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Plan for the lectures

e What is a topological insulator?

e What are the main experimental facts?

e What are the main theoretical elements?

e Almost everything in a one-dimensional toy model (SSH model)
e Toy models for higher dimension

e Algebraic formalism (crossed product C*-algebras)

e Measurable quantities as topological invariants

¢ Bulk-edge correspondence

e Index theorems for invariants

e Implementation of symmetries (periodic table of topological ins.)

Math tools: K-theory, index theory and non-commutative geometry
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1 Experimental facts

What is a topological insulator?

e d-dimensional disordered system of independent Fermions with
a combination of basic symmetries

TRS, PHS, CHS = time reversal, particle hole, chiral symmetry

e Fermi level in a Gap or Anderson localization regime

e Topology of bulk (in Bloch bundles over Brillouin torus):

winding numbers, Chern numbers, Z,-invariants, higher invariants
e Delocalized edge modes with non-trivial topology

¢ Bulk-edge correspondence

e Topological bound states at defects (zero modes)

e Toy models: tight-binding Hamiltonians

e Wider notions include interactions, bosons, spins, photonic crys.
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Quantum Hall Effect: first topological insulator
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Schematic representation of IQHE
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Most important facts for IQHE

leciions can mave along edge frondcing]

wectrans incalaed n ot dniting!

Two-dimensional electron gas between two doted semiconductors
(Spot error in picture!) Measure of macroscopic (!) Hall tension

L x e .
o = = = n— with ne N
Viy h

Integer quantization with relative error 10~8 with fundamental constant
Strong magnetic field and electron density can be modified
Anderson localizated states can be filled without changing conductivity
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Prizes and further advances on the QHE
Nobel prizes:
e Klitzing (1985)
e Stormer-Tsui-Laughlin (1998) for fractional QHE
e Thouless (2016) explanation of integer QHE & Thouless-Kosterlitz
e Haldane (2016) anomalous QHE & Haldane spin chain
NO exterior magnetic field, only magnetic material
e QHE in graphene at room temperature
Novoselov, Geim et al 2007 (Nobel 2005)

e Anomalous QHE at room temperature in SnGe (Chinese group 2016)
Review: Ren, Qiao, Niu 2016
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Quantum spin Hall systems

Prior to 2005: no magnetic field = no topology

Kane-Mele (2005):
Zo-topology in two-dimensional systems with time-reversal symmetry

First erronous proposal: spin orbit coupling in graphene (too small)
Theoretical prediction by Bernevig and Zhang (2006): look into HgTe
Measurement by Molenkamp group in Wirzburg

Complicated samples, inconsistencies with theory, so still disputed

Measurement in more conventional Si-semiconductor by Du group
(Rice 2014) Surprise: stability w.r.t. magnetic field

Topological insulators 1. Experimental facts 9/123



Majorana zero modes

First proposal (Read-Green 2000):
attached to flux tubes in 2d (p + ip)-wave superconductors

Second proposal (Kitaev, Beenacker group, Alicea, etc.):
at ends of dirty superconductor wires placed on a semiconductor

Measurement in C. Marcus group (2014-2016 Bohr Inst., Kopenhagen)
Further measurements in Delft and Princeton groups
2017: http://www.seethroughthe.cloud/2017/01/23/

Headline is: Microsoft Steps Away From The Chalk Board
to Create Quantum Computer

Mysterious citation:
The magic recipe involves a combination of
semiconductors and superconductors
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Higher dimensional topological insulators?

J. Phys. Soc. Jpn. 82 (2013) 102001

INvITED REVIEW PAPERS

Y. Anoo

Table I Summary of topological insulator materials that have bee experimentally addressed. The definition of (1;111) etc. is introduced in Sect. 3.7.

(In this table, S.S., P.T., and SM stand for surface state, phase transition, and semimetal, respectively.)

Type Material Band gap Bulk transport Remark Reference

M, v=1 CdTe/HgTe/CdTe <10meV insulating high mobility 31

M, v=1 AlSb/InAs/GaSb/AlSb ~4meV weakly insulating gap is too small 73

3D (1;111) Bi;_.Sb, <30meV weakly insulating complex S.S. 36, 40
3D (L;111) Sb semimetal metallic complex S.S. 39

3D (1;000) BiySes 0.3eV metallic simple S.S. 94

3D (1;000) BiTe; 0.17eV metallic distorted S.S. 95, 96
3D (1:000) ShyTey 0.3eV metallic heavily p-type 97

3D (1;000) BiyTe,Se ~0.2eV reasonably insulating Py U to 6Qcm 102, 103, 105
3D (1;000) (Bi,Sb),Tes <0.2eV moderately insulating mostly thin films 193

3D (1;000) Bir-Sb, Te;_,Se, <0.3eV reasonably insulating Dirac-cone engineering 107, 108, 212
3D (1:000) BiyTeS14 0.2eV metallic n-type 210

3D (1;000) Bij 1SbygTesS 0.2eV moderately insulating P Up to 0.1 Qem 210
3D (1:000) SbyTe,Se ? metallic heavily p-type 102
3D (1;000) Biy(Te.Se)x(Se,S) 03eV semi-metallic natural Kawazulite 211

D (1;000) TIBiSe, ~0.35eV metallic simple S.S., large gap 110-112
3D (1;000) TIBiTe, ~0.2eV metallic distorted S.S. 112
3D (1:000) TIB(S.Se); <0.35eV metallic topological P.T. 116, 117
3D (1;000) PbBi,Tey ~0.2eV metallic S.S. nearly parabolic 121, 124
3D (1;000) PbSb,Tey ? metallic p-type 121
3D (1;000) GeBiyTey 0.18eV metallic n-type 102, 119, 120
3D (1;000) PbBi, Te; 0.2eV metallic heavily n-type 125
3D (1;000) GeBiy_,Sb, Te; 0.1-0.2eV metallic n (p) type at x =0 (1) 126
3D (1;000) (PbSe)s(BirSes)s 0.5eV metallic natural heterostructure 130
3D (1:000) (Bi»)(BizSez6504) semimetal metallic (Biy),(BiySes), series 127
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2 Elements of basic theory
First for QHE in continuous physical space:

Landau-operator with disordered potential

1 . 1 .
e (L eAr)? + 5 (19 —eAr)? + AV,
on Hilbert space L?(R?). Landau gauge A; = 0 and A, = BX;

If there is no disorder A = 0, Fourier transform in 2-direction works
®
FoHF; = J dko H(k2)
R

with H(ky) = H(ko)* shifted one-dimensional harmonic oscillator

= infinitely degenerate so-called Landau bands.

Projection P on lowest band has integral kernel with Hall conductance
Ch(P) = 2xi {0|P[i[ X1, P],i[ Xz, P]]|0)

= wj dxf dy e~ z((XPHlyP—xy) (xy —yx) = -1
c Jc
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Effect of disorder

Typical model from i.i.d. wy e [—1,1] and v e CZ(By) with v, < 1

\/dis(X) = 2 wp V(X —n)
nez?

Landau band widens by A & 0. Gap closes at A ~ 1
Expectation: all states Anderson localized, except at one energy

Proof at band edges by Barbaroux, Combes, Hislop 1997, others...

P(E)

172 32 52
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Spectrum of edge states
H, half-space restriction on L2(R= x R) with Dirichlet

Still without disorder, Fourier transform works also for half-space:
~ ® ~
FoHFS = f dko H(k2)
R

with ﬁl(kg) = I:/(kg)* cut off shifted harmonic oscillator on L2(R)
Read off basic bulk-edge correspondence (right pic for generic gap)

A\E | AE

S 0.0

ky - kx +T
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Harper model
This is a lattice or tight-binding model on ¢2(Z?)

