need

to be radiation hard, particularly the electronics and sensors.

As depicted in figure 2.1, the ATLAS experiment [2] is a cylindrical setup of different de-

tectors. Essentially there are the Inner Detector, the calorimeter and the muon chambers

(from the inside to the outside). Most of them consist of disks arranged orthogonally to

the beamline and barrel layers arranged parallel to the beamline (Z direction in the global

ATLAS coordinate system). With this arrangement, the coverage of the full azimuthal
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2. The ATLAS Pixel Detector

(Rφ) and a great part of the polar angle (measured by pseudorapidity η1) is provided.

For reconstruction of an event and for further analyses, energy and momentum mea-

surements are basic requirements. The calorimeter is designed to investigate an initial

particle’s energy by absorbing it. Especially for higher energies, as they occur at the

LHC, the relative uncertainties of this measurement decrease with increasing energy. To

investigate a charged particle’s momentum, its quantity of deflection in a magnetic field

is measured. On that account two magnets are located in the experiment: A solenoid

magnet generates a field of 2 T, which is parallel to the beamline, inside the Inner Detec-

tor. The muon chambers are provided with a magnetic field by toroidal magnets.

For high precision tracking measurements the Inner Detector has been constructed. It

consists of three different detector types. The outermost part is the Transition Radia-

tion Tracker [3]. Its modules are filled with a Xe mixture, which is ionized by a passing

particle. The released charges are detected and provide information about the particle

trajectory. Every module is covered with a radiator foil, which emits photons, when a

particle passes. These photons ionize the gas and cause an additional electric signal, that

makes it possible to identify some light particles. The second detector type is a semicon-

ductor tracker [4]. It is made out of silicon and its p type doped electrodes have a strip

shape. The detector part closest to the beamline is the Pixel Detector, which is silicon

based as well. In contrast to the semiconductor tracker it is made of pixels instead of

microstrips. It is explained in more detail in the following section.

2.2. Current Pixel Detector

The Pixel Detector’s [5] goal is to measure a particle track with excellent precision. As

there are many simultaneous events at the LHC, the detector has to deal with a high

number of particles. Particularly in the inner layers the particle flux per surface is very

high. Thus the damage is expected to be up to 1015 neq
cm2 [6], where a neutron equivalent

neq corresponds to the damage, that one neutron with kinetic energy of 1 MeV causes.

Hence the consequences of irradiation had to be studied especially for the sensor.

Another issue is the material budget. As energy measurements are performed in the

calorimeter, passing particles may only be minimally decelerated. The quantity X0 in-

dicates the amount of material, that causes a particle to decrease its energy to 1
e

of the

initial energy. For a barrel it is approximately 3.5% X0 at η = 0 not including support

structures [3].

The setup [3, 5] of the Pixel Detector is shown in figure 2.2. Since it is supposed to

1Pseudorapidity is defined as η = − ln
(
tan θ

2

)
with θ being the polar angle.
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2.2. Current Pixel Detector

Figure 2.2.: Sketch of the ATLAS Pixel Detector.

measure three track points, it consists of three barrel layers, which cover the area of low

pseudorapidity |η| . 1.9, the three disks enlarge the sphere to |η| < 2.5. As the single

sensor modules are overlapping a little, every particle usually generates one signal hit per

layer corresponding to three hits in total.

2.2.1. Planar Pixel Sensor

The sensor’s functional principle takes advantage of a passing particle ionizing many

silicon atoms. As a result for a minimum ionizing particle there are in the order of 20, 000

free electrons [3] expected in a non irradiated sensor, which drift to the readout electronics

and cause a signal there.

The sensor consists of a 250 µm thick, slightly n-doped silicon wafer. The back side is p+

doped, while on the front side of the sensor n+ doped implants are located. In the n-bulk a

depletion zone develops due to an equilibrium of the internal electric field and free charge

carrier diffusion. When a passing particle creates free electrons, these electrons follow the

electric field to one of the nearest n+ implants. Every one of these n+ implants represents

a single pixel, since it detects a charge signal depending on its shape.

The irradiation of a sensor causes two kinds of damage. Ionizing effects mainly affect

the sensor surface and electronics, non ionizing effects like collisions of heavy particles

with the silicon lattice leave point and sometimes even cluster defects. Although the

material composition does not change during this process, the lattice defects make the

n-bulk behave like a p bulk. This process is called “type inversion”, whose result is shown

in figure 2.3. Only charge carriers that are released in the depletion zone are detected. In
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2. The ATLAS Pixel Detector

Figure 2.3.: Schematic view of type inversion in a silicon sensor. Left is before, right
is after type inversion. After type inversion the pixels are surrounded by a
depletion zone even without bias voltage.
Figure extracted and modified from [7].

order to enlarge the sensitive area, a reverse bias voltage is applied between the n+ and

p+ implants. The more defects are induced, the higher bias voltage is needed to deplete

all the sensor area.

The n+ pixel implants are rectangular and they usually have a dimension of 400 µm ×
50 µm. Each of these pixels is individually connected to an electronic readout circuit with

a “bump bond”. The circuit is part of a Front End (FE) chip.

2.2.2. Front End Chip

The FE chip [3] is a sophisticated readout chip, which receives an input current of the

sensor and amplifies. Afterwards it digitizes the signal by measuring the time, during

which the current is larger than an adjustable threshold. The resulting time over threshold

(ToT) is buffered digitally and saved in units of 25 ns length. Afterwards the FE chip

provides data storage until a trigger signal causes it to forward the data. The FE-I3,

which is used in the Pixel Detector, has 18 columns and 160 rows. Due to its bump bond

location, it is deliberately designed for a pixel size of 400 µm× 50 µm. Thus with every

change in pixel geometry or pitch, the FE chip may need to be adjusted.

2.3. ATLAS Upgrade: Insertable b-Layer

Huge experiments at the LHC need upgrades [8] every now and then. For the detectors,

the focus lies on repairing and replacing some parts, as they suffer from irradiation.