H = U1+U1* + U2-|-Uék
Here U; = S; shift in 1-direction, and U, = €% S, (Landau gauge)
Plotted: spectrum as a function of B (Hofstadter’s butterfly)
Spectrum fractal for irrational B. Most gaps close with V,
In each gap there are edge state bands (on /2(Z x N), Hatsugai 1993)

K

Topological insulators 2. Elements of basic theory 15/123



Coloured Hofstadter butterfly (Avron, Osadchy)
For each Fermi energy ;. one has P = x(H < p)
If . in gap, then Chern number well-defined

Ch(P) = 2mi {0|P[i[X1, P],i[X2, P]]|0) € Z

Different values, different colours
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Haldane model for anomalous QHE

On honeycomb lattice = decorated triangular lattice, so on (?(Z?) ® C2

i % 3 id Q. i Q. \*
HM:M( 0 S1+82+1>+t22<e S+ (e9S)* 0 )

Si+S+1 0 p 0 e'*S; + (eS))*
Here S; = S1S,. Complex hopping, but only periodic magnetic field
Then central gap with P = x(H < 0) and Chern number Cy = Ch(P)
M|ty
3V3

0

-3V3

¢
- 0 T
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Kane-Mele model for SQHE

On honeycomb lattice with spin }, so on ¢2(Z?) @ C*

HKM = HHal 0 + HRas
o HHal

First term comes from spin-orbit coupling to next nearest neighbors
Second Rashba spin-orbit term is off-diagonal breaks chiral symmetry
If Hp,, small, central gap still open

Chern number vanishes (TRS), but non-trivial Z,-invariant

This leads to edge states
(a)t=1.5t (b) t=2.5t

E/t
=

) 0 . nla ] ) 0 2nla
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Discrete symmetries (invoking real structure)

Given commuting real, skew- or selfadjoint unitaries J,, S., S,

chiral symmetry (CHS) : JiHJ, = —H
time reversal symmetry (TRS) : S*HS, = H
particle-hole symmetry (PHS) : S;ﬁ Sp = —H

S, = €™ orthogonal on C25+1 with S = +1 even or odd
S, orthogonal on C2 with S2 = +1 even or odd

So typical Hamiltonian acts on (2(29) @ CN @ C25*' ® C2

Note: TRS + PHS = CHS with J,, = S,S,,

10 combinations of symmetries: none (1), one (5), three (4)

10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real
Further distinction in each of the 10 classes: topological insulators
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Periodic table of topological insulators
Schnyder-Ryu-Furusaki-Ludwig, Kitaev 2008: just strong invariants

j\d| RS|PHS|CHS| 1 | 2 |3 |4 |5 |6 | 7] 8]

0| O 0 0 Z Z

1 0 0 1 Z Z Z Z

o[ 1] 0o o 27, Zo | Zo | Z
1] +1 | +1 1 Z 27 Zo | Zo
2 0 +1 0 Zio 7 27 Zio
3| -1 +1 1 Lo | Zo Z 27

4 1] 0| 0 Zo | Zo | Z 27,
5 1] 1| 1 |2z Zo | 7o | Z

6| 0 —1 0 27 Zo | Zo | Z

7041 1] 1 27, Zo | 7o | Z
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3 One-dimensional toy model (SSH, see [PS])
Su-Schrieffer-Heeger (1980, conducting polyacetelyn polymer)

H = %(01 ~|—i02)®5+%(01 — o) ®S* + mooa®1

where S bilateral shift on ¢2(Z), m e R mass and Pauli matrices
In their grading

0 S—im
H = (7)) ® C?
(S*+im 0 ) n&(2)®

Off-diagonal = chiral symmetry o5 Hos = —H. In Fourier space:

® ik
H:J dk H sz(iko_ © ’m>
[—m,m) e" +im 0

Topological invariant for m £+ —1,1
Wind(k € [—m,7) — €¥ +im) = §(me (=1,1))
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Chiral bound states
Half-space Hamiltonian

where S unilateral right shift on £2(N)

Still chiral symmetry O’§i‘70’3 - —H

If m = 0, simple bound state at £ = 0 with eigenvector ¢, = ().
Perturbations, e.g. in m, cannot move or lift this bound state ¢!
Positive chirality conserved: o3¢m = ¥m

Theorem 3.1 (Basic bulk-boundary correspondence)

If P projection on bound states of H, then
Wind(k — €* + im) = Tr(Pos)
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Disordered model

Add i.i.d. random mass term w = (mMp) pez:

H, = H+ ), myoa®|nxn|

nez

Still chiral symmetry o3 H,,03 = —H,, so

H, = ( 0 A“)
A, O
Bulk gap at E = 0 = A, invertible

Non-commutative winding number, also called first Chern number:

Wind(A) = Chy(A) = i E, Tr(0|A;"i[X,A,]|0)

where E,, is average over probability measure P on i.i.d. masses
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Index theorem and bulk-boundary correspondence

Theorem 3.2 (Disordered Noether-Gohberg-Krein Theorem)
IfT1 is Hardy projection on positive half-space, then P-almost surely

Wind(A) = Chy(A) = —Ind(NA,M)

For periodic model as above, A, = Mult. by e* € C(S")
In this case, Fredholm operator is standard Toeplitz operator

Theorem 3.3 (Disoreded bulk-boundary correspondence)
IfP, projection on bound states of H,), then
Wind(A) = Chy(A) = Chy(P,) = Tr(P,o3)

Structural robust result:
holds for chiral Hamiltonians with larger fiber, other disorder, etc.
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Index in linear algebra

Rank theorem for T € Mat(N x M, C)
M = dim(Ker(T)) + dim(Ran(T))
= dim(Ker(T)) + dim(Ker(T*)%)
= dim(Ker(T)) + (N — dim(Ker(T*)))

Hence stability of index defined by
Ind(T) = dim(Ker(T)) — dim(Ker(T*))) = M—N
Homotopy invariance: under continuous perturbation t € R — T;
teR — Ind(T;) konstant

For quadratic matrices, i.e. N = M, always Ind(T) =0
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Index in infinite dimension

Definition 3.4
T € B(H) continuous Fredholm operator on ‘H

<= TH closed, dim(Ker(T)) < oo, dim(Ker(T*)) < oo
Then: Ind(T) = dim(Ker(T)) — dim(Ker(T*))

Theorem 3.5 (Dieudonné, Krein)
Ind is a compactly stable homotopy invariant:

Ind(T) = Ind(T + K) = Ind(T;)

Example: shift S : (2(N) — (2(N) by St = (p_1)nen ON ¥ = (¥n)nen
Ker(S) = span{(1,0,0,...)} ,  Ker(S) = {0}

~

Thus Ind(S) = 1
Index theorems connect index to a topological invariant
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Structure: Toeplitz extension (no disorder)
S bilateral shift on ¢2(7Z), then C*(S) = C(S")

S unilateral shift on /2(N), only partial isometry with a defect:
$*S=1 88* =1-(0X0|

Then C*(§) = T Toeplitz algebra with exact sequence:

0> K575 s -0
K-groups for C*-algebra A with unitization A*:
Ko(A) = {[P]—[s(P)] : projections in some Mp(A*)}
Ki(A) = {[U] : unitary in some Mp(A")}
Abelian group operation: Whitney sum
Example: Ky(C) = Z = Kp(K) with invariant dim(P)
Example: K;(C(S')) = Z with invariant given by winding number
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6-term exact sequence for Toeplitz extension

C*-algebra short exact sequence = K-theory 6-term sequence

UEd

Ko(K) = Z —  Ko(T) = Z Ko(C(S")) = Z

T

Ki(T) =0« Ky(K)=0

Here: [A]s e K;(C(S")) and [Pos]o = [P+]o — [P_Jo € Ko(K)
Ind([A];) = [PiJo—[P-]o  (oulk-boundary for K-theory)
Cho(Ind(A)) = Chy(A) (bulk-boundary for invariants)

Disordered case: analogous
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4 K-theory krash kourse [RLL, WO] + Cuntz&Meyer
K-theory developed to classify vector bundles over topological space X
Swan-Serre Theorem: {vector bundles} =~ {projections in M,(C(X))}
Replace C(X) by non-commutative C*-algebra .A (no Real structures)
Definition 4.1

(A, +,-, | .|) Banach algebra over C if |AB|| < ||A| | B|, etc.
Then: Ais C*-algebra «— |A*A| = | A|?

Gelfand: commutative C* algebras are A = Cy(X) with spectrum X
GNS: For any state on A 3 Hilbert 7 and representation = : A — B(H)

Example 1: A = C or A = M,(C)
Example 2: Calkin’s exact sequence over a Hilbert space #:

0 > K(H) <> BH) 5 Q(H) = B(H)/K(H) — 0
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Definition of Ky(.A)
Unitization A* = A @ C of C*-algebra A by

(A )(B,s) = (AB+As+Btts) , (AbD* = (AT
There is natural C*-norm | (A, t)]. Unit1 = (0,1) e A

Exact sequence of C*-algebras 0 — A LAt 5T 0

p has right inverse i'(t) = (0,t),thens = i" o p : AT — A" scalar part

Vo(A) = {Ve | Men(AT) : VF =V, V2 =1, s(V)~g Ez,,}

n=1

where s(V) ~q E2, means homotopic to £, = ES” with £, = (§ %)

Equivalence relation ~q on Vo (.A) by homotopy and V ~¢ (¢ EZ)
Then Ko(A) = Vo(A)/ ~o abelian group via [V]o + [V'lo = [ (¢ )]0
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Definition of Ky(A) is equivalent to standard one via V = 2P — 1:

Ko(A) = RO(A) = {[P] —[s(P)] : projections in some Mp(A™)}

Theorem 4.2 (Stability of Kp)
Ko(A) = Ko(Mn(A)) = Ko(A® K)

Example 1: Ky(C) = Ky(K) = Z, invariant dim(P) = dim(Ker(V — 1))
Example 2: Ky(B(H)) = 0 for every separable H by [RLL] 3.3.3
Example 3: Ky(C(S")) = Z and Ky(T) = Z for Toeplitz (also dim)
Dimensions are examples of invariants, e.g. used for gap-labelling:
Theorem 4.3 (0-cocyles paired with Ky(.A))