During the next years the LHC wants to evolve into the High-Luminosity LHC. Thus in

long terms the experiments need to adapt to these conditions. For example at ATLAS

the entire Inner Detector is planned to be replaced in about ten years. At present already

much research effort is in progress for the High-Luminosity LHC.
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2.3. ATLAS Upgrade: Insertable b-Layer

Currently (mid 2013) the LHC is shut down for a period of about two years. During this

time parts of the infrastructure will be tested and reworked, so that in the beginning of

2015 the center of mass energy can be increased to 14 TeV. The experiments are being

modified as well. In ATLAS a main change of the setup is the installation of the Insertable

b-Layer (IBL) [8, 9]. This 4th pixel layer will be inserted between the beam pipe and

the current inner pixel layer in order to improve the tracking resolution and to partially

compensate radiation damage.

In search for new physics some models depend in large part on events including b-quarks.

Therefore b-tagging is a powerful tool. Its uncertainties can be decreased by installing

the inner layer as closely to the interaction point as possible. The beam pipe will be

shrunk by approximately 4 mm to an outer radius of 24.4 mm, so that IBL is placed at an

average radius of 34 mm. As a consequence, this layer will suffer from higher irradiation

and process a higher data rate than the current b-layer.

In contrast to the current Pixel Detector, IBL does not comprise a disk layer. It includes

several new technologies, which have been developed and tested during the last years.

These technologies enable to reduce the material budget, so that IBL has only an expected

radiation length of 1.5% X0. Much effort has been expended to improve the sensor

modules. At an advanced stage of the IBL project, after an extensive testing phase, two

possible sensor technologies remained: Planar sensors and 3D sensors, which are both

silicon based. Finally both sensor types are installed at IBL, 75% of planar sensors and

25% of 3D sensors at high |η|, where they are expected to provide a higher efficiency. In

the following chapters the 3D sensors and the modifications of planar sensors with respect

to the current Pixel Detector will be described.

2.3.1. Planar Pixel Sensor

In the current ATLAS experiment 250 µm thick n-in-n sensors are installed. IBL studies

[10] have investigated many aspects, for example radiation hardness was examined for an

n-in-p pixel design in comparison to the established n-in-n design. A major benefit of the

p-bulk material is a simplified sensor production, as the devices only need to be processed

on one side. In addition, type inversion does not occur after high irradiation. However,

another design was favoured, although n-in-p sensors with a thickness of 150 µm were

developed for IBL. Due to lower manufacturing costs, this technique might still be used

for further upgrade plans.

On the back side of planar sensors guard rings are placed near the edges. They achieve the

required potential drop between the p+ doped back and the sensor edges. As this region is

a non active part of the sensor, some research concentrated on reducing the inactive area
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2. The ATLAS Pixel Detector

Figure 2.4.: The upper sketch depicts the arrangement of guard rings and edge pixels
in the current Pixel Detector. In the slim edge design the inactive region
was significantly decreased. The guard rings are located at the sensor back,
the pixels at the front.

at the pixel edge by overlapping elongated pixels and guard rings. With respect to the

current sensor design both the arrangement and amount of guard rings were investigated.

Finally, this slim edge design with an inactive region of approximately 200 µm was chosen

for IBL. The number of guard rings is reduced to 13 and they are located underneath

elongated pixels. A comparison of the current sensor edge region and the more advanced

design is shown in figure 2.4. The slim edge design is n-in-n based and the sensor has a

thickness of 200 µm.

In general the pixel pitches are 250 µm×50 µm and on the edges the pixels are enlarged

to 500 µm× 50 µm. While in the current detector one sensor is covered by 16 FE chips,

in IBL two FE chips cover one planar sensor. They are called double chip module. As

between both FE chips a gap occurs, in this region two columns with a larger pixel pitch

(450 µm× 50 µm) are located [11].

2.3.2. 3D Sensor

3D sensors [12, 13] have the same functional principle as planar sensors. The main dif-

ference compared to planar sensors is that the electrodes are located vertically inside the

wafer rather than horizontally on the surface. They are etched into the bulk and doped by

diffusion, which results in a setup that is depicted in figure 2.5. The column on the front

side is n+ doped and connected to a FE chip via bump bonds. The back side columns

are p+ doped.

This setup allows to decrease the distance of two electrodes independently from the bulk

thickness. This thickness influences the number of released electron-hole pairs before ir-
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2.3. ATLAS Upgrade: Insertable b-Layer

Figure 2.5.: The pixel electrodes are inside the silicon bulk. A crucial advantage is the
lowered distance of two electrodes [13].

radiation. Reducing the electrode pitch implicates various advantages, as a lower bias

voltage. Even after high irradiation 3D sensors full depletion can be accomplished with

less than 200 V. Furthermore the charge collection time decreases, as the electrons have

a shorter way to travel. In addition, this causes that the charge trapping probability is

reduced. In this way the signal over noise ratio does not decrease after irradiation to the

same extent.

2.3.3. Front End Chip

The higher particle flux and the changes in pixel dimension made IBL also require a

different FE chip, which is the reason for a new FE chip generation development. The

utilized FE-I4 [13, 15] is geared to pixel sizes of 250 µm × 50 µm. With respect to

the previous chip, the number of cells increased to 26,880 (80 columns × 336 rows).

Consequently the FE-I4 covers an approximately 5 times larger area.

As IBL is supposed to be assembled closer to the beamline than the current innermost

detector layer, the FE-I4 has to deal with higher irradiation. It is particularly designed to

withstand a neutron equivalent of 5 · 1015 neq
cm2 , which has been a major challenge. Another

consequence of the lower radius is a higher hit rate. Hence the data is not read out column

by column and saved centrally any more, but is stored in a “4-pixel digital region” instead.

This region covers four pixels, saves their ToT information and forwards it, when a trigger

signal arrives, or rejects them instead. This way more memory space is provided and in

addition the four pixels are already able to interact with each other. When one of them

detects a large hit, every pixel stores the ToT and all the data in the 4-pixel digital region

are matched to the event. By arranging four pixels in a joint region the data rate is
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2. The ATLAS Pixel Detector

lowered, as the data is not pushed to the periphery any more, when no trigger arrives.

The FE-I4 design necessarily specifies the pixel pitch. Of course, both the planar sensors

and the 3D sensors have been developed to be compatible with the FE chip: 3D sensors

have the same size as a FE-I4 (single chip module), while one planar sensor fits two FE

chips (double chip module).