If T tracial state on all A, then class map T : Ky(A) — R defined by

TVlo = T(P) = T(V+1)
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Definition of K;(.A)
For definition of K (A) set

Vi(A) = {Ue | Ma(A*™) - U = U*}

n=1

Equivalence relation ~1 by homotopy and U ~1 (§7)

Then Ki(A) = V4(A)/ ~1 with addition [U]y + [U']1 = [U® U]

If A unital, one can work with M,(.A) instead of M,(A™) in V1(A)
Example 1: K;(C) = K1(K) =0

Example 2: K;(C(S")) = Z with invariant "winding number”
Example 3: Ki(A") = K{(A)

Example 4: Ki(B(#)) = 0 by Kuipers’ theorem (holds for all W*’s)
Example 5: For Calkin K1(Q(H)) = Z with invariant = Noether index
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Suspension and Bott map
Definition 4.4
Suspension of a C*-algebra A is the C*-algebra SA = Cy(R) ® A

Alternatively upon rescaling: SA ~ Cy((0,1),.4)
Theorem 4.5 (Suspension)
One has an isomorphism © : Ki(A) — Ky(SA), described below

Theorem 4.6 (Bott map)
One has isomorphism (3 : Ko(A) =~ Ko (A) - Ki(SA) given by

B([Plo — [s(P)]o) = [te (0,1) — (1~ P)+&*™P],

Note that r.h.s. indeed a unitary in (SA)*

Korollar 4.7 (Bott periodicity)
Ko(SSA) = Ky (A)
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Construction of ©~' : Kj(SA) — K;(A) with adiabatic evolution:

00— SA-L s, A) v A 0

After rescaling is given a loop t € [0,27) — P; = %(Vt +1) e My(A)
With Py viewed as constant loop, [P]o — [Polo € Ko(SA)

Indeed ev([P]o — [Po]o) = 0 so identified with element in Ky(S.A)

Aim: find preimage under © in Ki(A)

For H; = Hj € My(A) satisfying [H;, P;] = 0 unitary solution U; € A* of

io0tUr = (Hi+ i[otPy, P]) Ut , Up =1pn
Then Py = UiPoUf and Us, Py U5 = Py
O~ '([Plo — [Polo) = [PoUsxPo + 1n — Pyl
R.h.s. is unitary! Choice of H; determines lift. Details in [PS] OJ
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Natural push-forwards maps in K-theory
Associated to an exact sequence of C*-algebras
0-KLAD 90
there are natural push-forward maps:
b KO = KA T K(A) = K(Q)
given i,[V]o = [i(V)]o , m[V]o = [r(V)]o, etc.
Ker(m,) = Ran(iy), so short exact sequences of abelian groups:

Ko(K) 55 Ko(4) ™5 Ko(Q)
and .
Ki(Q) & Ki(A) < Ki(K)

Connecting maps close diagram to a cyclic 6-term diagram
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Connecting maps from K;(Q) to K, 1(K)
Definition 4.8 (Exponential map: Ky(Q) — K;i(K))

Let B = B* € M,(A™) be contraction lift of unitary V = V* € M,(Q™)

Exp[V]o = [exp (2mi(3(B+1)))],
= [— cos(mB) — i sin(7B)]1

— [2BV1-B2 + i(1-2B?)]

Definition 4.9 (Index map: K;(Q) — Ko(K))

Let B e M,(A™) be contraction lift of unitary U € M,(Q™"),
namely 7% (B) = U and ||B|| < 1. Then define

(U], — °BB* —1 2B\1— B*B
V" \eBvi=BB* 1-2B*B )
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Index map versus index of Fredholm operator

B unitary up to compacton H < 1—-B*B, 1 - BB* e K(H)
== B Fredholm operator and U = «(B) € Q(H) unitary
Fedosov formula if 1 — B*B and 1 — BB* are traceclass:
Ind(B) = dim(Ker(B)) — dim(Ker(B"))
= Tr(1 — B*B) — Tr(1 — BB*)
o ( BB*—1  B(1- B*B)é)
(1 - B*B)2B* 1-B*B

ITr(V - B) with V as above
%Tr(lnd[Uh - E)

Hence there is a connection...
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6-term exact sequence
Theorem 4.10

Forevery0 — K LAt o 0, above definitions lead to

T

Ko(K) —*—+ Ko(A) Ko(Q)
Ind Exp
K1 (Q) T Kiy(A) 2 Ky (K)
Proof in the books...

Example 4.11
Toeplitz extension 0 — K((2(N)) <> T 5 C(S') — 0
Bilateral shift S e C(S") gives class [S]; € Ki(C(S"))

Contraction lift is unilateral shift S € T = B(¢2(N)) with S5* =1 — P,
From definition Ind[S]1 = [diag(1 — 2Py, —1)]o
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Exact sequence of the sphere
DIt < Dpd+t ., oDd+1 = s
leads to an exact sequence of C*-algebras
0 — Co(D) = Co(RI") <& CDIFT) & C(sY) — 0
All K-groups are well-known [WO]. For for d = 2n+ 1 odd

Z ’* z T 7 = Ky(C(SY))
‘Ind \Exp
Z s 0 b 0
while for d = 2n even
0 s Z ks 72
‘Ind JExp
0 il 0 - zZ

Aim: analyze one of the connecting maps, say Ind for d odd
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Bott element
Let us write out Ind : Ki(C(S?" 1)) = Z — Ko(Co(D?")) = Z
For n = 1, generator is function z : S' — S with unit winding number
Lift is z : D2 — D2 which is not invertible, but a contraction
Bott element is "the” non-trivial self-adjoint unitary on D?:

Ind([z]1) = [(222\‘;% 221 —12|_Z||§|2> € Ko(C(]D)Z))

0

For higher odd d, irrep 4, . . ., 74 of Clifford C4. Generator of K;(S9)

i d
U = Z Xivj + 1 Xd41 , X:(X1,...,Xd+1)€S
j=1,..,d

Lift B e C(D9+1) same formula with x € D4+1. Then with r = || x||

) 221  2(1-r2)iB
Ind[U]1 = [(28*(1—’2); —(2f2—1)>]o

Topological insulators 4. K-theory krash kourse 40/123



Another connecting map (for Floquet systems)

Theorem 4.12 (with Sadel)

0 >K>A590-0
Recall Ind : K{(SQ) — Ko(SK) and ©~': Ky(SK) — Ki(K), so
© 'olnd : K1(SQ) — Ki(K)
Given smooth path (0,2r) — U(t) € Q specifying class Ki(SQ)

~

O~ (Ind([(0,27) — U()]1)) = [U(2n)]s

where U(27r) —1 € K is end point of initial value problem in A
ioU(t) = H(t) Ut U0) = 1

associated to self-adjoint lift ﬁl(t) e Aof H(t) = —iU(t)o:U(t)* € Q
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5 Observable algebra for tight-binding models
One-particle Hilbert space ¢?(Z9) @ Ct

Fiber Ct = C?$+' ® C’ with spin s and r internal degrees

e.g. C" = C2 ® C2 particle-hole space and sublattice space

Typical Hamiltonian
d

Ho = A8 + W, = Y (£°SP + t(SP)*) + W,
i—

Magnetic translations SPSP = €%1SPSP in Laudau gauge:

SB = s, SB — eBioXig, SB = gBraXitiBaoXe gy
t; matrices L x L, e.g. spin orbit coupling, (anti)particle creation
matrix potential W,, = W = >0 |n)wn{n| with i.i.d. matrices wp,

Configurations w = (wn) ,ez0 € 2 compact probability space (2, P)
P invariant and ergodicw.r.t. T:Z9 x Q - Q
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Covariant operators (generalizes periodicity)

Covariance w.r.t. to dual magnetic translations V, = S/B Va(SIB)*
VaH, Vi = Hr, , aezf®

|A|l = supyeq |As| is C*-norm on

Ag = C*{A = (A,)wen finite range covariant operators}

lle

twisted crossed product C(Q) x g Z9

Fact: Suppose 2 contractible (say w, from matrix ball)

— rotation algebra C*(SZ, ..., SE) is deformation retract of A4

In particular: K-groups of C*(S%, ..., S5) and A, coincide

Theorem 5.1 (Pimsner-Voiculescu 1980)

Ko(Ag) = 22°™" and Ky (Ag) = 72" J
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Generators of Kj(Ay) from PV’s Toeplitz extension

0—- Ay 1®K — T(Agy1) = Ag — 0 gives K(T (Ag41)) = K(Ag-1)
and i Exp
0 - Ko(Ag-1) = Ko(Ag) = Ki(Ag-1) — O

0 — Ki(Ag_1) 5 Ki(Ag) ™ Ko(Ag_1) — 0
Both lines read Ki(Aq) = Ko(Ag_1) ® Ki(Ag_1) = 2%° " @22
Iterative construction of generators using inverse of Ind and Exp
Explicit generators [ G| of K-groups labelled by subsets / = {1,...,d}
Top generator | = {1, ..., d} identified with Bott in K;(C(S?))
Example G », Powers-Rieffel projection in C*(S#, S§)
In general, any projection P € M,(Ay) can be decomposed as

[Plo = >, m[Glo n € Z, |l] even

Questions: calculate n; = ¢;Ch,(P) and give physical significance
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K-group elements of physical interest
Fermi level 1 € R in spectral gap of H,

P, = x(Ho, < p) covariant Fermi projection
Hence: P = (P,)weq € Ay fixes element in [Py € Ky(Ag)

If chiral symmetry present: Fermi unitary U = A|A|~" from

0 A, 1 0
Ho.) = _J;Hw‘jch = ) Jch =
A* 0 0 1

If » =0ingap, A= (Au)weq € Ag invertible and [U]y = [A]1 € K1(Ag)
Remark Sufficient to have an approximate chiral symmetry

H, = B, A with invertible A,
AL Gy,
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Strong and weak invariants in K-theory terms
Fermi level 4 = Fermi projection P or Fermi unitary A
Decompositions

Plo = >, mlGlo . [Ai= > nl[Gl

Ic{1,...d} Ic{1,...d}

Invariants ny, top invariant n . 4y € Z called strong , others weak
A systems with ngy 4y + O is called a strong topological insulator
If ngy gy = 0, but some other n; + 0, weak topological insulator
For Class A (no symmetry) and Class Alll (chiral symmetry):

dimensiond |12 |3|4 /5|6 |78
A | stronginvariant |0 |Z |0 |Z |0 |Z |0 | Z
Alll | stronginvariant | Z |0 |Z |0 |Z |0 |Z | O

Z-entries are parts of the K-groups. Calculation of number next
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Non-commutative analysis tools [BES, PS]

Definition 5.2 (Non-commutative integration and derivatives)
Tracial state 7 on Ay given by
T(A) = Ep Tr. (0|A,|0)
Derivations V = (V4, ..., Vq) densely defined by
ViA, = i[X,Al]
Then define CX(A), C*(A), etc.

Usual rules: T(AB) = T(BA), V(AB) = V(A)B + AV(B), etc.
Also: T(V(A)) = 0, so partial integration 7(V(A)B) = —T (AV(B)

Proposition 5.3 (Birkhoff theorem for translation group)
T is P-almost surely the trace per unit volume
T(A) = > Tre (n|Ay|n)

nel

|/\|

)
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Periodic systems

For simplicity 1-periodic in all directions and no magnetic field

Then Ay = C(T9) ® Ct*L commutative up to matrix degree

non-commutative A Vj(A) T
commutative k — A(k) A | e dkTr

With dictionary: rewrite many formulas from solid state literature

Example: Kubo formula for conductivity at relaxation time 7
| e 3210 (O Ent)) PR (Enk) — Enl) + 1)1 (Em() Pro(K)))
n,m

= T (Viltsu(H) (Lw + 1) (5(H))

where Ly = i[H, .| Liouville operator
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6 Topological invariants in solid state systems

A e Ay invertible and |/] odd with p: {1,...,|/|} — /and
sig(p) = (1)

PNUS] ]
Ch/(A) = % Z(U”T(HAW,)IA) e R

pES) j=1

where T (A) = Ep Tr; (0|A,|0) and VA, = i[X}, A.]
For even |/| and projection P € Ay:

=

(2in) 2 4
Chy(P) = “= D11 (P]]V,P| e R

2° peS j=1

Theorem 6.1 (Connes 1985, [Con])
Ch,(A) and Ch(P) homotopy invariants; pairings with K(Ag)
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Rewriting

Let d be even and C4 complex Clifford generated by ~1, ..., 74

Extend A, to Ay ® C4 so that degree of form can be counted
Exterior derivatives are dA® v = 21‘7’:1 ViA®Q v

Finally let ev(yy ---vj) = dj 4

Then 11|
(2im)2

I

o !

T oev(PdP---dP)

Special case d = 2 gives "first” Chern number:

Chyy0y(P) = 27i T oev (PdPdP)
2ri T (P[V1P, V2P])

ori LZ %Tr(P(k)[& P(k), 2P(K)])

where P = (%, dk P(k)
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Link to Volovik-Essin-Gurarie invariants
Express the invariants in terms of Green function/resolvent

Consider path z : [0,1] — C\o(H) encircling (—oo, u] N o (H)
Set
G(t) = (H—z(t))™
Theorem 6.2 ([PS])
For || even and with Vo = 04,

1]

./n-? 1
(im) — (—1)PLdtT

=) el

1

(H G(t) 'V, G(1)
j=0

Ch(Py,)

|

Isomorphism via Bott map 5 : Ko(Ag) — K1(SAy) leads to
BlPuJo = [te[0,1]— G(D)],

Combine with suspension result on cyclic cohomology side
Similar results for odd pairings
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Generalized Streda formula

In QHE: integrated density of states grows linearly in magnetic field

integrated density of states: E{0|P|0) = Chg(P)

1
551,2 ChQ(P) = a_ Ch{1,2}(P)

27
Theorem 6.3 (Elliott 1984, [PS])
dg,, Chy(P) = ;—WCh,U{,-J}(P) || even, i,j ¢ I
0g,, Chi(A) = ;—WCh,U{,-J}(A) | odd , i,j ¢ |

Application: magneto-electric effects in d = 3
Time is 4th direction needed for calculation of polarization

Non-linear response is derivative w.r.t. B given by Chyy 53 4,(P)
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Index theorem for strong invariants and odd d
M, .., 7a irrep of Clifford Cq on €2~

d
D = Z Xi®1®7; Dirac operator on (?(Z%) @ Ct @ el
j=1

Dirac phase F = % provides odd Fredholm module on Ay:

F2 =1 [F,A,] compactandin £9*¢ fir A = (A,)weq € Ag

Theorem 6.4 (Local index = generalizes Noether-Gohberg-Krein)
LetN = Y(F + 1) be Hardy projection for F. For invertible A,

ay(A) = Ind(NA,N)

.....

The index is P-almost surely constant.
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Proof based on key geometric identities

Letd =2k + 1
Given xq, ..., Xok12 € R2K+1 with Xy, » fixed at the origin

Y1y Y2ket IFEP ON C2* of complex Clifford Clo, 1

J ax tr(
R2k+1
22k+1 (,'W)k 2k+1

= T ks > (_1)pHXj:Pj
j=1

PES2k 41

2k+1

[] (sen¢y, % + %) — sgndy, x4 + X>))

j=1

For d = 1: standard element in Noether-Gohberg-Krein

Analog for d = 2: Connes’ triangle equality

Alternative proof: semifinite index theory (Andersen, Bourne-SB)
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Local index theorem for even dimension d

As above 71, . .., g Clifford, grading I = —i=%2~4 - - - 44

F
Dirac D = —T'Dr = |D| <I—E)* 0) even Fredholm module

Theorem 6.5 (Connes d = 2, Prodan, Leung, Bellissard 2013)
Almost sure index Ind(P,,FP,,) equal to Chyy 4 (P) }

. o XitiX
Special case d = 2: F = 3 5% and

Ind(P,FP,) = 2xi T(P[[Xi, P], [ Xz, P]])

Proof: again geometric identity of high-dimensional simplexes

Advantages: phase label also for dynamical localized regime
implementation of discrete symmetries (CPT)
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Numerical technique for strong invariants
H chiral with Fermi unitary A. For tuning parameter « > 0 introduce:

L, = H+ k& b0 = wD A spectral localizer
0 -D A* —xD

A, restriction of A (Dirichlet b.c.) to range of x(|D| < p)

L, - <mDp A, )
’ A —kD,

Clearly selfadjoint matrix:

(Ln,p)* = Ln,p

Fact1: L. , is gapped, namely 0 ¢ L, ,
Fact 2: L,. , has spectral asymmetry measured by signature
Fact 3: signature linked to topological invariant
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Theorem 6.6 (with Loring 2017)

Given D = D* with compact resolvent and invertible A
with invertibility gap g = |A=1|~'. Provided that

o
I[D,A]| < 12[Alx ()
and
2
<y *)
the matrix L, , is invertible and with Tl = x(D > 0)

5 Sig(Ly,) = Ind(NAM+ (1 —1))

How to use: form (*) infer x, then p from (**)
If Aunitary, g = |A| = 1and x = (12|[D, A]|)"'and p = 2

Hence small matrix of size < 100 sufficient! Great for numerics!
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Why it can work:

Proposition 6.7
If (*) and (**) hold,

Proof:

2 _ (A& 0\ (D2 o) [ 0 [D.A]
P 0 AA, 0o D? (D), A5 0

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)
Now A*A > g2, but (A*A), + A%A,

This issue can be dealt with by tapering argument:
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Proposition 6.8 (Bratelli-Robinson)
For f : R — R with Fourier transform defined without v/ 2,