10



3. Testbeam

In chapter 2 various requirements for Pixel Detector modules are described. When a

new prototype is manufactured, its properties need to be investigated with high diligence.

In particular the performance after irradiation is studied by comparing sensors, that

were irradiated before, to different levels. At a testbeam, the Device Under Test (DUT)

is examined using a particle beam, usually high energy pions (120 GeV) at CERN or

electrons respectively positrons (1-6 GeV) at DESY1 are utilized. Their track is measured

using reference detector planes (telescope). The EUDET2 testbeam setup used for the

characterization and a short overview of the track reconstruction tools are presented in

this chapter.

3.1. Nomenclature

Some terms used in the context of EUTelescope and tbmon are defined here.

Run A series of events with the same assembly.

Event All data taken during one trigger.

Hit A signal in a pixel during an event.

Track The expected position of a particle hit on the DUT.

Cluster A group of neighbouring hits, which may be caused by the same particle.

Match A track is called “matched”, if it can be identified with a cluster. This cluster

is named “matched” as well.

3.2. Setup and EUDET

The EUDET telescope [17] was developed to improve detector research. It is a series of

six in succession aligned, equal detector planes, whereas the DUTs are assembled between

the first three and the second three layers, as shown in figure 3.1. Thus a particle in the

1Deutsches Elektronen-Synchrotron
2DETector-project supported by the European Union
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3. Testbeam

Figure 3.1.: Sketch of a testbeam setup using the EUDET telescope [16]. It is also
possible to test a couple of DUTs at once.

testbeam first passes three telescope planes, afterwards the DUTs and finally three more

telescope planes. An event is triggered by scintillators located upstream and downstream

of the telescope.

The telescope planes consist of silicon based Mimosa26 [16] sensors covering an area of

21.2 mm × 10.6 mm. They differ from the ATLAS Pixel Detector sensors in various

issues, as they are designed to work in a different environment as LHC experiments do.

Their readout time of ∼ 100 µs is very long compared to 25 ns, but with a pixel pitch of

18.4 µm they have a significantly higher resolution. In addition, their thickness can be

slimmed down to 50 µm, which suppresses multiple scattering and improves DUT char-

acterizations. Furthermore the Mimosa sensors only have a binary output, which requires

different analyses.

3.3. Track Reconstruction

After data has been taken the offline analysis tool “EUTelescope” [18] combines the pieces

of information.

• At first single pixels, which recorded an occupancy of more than 0.1% (default value,

which can be changed), are masked, as they are assumed to be noisy.

• Afterwards the hits in neighbouring pixels are arranged in groups, as they are prob-

ably caused by the same particle. To separate hits, who originate from two close-by

particles, a “digital fixed frame algorithm” is applied. In a group it looks for the

“seed pixel” and merges all hit pixels, which are inside a fixed frame around the

12



3.3. Track Reconstruction

seed, into the cluster. The seed pixel is defined to be the pixel with the most non

diagonal neighbours. If this condition is ambiguous, the diagonal neighbours are

considered. The same algorithm is applied for all not yet clustered pixels of the

group.

• The telescope planes’ alignment needs to be known with more precision than the

pixel resolution. It is determined at the same time as the tracks through the layers

are built using a χ2 minimizing algorithm individually in x and y direction. There-

fore a straight line is fitted through all combinations of hits in different planes. Cuts

concerning residuals reject most of the background, before a least squares fit adjusts

both track and alignment constants. There are three constants per plane taken into

account: shifts in x and y being orthogonal to the beam axis and rotation around

the beam axis.

• In a final step every tracks’ intersection point with the DUT is extrapolated. Due

to multiple scattering the uncertainties depend on the beam energy. They are in

the order of 2 µm.

The analysis framework EUTelescope produces several data files, one of them is a root

file named “tbtrack” with a run number appended. It is deliberately created for further

processing in tbmon and contains all raw data of the DUTs as well as the reconstructed

hit position based on the telescope data.
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4. tbmon

Tbmon is a powerful C++ based offline framework for processing testbeam data, which

have already been preprocessed with EUTelescope. It is supposed to provide automa-

tized analyses by producing sensor specific pixel maps and plots, which show physical

properties. These results are used for examining new sensor techniques, as they indicate

the relevance of new developments. When comparing different sensor designs, the tbmon

analyses are crucial, as they apply the same standard and make results comparable. This

for example happened, when pros and cons were balanced concerning planar and 3D sen-

sors for the IBL upgrade. The tbmon outcome is also appreciable for final characterization

and performance measurements, if sensors are installed in the ATLAS detector.

In order to produce comparable results when characterizing sensor prototypes, the ATLAS

pixel groups decided to use tbmon as their standard analysis tool. As the requirements

change over time, tbmon often needs to be upgraded. Currently in sensor development

some designs are changed concerning pixel geometry. Thus a major issue is the implemen-

tation of non rectangular pixels and their configuration. As furthermore the development

of other pixel geometries is in progress, there is the necessity to implement arbitrary pixel

geometries. Also the pixel arrangement is crucial. The double chip modules for instance

can only partially be recognized by tbmon. As they are installed at IBL, their complete

characterization is very important. Thus tbmon needs to be adapted in order to evaluate

all existing data.

The implementation of arbitrary pixel geometries and pixel arrangement are the main

tasks, which were performed during this thesis. The progress and results on this subject

will be explained in chapter 5.

As tbmon provides a powerful analysis framework and is expandable, also other groups

are interested in utilizing it, especially when arbitrary pixel geometries are available. As

tbmon is quite adjustable as well, many preferences and analysis settings can be changed.

Unfortunately these settings are not made centrally, but they are spread over the source

code. Not only for other groups, but also for the ATLAS pixel community an easier han-

dling of preferences is desirable. For that purpose lately many settings were outsourced

in config files, which are explained in chapter 4.2. The arrangement and contents of the
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4. tbmon

config files was developed during this bachelor thesis, too.

In the following section the underlying structure of tbmon will be explained. It was only

changed marginally and basically remained the same.

4.1. Structure

Tbmon is split into two parts: First some eventbuilders prepare the data. As the DUTs’

raw data is used as input, some preprocessing steps have to be performed. Afterwards

tbmon continues by applying different analyses, which produce the main output. The

most important eventbuilders and analyses will be illuminated in this chapter, after a

basic overview of the data handling in tbmon is given.

The inner structure of eventbuilders and analyses are briefly explained in appendix A.

There is also an overview of the method calls.

4.1.1. Data Handling

In tbmon the testbeam data are stored in an object of the class “Event”. The most im-

portant objects of each event are listed below:

• Track: Some properties of the track, that come from EUTelescope, e. g. χ2.

• TrackX, TrackY: Position of the track in µm in the DUT coordinate system.

• Hits: Vector of all the single hit properties in the DUT, e. g. row, column, ToT.

• Clusters: Vector of all the clusters, each containing an arbitrary amount of hits.

• Many flags (values are called “kGood”, “kBad”, “kUnknown”) summarizing the

important properties of the event. They often indicate a cut on a track property.

– fTrack: Indicates whether the track passed all cuts, e.g. a minimum number

of reference DUTs, who matched the same track are required.

– fTrackCentralRegion: Indicates whether the track does (kBad) or does not

(kGood) match an edge pixel.

– fTrackMaskedRegion: Indicates whether the track matches a masked pixel.

– fTrackRegion: It has the value kBad, if either fTrackCentralRegion and fTrack-

MaskedRegion are kBad or the track may be identified with a cluster containing

a masked pixel.
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4.1. Structure

4.1.2. Preprocessing

Before the DUTs can be analyzed, during the preprocessing some jobs need to be per-

formed. They are listed in the order they are performed in:

Maskreader

Before a DUT is exposed to the testbeam, potentially the related sensor was already

examined in a laboratory. For example measuring the signal of irradiation with an

undirected β− emitter often shows dead pixels. In order to mask them for data taking

an external mask file can be applied to tbmon in Maskreader.

Hotpixelfinder

In this eventbuilder, unmasked noisy and dead pixels are supposed to be found based

on the testbeam data. Since it can be useful to distinguish between different reasons

for masking, tbmon stores them in the integer variable type. It is saved in a binary

way, as one pixel can be masked for several reasons. In this case different types can be

added without information loss. The allocation of reason to number is shown here.

type Reason for masking

0 No mask

1 Noisy

2 Neighbouring pixel is noisy

4 Dead

8 Whole column or row is masked in DUT config

16 Masked by Maskreader

For every DUT all the hits are inserted into a hit map, which counts the number of

hits for each pixel during one run. If a pixel has registered no hit, it is masked as dead.

If a hit on a certain pixel is beyond the LV1 cut in more than 5 · 10−4 of all cases, it is

masked noisy. In addition, all its neighbouring pixels including the diagonal ones are

masked, as sometimes fake hits occur due to electromagnetic induction.

Checkcentralregion

This eventbuilder sets the flags fTrackCentralRegion, fTrackMaskedRegion and fTrack-

Region. The latter one might be modified in Clustermasker.

Clusterfinder

The Clusterfinder combines all individual hits into clusters. Its functionality is dif-

ferent from the clustering algorithm in EUTelescope, since it merges all neighbouring

(including diagonal) hit pixels into a cluster. The pixels’ mask is ignored at this point.
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4. tbmon

Clustermasker

After hit pixels have been grouped in clusters, these are checked for masked pixels. If

a cluster contains a masked pixel, it is rejected. If furthermore the track is expected

to be inside the cluster, the event flag fTrackRegion is set to kBad.

Eubuildtrack

If more than one DUT is examined in the testbeam setup, the DUTs can be aligned with

respect to each other. From a track on the considered DUT a cone is applied towards

the other DUTs. If their track is not located inside the circular base of the cone, the

events are rejected. At this stage a more strict cut is applied than in EUTelescope due

to the higher precision in Checkalign.

Checkalign

When the alignment is performed in EUTelescope, shifts of up to 5 mm occur. When

running Checkalign in tbmon only the DUTs are analyzed and adjusted. More precise

results are achieved at this stage, due to different clustering and alignment algorithms,

a more strict Hotpixelfinder and run by run analyses. Checkalign observes one hit

cluster residuals in x and y direction as a function of both x and y for every DUT. By

fitting a polynomial of degree one to the trend of this curves the DUTs’ rotation and

shift can be calculated.

Translator

Translator reads the shifts, that were calculated by Checkalign, and applies them to

every events’ track position by simply adding them. Additionally the user can add

manual shifts.

Getetacorr

The eventbuilder’s name is an abbreviation for “get η-correction”. This calculation

is performed for improving the reconstruction of a hit position out of the cluster in-

formation. Although the former η-correction generally does not yield best results for

arbitrary pixel geometries, it is still implemented. A brief description and an idea for

another technique is presented in chapter 7.1.

4.1.3. Analyses

Like in the previous section here different tbmon analyses are briefly explained. They do

not have to be processed in a certain order.

Beamprofile

This analysis produces various histograms concerning the profile of the beam based on

the telescope’s data.

Clusterchecker
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4.1. Structure

Here some cluster properties are investigated and saved in terms of histograms, for

example the cluster size of matched clusters.

Correlations

Correlations analyzes the correlation between hits on different DUTs by plotting track

position against hit position. As the track position equals the hit position on a reference

plane in good approximation, the resulting plot depicts the correlation. It allows an

estimation of the alignment quality.

Efficiency

Calculation of the DUT efficiency is one of the main tasks among the analyses. Con-

sidered are N events marked by the index i, each implying one track. In every event

either a hit, that matches the track, or no matching hit is observable. For every single

event efficiency ei the following equation is valid:

ei = e2i =

0 no matching hit observed

1 matching hit observed
(4.1)

The matched efficiency ematch is calculated by the average value

e =< ei >=
1

N

N∑
i=1

ei. (4.2)

The uncertainties ∆e are evaluated by calculating the standard deviation σ using equa-

tions (4.1) and (4.2):

σ2 = < e2i > − < ei >
2

=
1

N

N∑
i=0

e2i − e2

= e − e2

∆e =
σ√
N

=

√
e− e2√
N

(4.3)

Equations (4.2) and (4.3) also hold for the “any hit efficiency” eany stating how often

during one event any (not necessarily matched) hit was detected.