I[(D), Alll < 7]+ I[D,All

Lemma 6.1
3 even function f, : R — [0, 1] with f,(x) = 0 for |x| = p
and f,(x) = 1 for|x| < § such that || =

With this, f = £,(D) = f,(|D|) and 1, = x(|D| < p):

ARA, = 1,A"1,A1, > 1,A*fPA1,
1,/A* AR, + 1,([A*, A + TA*[f, A])1,
g? 2 + 1,([A*, f]fA + fA*[f, A1,

\%

So indeed A% A, positive close to origin
Then one can conclude... but a bit tedious O
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Proof by spectral flow
Use Phillips’ result for phase U = A|A|~" and properties of SF:

Ind(NAMN +1-1) = SF(U*DU, D)
= SF(k U*DU, k D)

(5 %) (o 3)-(3 7o)
(o 1) (¥ 2o) (0 5)-(57 -5))
(K,u;fu _:D>7<KOD _SD>>
(o o) (3 )

Now localize and use SF = %Sig on paths of selfadjoint matrices

Il Il
wn wn
ool ool
/N -/
VR

o C

- O
~

O]
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Even pairings (in even dimension)

Consider gapped Hamiltonian H on # specifying P = x(H < 0)
Dirac operator D on # @ # is odd w.r.t. grading I = (§ _9)
Thus D = —rDT = (%) and Dirac phase F = D'|D'| "
Fredholm operator PFP + (1 — P) has index = Chern number
Spectral localizer

H kD
L, = — H®T + D
(R(D/)* —H) ob Hx

Theorem 6.9 (with Loring 2018)
Suppose |[H,D']| < oo and D' normal, and «, p with (*) and (**)

Ind(PFP+(1-P)) = %Sig(L,W)
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Elements of proof

Definition 6.10

A fuzzy sphere (X1, X2, X3) of width § < 1 in C*-algebra K is a
collection of three self-adjoints in K with spectrum in [—1, 1] and

-0F+ X2+ x3)| < 1. Xl < &

Proposition 6.11
If§ < %, one gets class [L]o € Ko(K) by self-adjoint invertible

L= > X®o e M(K")
j=1,2,3

Reason: L invertible and thus has positive spectral projection

Remark: odd-dimensional spheres give elements in K (K)
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Proposition 6.12
L., homotopic to L = >;_; , 3 X; ® o in invertibles

Construction of that particular fuzzy sphere:
Smooth tapering 7, : R — [0, 1] with supp(f,) < [—p, p] as above
Define F, : R — [0, 1] by
Fr)* + 1,00% = 1

If D' = Dy + iD; with Df = Dj, and R = [D, set

X, = F,(R)R 2Dy,R 2 F,(R)

X = F,(R)R™2D,,R 2 F,(R)

X3 = f

Theorem 6.13
Ind[7(PFP +1—-P)]1 = [Lec,lo
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Proof:

General tool:
Image of K-theoretic index map can be written as fuzzy sphere
md(x(A)) = | Y V@]
j=123
(by choosing an almost unitary lift A)
Formulas for Yy, Ya, Yz are explicit (but long)
General tool for PF P +1 — P provides fuzzy sphere (Y3, Y2, Y3)
Final step: find classical degree 1 map M : S> — S? such that

M(Ys, Yo, Y3) ~ (Xq, X2, X3)
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Numerics for toy model: p + ijp superconductor

Hamiltonian on ¢?(Z?, C?) depending on x and &

o SitSi+S S o M(Si-Si+uS-8) ),
5(S1— S +1(Se—85)" —(S1+ S+ S+ 85— p) -

and disorder strength A and i.i.d. uniformly distributed entries in

Vno O
V. = ' nn
d Z(O WJIXI

nez?

Build even spectral localizer from D = Xi01 + Xooo = —o3Do3:

L H, k(X1 + iX2),
o7 K (Xy — iXa), —H,

Calculation of signature by block Chualesky algorithm
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Low-lying spectrum of spectral localizer

Energy Levels of the Spectral Localizer with disorder
5, 1=0.25, k=0.1, p=15

3.5 —HiHHHHHIH A+ HH

2.5 —HHHHHHHH A+

Level of Disorder (A)

1.5 HHHHHHHHHHHHH A +—+ +—+ - HHHHHHH R
i i i i i i i i i
0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8
Energy Levels
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Half-signature and gaps for p + ijp superconductor

Half-Signature for Spectral Localizer with disorder
Average of 20 repetitions
6=-0.35, p=0.25, k=0.1, p=15

1.25 T T T T T T T 0.3125
Average of Half-Signature ——
Average Gap (SL) ——
Average Gap (Hp) ——
Minimum Gap (Hp) ——
1 4 025
g 0.75 - - 0.1875
£ 8
=S %
@ =%
o 8
©
T osf 4 0125
0.25 - - 0.0625
0 L L L L L 0
0 0.5 1 15 2 25 3 35 4

Level of Disorder (A)
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7 Invariants as response coefficients

e Hall conductance via Kubo formula: Chy; y with / = j

» polarization for periodically driven systems: Chyg ;; with O time
e orbital magnetization at zero temperature

» magneto-electric effect: Chyg 1 2 3, with 0 time

e chiral polarization: Chyj,

Current operator J = (Jy, ..., Jy) in d dimension:
J =X =i[HX] = VH
Current density at equilibrium expressed by Fermi-Dirac state:

j,B,u = T(f[j’u(H) J) , fBaM(H) = (1 + eﬁ(H_N))—1
Proposition 7.1 ([BES])
IfH=H*e C'(A) and f e Co(R), then T (f(H)VH) = 0

|

Proof: Leibniz implies 0 = 7(VH") = nT(H"~'VH) forall n > 1
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Hence no current at equilibrium! Add external electric field £ € RY
He = H+E&- X

Then Hg neither bounded nor homogeneous and thus not in A
Nevertheless associated time evolution remains in the algebra A
In the Schrédinger picture it is governed by the Liouville equation:

orp = —i[Hg,p] = —i[H+E&-X,p] = —Lulp) + £-V(p)

Now Dyson series with Liouville £y as perturbation is iteration of
t
etEHE _ etS.V + f ds e(t—s)E-VEHesﬁHg
0

This shows:

Proposition 7.2

+Ly + & -V are generators of automorphism groups in A
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Next time-averaged current under the dynamics with &:
, 1 (T
As trace 7 invariant under both V and Ly,
. 1 (T i
e = Jim 3 |t T(e e (1, ()

(Schrédinger picture <= Heisenberg picture). Now

Proposition 7.3 (Bloch Oscillations)
Time-averaged current jg , ¢ along direction of £ vanishes J
Proot g u(t) = etne(e V(M) = e (L, (H)) = T
Taking the time average gives us

1 (7 H(T)—-H
Since H bounded and |H(t)| = |H|, r.h.s. vanishesas T — w0 ]

Topological insulators 7. Invariants as response coefficients 70/123



Modify dynamics by bounded linear collision term (like Boltzmann eq.):
Orp+ Lu(p) —€-V(p) = —T(p)
Main property is invariance of equilibrium: I'(f3 ,(H)) = 0
Again Dyson series shows existence of dynamics:
p(t) = e "En=EVHD(p(0))
Initial state chosen to be p(0) = 73 ,(H)
Exponential time-averaged current density shows:

o0
Jjope = lim & | dte ' T(Jp(t))
6—0 0

, 1
= jim, 5T<J 5+r+£H—5.v(fﬁ’“(H))>

By Proposition 7.1 and (Ly + I')(f3,,(H)) = 0 no current at equilibrium:

0=0T (J % fm(H)> 6T (J 5+£1H+F (fﬁ,u(H))>

Subtract this from jz , ¢ and use resolvent identity
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. _ 1 5
Jome = gl“oT(J5+r+£H—5-v5‘v5+r+£H(fﬁ’“(H))>

Now, again (Ly + ) (fs,.(H)) = 0,

d
. . 1

This contains all non-linear terms in the electric field

Limit 6 — 0 can be taken, if inverse exists

Linear coefficients of jz , ¢ in £ give conductivity tensor

In relaxation time approximation (RTA) on replaces I' by } >0

Theorem 7.4 (Kubo formula in RTA [BES])

1
-
14

0ij(Byp,T) = T(ViH G (V/f/s,u(H)))
H
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Hall conductance i + j at zero temperature 5 = oo and 7 = oo exists
018 = 0,7 = 0) = T (L) (ViH) V;P)
where P = x(H < u). As

VP = PV;P(1—P) + (1—P)V,PP

and
(Lw)(PV;H(A = P)) = =i PV;P(1-P)
(L) (1= P)V;HP) = i(1—P)V,PP
Hence
: 1
0ij(8 =0, p,7 =) = IT (P[ViP,V;P]) = 5—Chy;jy(P)

R.h.s. is integer-valued in dimension d = 2 and d = 3 (3D QHE)
This result holds also in a mobility gap regime [BES]
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Electric polarization

te [0,27) = S — H(t) periodic gapped Hamiltonian (changes dyn.)
Change AP in polarization is integrated induced current density:

27

AP = . dt T(p()J@t) ,  p0) = Po=x(H<p)

with J(t) = i[H(t), X]. Algebraic reformulation:
27
AP = ) dt T (p(t) [0p(1), [X, p(1)]])

However, p(t) unknown. So adiabatic limit of slow time changes:
Theorem 7.5 (Kingsmith-Vanderbuilt and [ST])

teS' — H(t) smooth with gap open for all t

With p(0) = Py(0) and e dip(t) = 1[p(t), H(t)], for any N € N
27

AP = i| dt T(Po(t)[0tPo(t), [X,Po(t)]]) + ON)
0
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Now add time to algebra: C(S', Ay) is like Ag1
Oth component is time and V = d;
Also trace on C(S', Ag) is 5= 2"t T

Korollar 7.6
Polarization of periodically driven system is topological:

AP; = 27 Chyj + O(eV)

Ford = 1,2 andj = 1, one hence has AP; € 2x Z up to O(eN)

However, in d = 3 one does not have AP; € 27 Z, but due to
generalized Streda formula, magneto-electric response satisfies

Q123 = 35273AP1 = 27 Chyo 123} € 27 Z

Similarly: IDOS on gaps satisfies gap labelling
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Chiral polarization

Chiral Hamiltonian H = —o3Ho3, typically due to sub-lattice symmetry
chiral polarization = difference between two electric dipole moments

P. = ETr{0|Po3 X P|0) = i T(Po3VP)
due to X|0) = 0. Let U be Fermi unitary of P
Proposition 7.7 ([PS])

P.j = —%Ch{j}(U) , j=1,....d

Proof. Expressing P in terms of U

i 1 U 0 -VvU* i
p. - L = - T(=U*VU+ UVU*

Now use UVU* = —(VU)U* and cyclicity O
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8 Bulk-boundary correspondence and applications
Toeplitz extension T (Ag) = C*(SB,..., SB | SB W,)

edge half-space bulk
0 - & —» TA) —- Ay — 0
Moreover: Eq = Ag_1 @ K(F3(N))

Ko(Ag_1) — 5 Ko(T(Ag)) —=—+ Ko(Ag)

Ind Exp

Ki(Ag) " Ky (T(Aqg)) ~—— Ki(Aqg_1)
Theorem 8.1 ([KRS, PS])

Ch/u{d}(A) = Ch/(Ind(A)) |/’ even , [A] € K1 (.Ad)
Chiugay(P) = Chy(Exp(P)) [/l odd, [P] e Ko(Aqg)

Proof: loooong  Example: d = 1 was exactly the SSH model
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Boundary maps in terms of Hamiltonians
Theorem 8.2 ([KRS, PS])

LetHe M (Ay) withgap A 3 pand P = x(H < ) € M (Ag)
With continuous g(E) =1 for E < A and g(E) = 0 for E > A:

Exp([Plo) = [exp(—2mig(H))]1 € Ki(Eq)

Proof: g(H) € T(Aq) is a selfadjoint lift of P
Theorem 8.3 ([PS])

Let H e My (Ag) chiral with gap A > 0 and Fermi unitary U € M (Ag)
With odd continuous f(E) = —1 for E < A and f(E) =1 for E > A:

Ind([U]1) = [e5"Pdiag(1,0)e'3" ™1y — [diag(1,0)]o € Ko(£q)
If central band of edge states gapped with projection P= ,E’+ + P,

Ind([U]1) = [/3+]0 - [//5—]0 € Ko(&a)
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Strict boundary formulation of boundary invariant
Theorem 8.4 (with Toniolo)

Let H e M (Ay) be translation invariant with gap A >
Suppose H = §©, , dk H(k) with one-sided block Jacobi matrix H(k)
Set for some 6 + 0:
G(k) = <O|(H(k) +i5)~"|0) € M.(C)
Then for [0]1 = Exp[P]o

Moreover, if R(k) € M. (C) is reflection matrix of ﬁ(k) at energy p,

~

Chy1,g-1}(U) = Chy_g_1,(ke T — R(k))

Dimensional reduction! Open problem: do this for disordered systems
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Physical implication in d = 2: QHE

P Fermi projection below a bulk gap A < R. Kubo formula:

Hall conductance = Chyq 2;(P)
Bulk-boundary:
Chy2,(P) = Chy;(Exp(P)) = Wind(Exp(P))
With continuous g(E) = 1 for E < A and g(E) = 0 for E > A:

Exp(P) = exp(—27ig(H)) € T(A2)
as indeed w(g(ﬁl)) = g(H) = P so that 7(Exp(P)) = 1 trivial

Theorem 8.5 (Quantization of boundary currents [KRS, PS])

Chy24(P) = E Y. 0, m|g (H)i[X1, H|0, n2)

=0

The r.h.s. is current density flowing along the boundary
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Proof: With 7 (A) = Ti Tr2(A) = Ep Y, -0 <0, n2|Au[0, n2), rh.s. is

j(g) = E <0, nalg' (H)i[Xy, H|0,n2) = T (J g'(H))
np=0

Summability in n, has to be checked

Let M : ¢2(Z?) — (2(Z x N) surjective partial isometry,

namely MM* identity on /?(Z x N)

Then H = NHN*

Proposition 8.6

For G e C*(R) withsupp(G) no(H) = &

Then the operator G( ) is T -traceclass

Proof based on functional calculus often attributed to Helffer-Sjorstrand
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Proposition 8.7 (Functional calculus a la Dynkin 1972)

x € CF((—1,1),[0,1]) even and equal to 1 on [—4, 0]
For N > 1 let quasi-analytic extension G:C—>CofG by

Gy = Y @0 Py L z=xry

Then with norm-convergent Riemann sum

1 ~
G(H) = 5+ | oy :Bxy) (2= H)

Proof. Crucial identity is

” _ ey Y ; (n)
0G0y = GV W) i Y 6

In particular, uniformly in x, y, one has |3;G(x, y)| < C|y|N
Hence also &zé(x, 0) = 0. Now resolvent bound. Details.... 0
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Proof of Proposition 8.6. Geometric resolvent identity

1 1 1 ~ 1
—_— = N—1"0* + ~(HO* —NH) ——nN*
z—H z—H z—H( ) z—-H

in Dynkin for G(I:I) together with G(H) = 0 leads to

G(H) = NGH)N* + K
1 . 1
o dexdyé‘ G(xy) _H(HI'I I'IH)fHI'I

Resolvents have fall-off of their matrix elements off the diagonal:

(nj —m)*nl(z = H)'imy = *(n|Vf(z=H)lm) . keN
Expand VX(z — H)~" by Leibniz rule. As [V¥H| < C

1 Ck
ly[K+H1 1 + [0 — mylk

Knl(z = H)7Tm)| <

Same bound holds for resolvent of H (improvement: Combes-Thomas)
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If finite range, HI* — MH has matrix elements only on boundary. Then
0, n2|f<|o )|

<Y Y , B ay 122G, y)| KO, rel(z = H) )|

meZxN keZ72

KmIH T = HIK)| [CK|(2 = H) 7110, np))

1 1
<C j ax d &Gx
m121>0 y| ( y)| |y|2k+2 1_|_|n2|2k 1+|m1|2k

Now above bound on resolvent for N > 2k + 2

As integral over bounded region, sum can be carried out

C

~ . _C
|<0,I72|K|0,I72>| 1+|n2|2k

But this implies desired 7 -traceclass estimate O
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Proof of Theorem 8.5. Set U = Exp(P) = exp(—2wig(ﬁ)) and
Ind = i 7((U* —1)v40)
Express U as exponential series and use Leibniz rule:

m m—1 R R
ma = 3 B X 70 =g VigH )

m=0

where trace and sum exchange by T-traceclass property of U-1
Due to cyclicity and [U, g(ﬁl)] = 0, each summand equal to

T(U* = 1) g(H)™" V1g(H))
Exchanging sum and trace, summing up again:

Ind = 277 ((1 ) wg(ﬁ))
Now same argument for Uk = exp(—27rikg(l:l)) for k # 0,
Ind — i%((ak —1)r v 0F) = —20 7 ((1- 09 Vig(A))
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Writing g(E) = { dt §(t) e"E(1+1 with adequate g, by DuHamel
1 =R o~ N o~
Ind 27 f dtg(t) (1 +it)J dg T ((DF 1) e (=90 0H (7, H)e-a(t+0F)
0
With g’(E) = — § dt (1 + it) g(t) e EC+M for k 0,

Ind = 27T7A’<(lAJk—1)g'(l:I)V1I:I)

For k = 0, the r.h.s. vanishes. To conclude, let ¢ € C;°((0,1),R)
Fourier coefficients ay = {3 dx e 27" ¢(x) satsify 3, axe®™ = ¢(x)
In particular, >, ax = 0 and

agInd = — 2 aInd = 2n Zak 'i’ ((1 — Uk) g’(I:I) V1/"\/>
k#0 k

~

= 27 T((0-¢(g(H))) g'(H) V+1H)

As ¢ — X[01] also a — 1 and ¢(g(H))g'(H) — g'(H) (no Gibbs)
As J; = V4 H proof is concluded 0
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Chiral system in d = 3: anomalous surface QHE

Chiral Fermi projection P (off-diagonal) = Fermi unitary A

Chyy23;(A) = Chyq 2, (Ind(A))
Magnetic field perpendicular to surface opens gap in surface spec.