In tbmon only three indices need to be enumerated: The number of tracks seen by the

telescope ntracks = N , which corresponds to the number of events, the number of

hits matching a track nhits =
∑

i ematch, i and the number of events having any hit

anyhit =
∑

i eany, i are counted. Only events, which passed all cuts (flag fTrack) are
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Figure 4.1.: In-pixel efficiency plot of a neutron irradiated, planar pixel sensor with a
bias voltage of 1000 V and a pixel pitch of 250 µm × 50 µm. The dashed
rectangle illustrates one pixel, one half of the neighbouring pixel is plotted
as well. The efficiency information of the whole DUT is folded into this
plot. A decreased efficiency can be recognized at the bias electrode pixel
edge. Figure extracted and modified from [19].

taken into account.

Tbmon also prints out the track, hit and any hit distribution of the DUTs in histograms.

An inefficiency map is created as well. Its entries are calculated by 1 − #hits
#tracks

. Fur-

thermore the variation of efficiency inside a pixel is interesting. It can be resolved, as

the telescope’s precision is about 2 µm. For the same pixel geometries, all efficiency

measurements are folded into one pixel to increase the statistics. These plots are in-

structive, as they depict the pixel setup. As shown in figure 4.1, for irradiated planar

pixels, for example, clearly the bias electrode’s position is recognized, as the efficiency

decreases there.

Lvl1cut

This analysis creates two one dimensional histograms showing the Lvl1 distribution of

matched and of any hits. A Lvl1 value of 6 is expected due to the triggering. If the

histograms differ to a large extend, cuts can be applied to reject noise.

Maxcellresiduals

Here, mainly properties of the cell with the highest ToT per DUT and event are

analyzed, for example the residuals both cut and uncut. But also other values like the

ToT of the largest cluster and the χ2 are filled into histograms.

Qefficiency

Qefficiency analyzes the charge distribution, as an inhomogeneous spread indicates crit-

ical parts of the sensor, in which less charge is collected. All over the DUT histograms

and in-pixel histograms are created. In this way worrying spots can be observed inde-

pendently of the efficiency calculation.

Qshare2D

In testbeam measurements at low angles a cluster usually contains only one pixel.

Thus the region in which the charge is split up between two pixels is interesting.
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4.2. User Interface

Qshare2D analyzes this charge sharing by producing in-pixel plots, which include half

of the neighbouring pixel in x and y. They show the probability and amount of charge

sharing dependent on the position.

Sumtot

In this analysis various ToT distributions are computed and saved in terms of his-

tograms. The ToT dependency on cluster position on the DUT is plotted as well. If a

ToT calibration1 is available, also the charge is calculated.

4.2. User Interface

When merging the preferences into config files, the handling by a user needs to be con-

sidered. Particularly his arrangement and storage of data files need to be in agreement

with the config files’ construction. It is assumed that a user wants to

• have all settings saved together with the finished analysis results.

• reproduce the analysis without modifying anything.

• perform different analysis techniques on the same data set without overwriting them.

• be able to save all DUT config files together.

• be able to save all raw data from different measuring periods together.

When executing tbmon the user needs to specify an output folder, where all the created

data is supposed to be saved. If this folder does not exist yet, tbmon creates it and sets

up all required files including default config files. Afterwards it terminates, so that the

user is given the possibility to modify the config files or to replace them by own ones. If

the output folder already exists when launching tbmon, preprocessing and analyses are

executed.

In figure 4.2 the arrangement of tbmon files is shown. An output folder always includes

both the tbmon output, which is stored in the folders “preprocessing” and “plots” and

the config information. The raw data can be saved at any place, since it is referenced.

Three different config files are available, whose encoding is easy to understand, as it is

very similar to C++ code and a prototype already exists, which only needs to be modified.

The main config file contains general settings, eventbuilder settings, plot settings and

location of testbeam data. The information about the DUTs is split up: All cuts and

tbmon values are stored in the main config, the pure arrangement and shape of pixels is

1For more information see chapter 5.4
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any location

sets of raw data output folder DUT config files

config

main config analysis config

ext_mask plotspreprocessing

Figure 4.2.: Storage of files for tbmon analyses. The main advantage is that all con-
figuration is saved together with the results. In this way the analyses are
reproducible at a later time.

specified in a DUT config file, which is referenced by main config. Thus the user creates

only one DUT config file for each sensor design and afterwards refers to it in multiple

evaluations. An example for a DUT config file is given in chapter 5.3.

In analysis config all cuts, that are applied during analyses, are defined. Hence every anal-

ysis can hold an arbitrary amount of strings, which are converted into different variable

types and used during runtime.
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5. Arbitrary Pixel Geometries

When analyzing a DUT in tbmon the arrangement and shape of the pixels need to be

defined accurately. So far the DUT description has been quite simple, as depicted in

figure 5.1. Up to now it was possible to define one rectangular standard pixel as well as

one edge pixel by hard coding their pitch in x and y. By entering the number of rows and

columns the DUT was defined completely.

ed
ge

 p
ix

el
s

ed
ge

 p
ix

el
s

pixels

Figure 5.1.: Former description of DUTs: In the middle there is a large amount of
standard pixels. The extension in x and y depends on the number of
columns and rows of the FE chip. At the left and right edges there is one
column of edge pixels having a different pitch.1

A FE chip is designed for a particular pixel geometry, as the pitches of the bump bonds

need to be consistent with the pixel pitches. When other pixel geometries are investigated,

the aim is to test them with an established FE chip, since development of a new chip would

be too much effort. Although that might result in uncommon shapes, subsequently rather

the examined geometries than the FE chip are slightly changed. An “L shaped” pixel is

a good example: Originally longer and at the same time narrower rectangular pixels were

supposed to be tested. Adjusting to the FE-I4 design is the reason for designing L shaped

pixels instead, as illustrated in figure 5.2.

Besides the double chip module there is another DUT design, that has been examined in

a testbeam already, but can not be evaluated. It contains rectangular pixels, where every

1Figure not to scale.
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Figure 5.2.: Two pixel geometries in comparison. The FE chip was initially designed
for the upper one. To study narrower pitches and still contact the bump
bonds indicated by the solid black circles, an L shaped pixel is used (lower
sketch).

second row is shifted in x by half a pixel pitch. For this kind of DUT the pixel geometry

is less important, but the pixel arrangement does matter. These two examples lead to

two major issues.