With P = .E’+ +P_ projection on central surface band, as in SSH:

Ind(4) = [P;] — [P-]

Theorem 8.8 ([PS])
Suppose either I3+ —0orP_=0 (conjectured to hold). Then:
Chyq 23, (A) + 0 = surface QHE, Hall cond. imposed by bulk

Actually only approximate chiral symmetry needed
Experiment? No (approximate) chiral topological material known
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Delocalization of boundary states

Hypothesis: bulk gap at Fermi level p

Disorder: in arbitrary finite strip along boundary hypersurface

Theorem 8.9 ([PS])

For even d, if strong invariant Chyy 4, (P) # 0,

then no Anderson localization of boundary states in bulk gap
Technically: Aizenman-Molcanov bound for no energy in bulk gap

Theorem 8.10 ([PS])
Forodd d = 3, if strong invariant Chyy 4, (A) + 0,
then no Anderson localization at ;1 = 0
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BBC for continuously periodically driven systems
BBC in time direction: stroboscopics Here: BBC in spacial direction
Lift t e S' = [0, 27) — H(t) of continuous gapped t € S' — H(t) in
0 C(S'.&4) > C(8'. Ag) =+ C(S", Ag) — 0
Then for polarization in direction d with adiabatic projection Pj4:
APd = 27 Ch{O,d}<PA) = ZWCh{o}(UA)

where 0-th component still time and [Ua]1 = Exp[Pa]o. Now

2T N . .
Chygy(Un) = —2r fo ot 7 (g (D) acH (D))

For d = 1, this is 27 times spectral flow of boundary eigenvalues. Thus
APy = —2r SF(teS' — H(t) by p)

namely charge pumped from valence to conduction states
For d > 1, spectral flow is in sense of Breuer-Fredholm operators
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Application to topological Floquet systems
Given t — H(t) = H(t)* € Ay piecewise continuous 2x-periodic family

Differentiable path of unitaries t — U(t) € Ag4 from

iotU(t) = H(t)U(t) , uo) =1
Evolution U = U(27) over period 27 called Floquet operator
Suppose € ¢ o(U) quasi-energy spectrum for 6 € [0,27) and set

hy = —(2ri)" logy(U)

Here log, natural logarithm with branch cut along r € [0, o0) — re*
By construction, U = e 27 Set

Ho(t) = 2H(2t), te[0,7]
A —2hy, te(m2n]

Now periodized time evolution Vj with V(0) = Vp(27) =1
P0tVy(t) = Hp(t) Vo(t),  Vp(0) = 1
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Invariants and BBC
There are new bulk invariant involving the time t = xp, e.g. strong inv.

Floguet operator U= U(27r) € T (Ayg) is unitary lift of U
Theorem 8.11 (with Sadel)
Lete’ ¢ o(U) ¢ o(U)

9o : S — [0, 1] smooth increasing with jump down by 1 at some e’

o~ (nd([Vs]1)) = [e2 9D,

If d = 2 reformulation as counting of edge channels

Topological insulators 8. Bulk-boundary correspondence WA PX]



9 Implementation of symmetries

This invokes real structure simply denoted by bar on # and B(H)

chiral symmetry (CHS) : JiHJ, = —H
time reversal symmetry (TRS) : S*HS, = H
particle-hole symmetry (PHS) : S;ﬁ Sp = —H

S, = €™ orthogonal on C25*1 with S = +1 even or odd

S, orthogonal on C2 with S2 = +1 even or odd

Note: TRS + PHS = CHS with J,, = S, S,,
10 combinations of symmetries: none (1), one (5), three (4)
10 Cartan-Altland-Zirnbauer classes (CAZ): 2 complex, 8 real

Further distinction in each of the 10 classes: topological insulators
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Periodic table of topological insulators
Schnyder-Ryu-Furusaki-Ludwig,Kitaev 2008: just strong invariants

j\d| RS|PHS|CHS| 1 | 2 |3 |4 |5 |6 | 7] 8]

0| O 0 0 Z Z

1 0 0 1 Z Z Z Z

o[ 1] 0o o 27, Zo | Zo | Z
1] +1 | +1 1 Z 27 Zo | Zo
2 0 +1 0 Zio 7 27 Zio
3| -1 +1 1 Lo | Zo Z 27

4 1] 0| 0 Zo | Zo | Z 27,
5 1] 1| 1 |2z Zo | 7o | Z

6| 0 —1 0 27 Zo | Zo | Z

7041 1] 1 27, Zo | 7o | Z
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Periodic table: real classes only
64 pairings = 8 KR-cycles paired with 8 KR-groups

j\d| RS|PHS|CHS| 1 [ 2 [ 3[4 ]|5 |6 | 7| 8|

0| +1 | O 0 27 Zo | Zo | Z
1] +1 | +1 1 Z 27 Zo | Zo
2 0 +1 0 Zio 7 27 Zio
3| -1 +1 1 Zo | Zo 7z 27

4/ -1 0 | 0 Zy | Z 27
5/ 1| 1] 1 |2z Zo | Zo | Z

6| 0 | -1] 0 27 Zo | Zo | Z

7041 =1 | 1 27 Zo | Zo | Z

Focus on system in d = 2 with odd TRS S = S;:

S = 1 S*HS = H
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Z> index for odd TRS and d = 2

Rewrite  S*HS = H = S*H'S with H' = (H)*

— S*(H"N!S=H'forneN — S*PIS=P

For d = 2, Dirac phase F = &11&; = F'and [S,F] =0

Hence Fredholm operator T = PFP of following type
Definition 7 odd symmetric <= S*T!S =T < (TS)! = -TS
Theorem 9.1 (Atiyah-Singer 1969)

F2(H) = {odd symmetric Fredholm operators} has 2 connected
components labelled by compactly stable homotopy invariant

Indz(T) = dim(Ker(T)) mod 2 € Zp

Application: Z, phase label for Kane-Mele model if dyn. localized
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Existence proof of Z,-indices via Kramers arg.

First of all: Ind(T) = 0 because Ker(T*) = SKer(T)
Idea: Ker(T) = Ker(T*T)

and positive eigenvalues of T*T have even multiplicity
Let T*Tv = Avand w = STv (N.B. A + 0). Then

T*Tw = S(S*T*S)(S*TS) Tv
= STT*Tv = ASTV = \w.
Suppose now i € C with v = pw. Then

Vv=puSTV = uSTaSTv = —|uPT*Tv = —|ul)v

Contradiction to v + 0.
Now span{v, w} is invariant subspace of T*T.

Go on to orthogonal complement
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Symmetries of the Dirac operator

d
D= X®11
j=1
Y1, .-, 7a irrep of Cg with yo; = —72; and o1 = 7211
In even d exists grading I = I with D = —I'Dl and 2 = 1
Moreover, exists real unitary ¥ (essentially unique) with

d=8-i|8]| 7 6 51 4 3 2 |1
y2 1|1 |1 1|1 -1] 1 1

y*Dy |D|-D| D | D | D|-D| D |D
rer r -X r -X

(D, T, X) defines a KR'-cycle (spectral triple with real structure)
(Kasparov 1981, Connes 1995, Gracia-Varilly-Figueroa 2000)

Topological insulators 9. Implementation of symmetries

97 /123



Index theorems for periodic table

Symmetries of KR-cycles and Fermi projection/unitary lead to:

Theorem 9.2
Index theorems for all strong invariants in periodic table

Remarks:

Result holds also in the regime of strong Anderson localization
2 7Z entries result from quaternionic Fredholm (even Ker, CoKer)
Links to Atiyah-Singer classifying spaces

Formulation as Clifford valued index theorem possible
Physical implications: case by case study necessary!

Example: focus on TRS d = 2 quantum spin Hall system (QSH)
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Spin Chern numbers [Pro]

Approximate spin conservation = spin Chern numbers SCh(P)

Kane-Mele Hamiltonian has small commutator [H, s;]

Also [P, s;] small and thus Ps;P|r.,(p) spectrum close to {—1,1}

= gpectral gap! Let P+ be two associated spectral projections

Proposition 9.3 ([Pro])
P+ have off-diagonal decay so that Chern numbers can be defined J

Hence P = P, + P_ decomposes in two smooth projections

Definition 9.4
Spin Chern number of P is SCh(P) = Ch(P;) J

By TRS, Ch(P) = 0 and thus SCh(P) = — Ch(P-)

Theorem 9.5 ([SB3])
Indo(PFP) = SCh(P) mod 2 J
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Spin filtered helical edge channels for QSH

Remarkable: Non-trivial topology SCh(P) persists TRS breaking!