1. How to define a pixel geometry in tbmon?

2. How to arrange the pixel positions?

How they were solved in tbmon is illustrated in the following sections.

5.1. Pixel Geometry

Before the first question can be answered, the kind of geometries, that are supposed to

be defined, needs to be ascertained. In the coming years, most likely only pixels based

on rectangular shapes will be designed. That makes it easier to define a pixel geometry

in tbmon, as it can be based on an arbitrary number of rectangles. Their size and

arrangement define the pixel shape. For L shaped pixels this is shown in figure 5.3.

In Tbmon all the relevant information about a DUT is handled in an identically named

class. As it is supposed to hold a list of pixel geometries, it makes sense to define another

class PixelGeometry. All necessary information concerning a pixel geometry is stored

there. As rectangles are a part of a PixelGeometry, it is again useful to write another

class called Rectangle providing all the required information. Once again an arbitrary

number of them can be memorized by PixelGeometry.

The rectangle size and arrangement needs to be defined. Thus every Rectangle comprises

the position of its lower left and upper right corner in a pixel geometry specific coordinate
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5.2. Arrangement of Pixels

Figure 5.3.: A pixel, based on rectangular shapes, is spanned by smaller, red colored
rectangles. There can be different possibilities, two of them are shown in
this figure for the L shape.

system. So, simply by composing the single rectangles, a pixel geometry is defined. A

PixelGeometry contains Rectangles, a variable indicating if the pixel geometry is used

on the edges and another one denoting mirroring properties, which will be explained in

chapter 5.3.

There is also some redundant information stored. It is calculated by extraction of other

properties and saved, as it might be accessed quite often during the program execution.

That way some time for constantly recurring computation is saved. In a Rectangle

especially its area, in a PixelGeometry its area, its geometric center (center of mass) and

its maximum expansion in x and y are stored.

5.2. Arrangement of Pixels

The previous section explains, how the pixel shape is defined. Now the single pixels need

to be arranged on the DUT. In tbmon it is necessary to adjust each pixel to one cell of the

FE chip (every combination of column and row), as they obligatorily need to be associated

with each other due to the readout. Thus an array, that has the same number of columns

and rows as the FE chip, is created. Every entry is associated with one pixel shape by a

pointer to PixelGeometry. This setup is shown in figure 5.4. In this way tbmon knows,

which FE cell is connected to which pixel shape. To define the exact position of every

pixel, the array also contains information about the lower left corner of the pixel geometry

in a DUT specific coordinate system. In summary, the DUT has an array and each of its

cells is logically connected to one pixel (by a pointer to PixelGeometry) and contains its

lower left coordinate.

The described method was implemented in tbmon, but nevertheless also another one was

considered. It would not contain an array, but would have the information stored by their

periodical properties. Every PixelGeometry would then contain the indices of the FE

cell, where it first appears. In addition, it would save the information after how many
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DUT 
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Figure 5.4.: Inner structure of a DUT. Every DUT holds a list of different pixel geometries,
which again hold a list of underlying rectangles. Besides that there is an
array with the same number of columns and rows as the FE chip. It repre-
sents the DUT area and by pointing to geometries states the arrangement
of pixels on the DUT.

columns and rows it occurs again. So a DUT filled with L pixels for instance would be

defined by: “Pixel geometry 1 first occurs in column 0 and row 0, it is repeated in every

row and in every second column. Pixel geometry 2 first occurs in column 1 and row 0, it

is repeated in every row and in every second column.”

The latter technique’s advantage is smaller memory usage, while on the other hand com-

putation time grows, when for each track coordinate tbmon needs to find out the pixel

geometry, which covers that coordinate. A simple test framework showed that for two

pixel geometries in total the array technique has a 30% to 40% faster access time. This

effect is expected to even grow for more different geometries used on one DUT. Further-

more in the array some more data could be saved, for example a pixel’s mask value and

its position on the DUT. Due to this comparison the array method was chosen.

5.3. DUT Config

The previous sections explained, how the DUT setup is determined. Since no hard coded

geometry properties are desirable, the user can define the DUT design by using the DUT

config file.
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5.3. DUT Config

1 mainDUTConfig:

2 {

3 DUTsizeX = 20000.0;

4 DUTsizeY = 16800.0;

5 DUTthickness = 200.0;

6 cols = 80;

7 rows = 336;

8 };

9 pixelConfig:

10 (

11 {

12 firstPixelRow = 0;

13 firstPixelCol = 1;

14 firstPixelX = 50.0;

15 firstPixelY = 0.0;

16 periodPixelCol = 2;

17 periodPixelRow = 1;

18 periodPixelX = 500.0;

19 periodPixelY = 50.0;

20 countPixelCol = 40;

21 countPixelRow = 336;

22 edge = false;

23 periodMirroringCol = 0;

24 rectangleConfig:

25 (

26 {

27 lowerLeftX = 0.0;

28 lowerLeftY = 0.0;

29 upperRightX = 400.0;

30 upperRightY = 25.0;

31 },

32 {

33 lowerLeftX = 400.0;

34 lowerLeftY = 0.0;

35 upperRightX = 450.0;

36 upperRightY = 50.0;

37 }

38 );

39 },

40 {

41 # second L pixel

42 }

43 );

Listing 5.1: Excerpt of the DUT config file defining and arranging L shaped pixels on
a FE-I4.
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Figure 5.5.: The left side shows the actual pixel shape, the right side represents the
array of pointers. The colors illustrate, to which pixel geometry the array
entries point.

A DUT is constructed in a way that pixel geometries do not necessarily have to be arranged

with periodical properties. However, a real DUT will have some kind of periodicity, so its

config file is designed in such a way. To explain its structure and the necessary values, a

DUT, which is made up out of two different L shaped pixels, is defined as an example in

listing 5.1.

The DUT config file is split into two parts, while the first part contains basic information

about the sensor, in the second part pixel geometries together with their arrangement are

defined. All variables, whose last letter is “X” or “Y”, are of the type double and require

statements in µm, the other variables are integers.

In the first part the sensor dimensions are entered, because they are needed for some

consistency checks. The thickness is not used yet, but will be needed, when cluster center

calculation changes in the context of η-correction. Afterwards the number of columns and

rows is inserted.

In the second part pixel geometries are defined. In this config file the configuration of

the lower right L shaped pixel (red marked in figure 5.5) is described. To know, which

FE cells match this pixel geometry, the user states, where this geometry occurs first. In

figure 5.5 that corresponds to the lowest and most left appearance of a red pixel (lines

12 and 13 in the config file). Afterwards the lower left coordinates of this pixel geometry

need to be entered (lines 14 and 15).

Thereafter the user needs to state after how many columns and rows this pixel shape

occurs again. For the red pixel geometry that means: every row and every second column

(lines 16 and 17). Also the distance of this periodicity needs to be entered: In x this

pixel geometry occurs again after 500 µm, in y after 50 µm (lines 18 and 19). Thereafter

the number of iterations is entered: As the FE chip has 80 columns and every second

column is associated with this pixel geometry, that corresponds to 40 columns in total
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5.4. ToT Calibration

(line 20). Since it occurs in every row, the number of rows is entered in line 21. The

variable edge states, whether this pixel geometry is used on the edges. In this case some

separate analyses, like edge efficiency, can be performed for these pixels. This property is

neglected at this stage, as the edge pixels would need to be defined separately and would

exceed this example.

As figure 5.5 depicts, the bump bonds between sensor and FE chip are on different sides.

Even-numbered columns have it on the lefthand side, for odd-numbered columns it is

placed on the righthand side. When one pixel geometry spans both kinds of columns (for

instance the rectangular pixels in the upper figure 5.2), they are assembled in a mirror-

inverted way. As this has to be considered for in-pixel plots, the property

periodMirroringColX takes that into account, by analyzing the periodicity of mirrored

columns, which the user needs to enter. For L pixels this is not of importance, since each

geometry is only associated with either even- or odd-numbered columns.

Now the underlying rectangles are defined, where the extensions are interpreted in the

pixel’s coordinate system. All rectangles are placed in the first quadrant, as close to the

x- and y-axis as possible. In this example first the long slim rectangle (lines 27-30) and

afterwards the square, which includes the bump bond, is created (lines 33-36). In the

config file the second L shaped pixel is omitted, as indicated by the comment (line 41).

It would be defined in the same way as the first one.

The DUT config file only includes sensor specific information. Hence it only needs to be

created once for each sensor layout and can be applied by every user. This is a major

advantage of the conifg arrangement.

5.4. ToT Calibration

In testbeam analyses it is desired to convert the measured ToT into precise charge values.

The charge as a function of ToT can be approximated by a polynomial. For all pixels the

polynomial function is the same, but its constants differ. They are determined separately

ToT calib file

hpar_0 ToT_calib_functionhpar_2hpar_1

Figure 5.6.: Contents of a ToT calibration file: ToT calib function of type TF1 repre-
sents the charge dependency on ToT. The number of its constants equals
the number of histograms (type TH2D). Thus in this example the calibra-
tion function is a polynomial of degree two.
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5. Arbitrary Pixel Geometries

for each pixel, before the testbeam measurements are performed. These values are filled

into histograms, which are saved together with the ToT function in a root file and can

be read by tbmon. The root file contents are shown in figure 5.6. Tbmon evaluates the

function for each pixel applying the corresponding constants.
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6. Results

Eventually tbmon is supposed to make full analyses for DUTs with arbitrary pixel geome-

tries available, as it has done for rectangular pixels. This implies that general analyses

are performed like before, but pixel based analyses are executed for each pixel geometry

separately. The same applies to plots, which are supposed to show the different pixel

shapes including evaluations as for instance in-pixel efficiency and charge sharing.

For these purposes two issues need to be covered: tbmon must be able to store and ap-

ply arbitrary pixel geometries and their arrangement. Therefore the necessary methods,

which build the interface to eventbuilders and analyses, need to be supplied as well as the

essential framework, that for example comprises communication with the DUT config.

These foundations have been established during this thesis, as described so far.

To make tbmon provide its entire scope, eventbuilders and analyses need to apply the

created interfaces to the data. These adaptions are not made yet and are indispensable

for proper results. Two principal issues, which need to be covered, are the η-correction

and the matching conditions. Possible techniques are introduced in chapter 7.

1 Info : You have defined 2 pixel geometries in total.

2 Info : There are 0 pixels masked by DutConfig.

3 Info : 26880 pixels of 26880 pixels are set.

4 Info : The area filled out by pixels is 3.360000 cm^2, while

the actual dut area is 3.360000 cm^2.

5 Warning: The DUT does not seem to have edge pixels.

6 Info : Pixel geometry 0 has its geometric center at

(245.000000 ,15.000000).

7 Its max pitch is 450.000000 mum * 50.000000 mum.

8 Its area is 12500.000000 mum ^2.

9 Info : Pixel geometry 1 has its geometric center at

(205.000000 ,35.000000).

10 Its max pitch is 450.000000 mum * 50.000000 mum.

11 Its area is 12500.000000 mum ^2.

Listing 6.1: Text output of checkDUT. It shows that the definition and arrangement of
pixel geometries works.
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Figure 6.1.: Tbmon plots a DUT containing L shaped pixels. In this figure an enlarged
view of the DUT is shown.

A tool, that examines the consistency of the DUT config, is useful, as inexperienced users

might commit some errors composing a DUT config file. This additional feature has been

implemented and can be performed using tbmon. If the config syntax is correct, the check

of consistency can be performed and produces error-, warning- and information messages.

For example it gives an error, if not every FE chip cell is logically associated with a pixel

geometry. Warnings alert that perhaps not the entire range of functions is available. In-

formation messages give a basic feedback about the DUT. In listing 6.1 the output for L
shaped geometries1 is shown.

The text output of tbmon indicates that the DUT config file operates as required. There

are mostly information messages, which state the expected properties. The only warning

is produced, because the property “edge” has not been defined for pixels, that are asso-

ciated with edge columns or rows. This setting was deliberately neglected.