General strategy: approximately conserved quantities lead to
integer-valued invariants which persist breaking of real symmetry

Further example:
Kitaev chain (Class D with Zo-invariant) has a winding number

Theorem 9.6
IfSCh(P) & 0, spin filtered edge currents in A  gap are stable w.r.t.
perturbations by magnetic field and disorder:

E Tr (O|xa(H ) 54l i[H, Xi] 1,52}10) = |A| SCh(P) + correct.

Resumé: Ind>(PFP) = 1 = no Anderson loc. for edge states

Rice group of Du (since 2011): QSH stable w.r.t. magnetic field
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10 Spectral flow in topological insulators

Theorem 10.1 (Laughlin 1983, Avron, Punelli 1992, Macris, [DS])
H disordered Harper-like operator on (?(Z?) @ C- with 1. € gap

H,, Hamiltonian with extra flux o € [0, 1] through 1 cell of 7?
Then for P = x(H < p)

SF(a € [0,1] — H, through u) = —Chygy2(P)
rr(H,,)
N
& T~
N
+1 /+:\—1
Iz -1 \J
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Phillips’ analytic definition (1996)

o(Ty)

th=0 & b 1 e . In=1
3 finite partiton0 =t <t < ... < ty_y <ty =1 0f [0,1] and
an <0 < by with t e [{,— 1,1‘,,] — x(Tt € [an, bn]) continuous. Set:

SF(te [0,1] — Tp) Z Try (x(Ti,_, € [@n,0]) — X(Ty, € [@n,0]))
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Theorem 10.2 (Phillips 1996)

SE(t € [0,1] — T;) independent of partition and a, < 0 < bp.
It is a homotopy invariant when end points are kept fixed.

It satisfies concatenation and normalization:

SF(te [0,1] - T+ (1 —-2t)P) = —dim(P) for TP =P

Theorem 10.3 (Lesch 2004)
Homotopy invariance, concatenation, normalization characterize SF

v

Theorem 10.4 (Perera 1993, Phillips 1996)
SF on loops establishes isomorphism w1 (F%) = 7Z
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Theorem 10.5 (Phillips 1996)
O0gapofH=H*and P = x(H <0). Ifte[0,1] — H; = Hf with
(i) Hy = UHyU* for unitary U
(ii) 0 in essential gap of H; for all t € [0, 1]
then
SF(te [0,1] — H, through o) — — Ind(PUP)

Exact sequence interpretation: Mapping cone associated to U:
M = {te[0,1]—» Arc A+K : Ay = U*A1U, Ai—Aye K}
with0 - SK — M 5 A — 0. Now K;(SK) = Ky(K) = Z and
Exp[Plo = [exp(2mi Lift(P))]y = [exp(2ri(P + t U*[P, U]))]4
Then for pairing with odd Fredholm module (#, U)
(H,U), [Plo) = <(J dt®Tr, 0t) , Exp[Plo) = SF(2P—1+t U*[2P-1,U])
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Proof of bulk-boundary in d = 2 (idea Macris 2002)

Based on gauge invariance and compact stability

A 720
|
| AL = 27
L] L] ,—D—- L] L]
!
|
'
i AgL = 27«
L] L] L] L]
i
'
'
Saaacossssssscacssanass I‘-.-.-.-.--.-...- O O X,
H ' Ay = 27 :
° H ° ® b > ° ° a >
. ® T T T ~ ~ B -
3 VIS 77 .
H IS H ny
H s eeres H
: b :
3 i B =2mra 3
g 12y 3
H VS H
4 AL B
° ° &Ll L L g ° °
: (=2,=-1)1 AnL = :
: | :
H | H
H ! H
: | :
H ! H
i i :
° H 3 *~ — »— — . o :
F Apr =0 ]
A ' 3
t--l-v -------------------------------------------------------------------------- -
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Exact sequence behind the Laughlin argument

Theorem 10.6
With £(Ap) = C*(SB, S8, Py = |0%(0|), split exact sequence

0 — K b &) 5 A — 0

j
Moreover, £(Az) = C*(SP*, S2*) for a € R\Z where SIB"“ extra flux

o

Thus Ind = 0 and Exp = 0 so that

Ko(K) = Z — "+ Ky(E(A2)) = Z° — ™+ Ky(Ap) = 72

Ind Ex

sl

Ki(E(A)) = 72~ Ky(K) = 0
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Z» invariant and Z, spectral flow for QSH
Theorem 10.7

a € [0,1] — H(a) inserted flux in Kane-Mele model (breaks TRS)
Indy(PFP) =1 = H(a = }) has TRS + Kramers pair in gap

o (Ho)|

1
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Spectral flow in higher dimensions

For d even, index theorem used Dirac (even Fredholm module)

= (X = —rDr = |D|<° g) - bl

Then strong invariants:
Chy1,.ay(P) = Ind(P.FP.)

Aim: Calculate this as a spectral flow upon inserting monopole

Introduce non-abelian skew-adjoint gauge potential for k = 1,...,d:

[D7 fyk] ~ R_1

where R? = D? = X2. One has A} = F'AQT diagonal. Set

VY = 0k — AY on L2(RY, CN)
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Monopole translations

Proposition 10.8
ForveRY, VS =i, vV is essentially selfadjoint and

(W )(x) = My(x)p(x+v),  pelPRI,C)
where x e R9\{tv : t e [-1,0]} — M%(x) € U(2N) is continuous with

lim M?(X) = 1on
[x|—00

Phase factor has rotation covariance w.r.t. Pin Group representation:
oMy (O*x) g5 = Mg, (x)

and

« 1—a
GeVv G = eV

Restriction eV to ¢2(29, CN) gives monopole translations Sg
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Proposition 10.9
Sy — S,? compact operator

Suppose Hamiltonian given by polynominal in shifts and potential
H = P(Sy,...,Sq)+ W

Insertion of monopole into Hamiltonian gives
H, = P(S{,...,S§)+ W

Facts: a — H, — u path of selfadjoint Fredholms and H; = G*Hy G

Theorem 10.10 (with Carey)
Let d bei even

SF(ae [0,1] — H, through u) = — Chyy,..¢y(P)

Odd dimensional version involves “chirality flow”
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11 Dirty superconductors
Disordered one-electron Hamiltonian h on H = (2(7Z?) ® C2s*!

¢ = (cp,) anhilation operators on fermionic Fock space F_(H)
Hamilt. on F_(H) with mean field pair creation A* = —A € B(H)

Hence BAG Hamiltonian on H,, = H ® C?

Ho- ("o A
—A —h+pu
Even PHS (Class D)

— 0 1
S:; HH Sph - _HH’ 5 Sph - (1 0)
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Class D systems

spec(H,,) = —spec(H,,) and generically gap or pseudo-gap at 0

Theorem 11.1
Gibbs (KMS) state for observable Q = dI'(Q)
.1

— Tr Qe PH=uN)) T (f5(H,) Q
Zo T H)( > 1 (T3 (Hy) Q)

Example p + jp wave superconductor with H = ¢(2(Z?)
/'I=S1-l—S;k—i-Sz—l-Sél< Ap+ip = 0(S1— 31 + (32—82))

Then P = x(H, < 0) satisfies Ch(P) =1foru>0andd >0
Conjecture (Kubo missing) Quantized Wiedemann-Franz

fn = 5 Ch(P) T + O(T?)
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Spectral flow in a BdG-Hamiltonian

Flux tube in two-dimensional BAG Hamiltonian
St Ha Sy = —H_q , S2 = +1
Then S% H, S, = —U*H;_,U so that
o(Ha) = —o(Ho-a) = —o(Hi_a)
PHS only for o = 0, 3,1 and thus Indz(H; ) wel-defined
Theorem 11.2 ([DS])
Ind(PUP)mod 2 = Indg(H%)

or: odd Chern number implies existence of zero mode at defect

These zero modes are Majorana fermions (Read-Green 2000)

Worth noting: S2 = —1 = Ind(PUP) even = no zero mode
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Spin quantum Hall effect in Class C

Theorem 11.3 (Altland-Zirnbauer 1997)
SU(2) spin rotation invariance [H,s] = 0
= H = H.,®1 with odd PHS (Class C)

S 0o -1
S::, Hred Sph = _Hred ) Sph = (1 0 )

Example d + id wave superconductor with h as above and

Ngiig = 6 (i(S1+Sf—8—8%) +(S1—S)(S:— S5))s°
Again Ch(P) =2foré >0and >0

Theorem 11.4

Spin Hall conductance (Kubo) and spin edge currents quantized
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Current aims:

e analysis of topology associated to spacial reflections, etc.
e bulk-edge correspondence in real cases

o further investigation of physical implications of invariants
e stability of invariants w.r.t. interactions

e analysis of bosonic systems and photonic crystals
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