In addition, tbmon also produces a graphical output illustrating the arrangement of pixels

on the sensor. This is another way for the user to ascertain that there occur no mistakes in

DUT config. A sketch of the DUT filled out with L shaped pixels is depicted in figure 6.1.

As mentioned in chapter 4, not only the pixel shape, but also the arrangement of rect-

angular pixels is currently changed in sensor development. For testbeam measurements a

DUT was built containing usual rectangular pixels with dimensions of 250 µm× 50 µm,

where every row is shifted by half a pixel pitch in x with respect to the adjacent rows.

This setup can now be defined as well. The graphical tbmon output is shown in figure 6.2.

In this way also the double chip module, which is part of IBL, can be described.

The text output and the DUT plots, which were added to tbmon, do not only indicate if

1Compare with chapter 5.3

32



 m]µx [

0 100 200 300 400 500 600 700 800 900 1000

 m
]

µ
y 

[

0

20

40

60

80

100

120

140

160

180

200

Figure 6.2.: Staggered pixels can be designed recently. Here an enlarged part of the
tbmon output illustrates the pixel arrangement.

the config file is accurately set up, but they also show that the storage of arbitrary pixel

geometries operates as required. The arrangement of pixels is handled correctly as well.

Thus tbmon is now able to “understand” the shape of every pixel geometry, which is based

on rectangles. In addition, it is able to arrange them in any order, which corresponds to

the FE chip.
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7. Outlook

During this thesis tbmon has been adapted to arbitrary pixel geometries. However, for

complete results, several adjustments modifying the way of analysis need to be accom-

plished. For example the η-correction, which was briefly mentioned in the context of

eventbuilders, needs to be adapted to arbitrary pixel shapes. A different technique is out-

lined in this chapter. Another issue, that needs to be covered, is the matching condition

between clusters and tracks. A possible solution for this issue is presented as well.

7.1. η-correction

A center of mass method is a plausible approximation for the calculation of a cluster

center position of rectangular pixels. Nevertheless for testbeam measurements with low

angles, diffusion is the main reason for charge spread. As the dimensions of the generated

charge cloud are quite small with respect to the pixel pitches, barely clusters with more

than two hits occur. In this case the linear center of mass algorithm is not reasonable any

more, as charge sharing only occurs in close vicinity to pixel edges. Thus the η-correction

[20] is used in tbmon. It takes this effect into account by correcting the center of mass

position applying a shift towards the joint edge for two hit clusters. The described method

does not work correctly for arbitrary pixel shapes. Thus another technique could be the

following one.

When the sensor atoms get ionized, the released charges drift to the electrodes. As

diffusion is the most important cause for charge spread, the charge cloud has a Gaussian

shape. In a simplified model it can be assumed to have a cylindrical shape, which projected

onto the sensor area corresponds to a circle. If the charge cloud covers more than one

pixel, a multiple hit cluster is observed. The deposited charge in one pixel depends on

the cloud area, which overlaps the pixel. Then the equation

cloud area overlapping the pixel

total cloud area︸ ︷︷ ︸
area fraction

=
charge in pixel

charge in cluster︸ ︷︷ ︸
charge fraction
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Figure 7.1.: In the charge map the radius of the charge cloud is defined to be 10 µm. To
determine the value at a certain position in the diagram, a circle is made
around this position. This value is calculated according to the part of the
circle being inside the pixel.

is true. The charge information is known and equals the area fraction. As the charge

cloud radius is determined using the diffusion equation, information about the track posi-

tion can be obtained. For every possible track position the area fraction can be computed

by applying a circle around this track coordinate. If it equals the charge fraction, the

reconstructed track location is reasonable.

To illustrate this description, figure 7.1 shows a charge fraction map for an L shaped

pixel. Track reconstruction benefits, as the charge fraction in a pixel can be associated

with a certain region. For instance a charge fraction of 30% states that the track coordi-

nate is in the cyan area. Adding the same information from other cluster pixels, a more

significant map can be developed. Analyzing these values can lead to a more precise track

reconstruction, which is valid for arbitrary geometries. As this calculation is based on

discrete values, it also enables computation of uncertainties.

7.2. Matching Condition

After combination of hits to clusters, they are matched to tracks by comparing the cluster

position with the track coordinates. In the former version of tbmon the matching condition

was that the track is located within a two pixel pitch frame around any cluster pixel.

36



7.2. Matching Condition

As a pixel with an arbitrary geometry does not have unambiguous pitches any more, this

condition needs to be changed. A desirable solution would also take into account the

cluster shape and ToT distribution to match a track with a cluster. As these pieces of

information are combined in the cluster center, a comparison of the cluster center and the

track coordinate is a reasonable approach. If they are closer than a “matching radius”,

they are matched.

The matching radius could be defined globally and enables a more precise adjustment

than the former method. If the cluster center calculation is performed like described in

chapter 7.1, also reconstruction uncertainties for the hit position can be calculated and

taken into account. In this way also the pixel shape would be considered, when matching

clusters and tracks.
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A. General Structure of tbmon

To provide a flexible program code, tbmon is arranged modular. All eventbuilders and

analyses have according to their methods the same, inner structure. For a user this

makes it possible to easily add new eventbuilders or analyses, as their methods are called

automatically. The user only needs to register the method once in a config file. In

table A.1 the sequence of tbmon is shown.

There are three different config files enabling the user to change cuts and settings without

Methods Eventbuilders Analyses

1 main

2 core::loop init

3 init

4 looper::loop

5 for runs

6 looper::initRun

7 initRun

8 initRun

9 looper::eventLoop

10 for events

11 core::buildEvent initEvent

12 buildEvent

13 looper::eventLoop event

14 looper::finalizeRun finalizeRun

15 finalizeRun

16 looper::finalize finalize

17 finalize

Table A.1.: Sequence of eventbuilders and analyses in tbmon: The left column names
the position, at which the eventbuilders’ and analyses’ methods are called.
Their method names are mentioned in the right columns.

modifying and compiling the code. In main they are read and saved into a TBConfig.

Afterwards an object of TBCore, which holds all the testbeam data and calls the Looper,

is created. The Looper arranges the loop over both the runs and the events. In the

beginning (table A.1, between line 5 and 6) it reads the run based testbeam data file

“tbtrack.root”.
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