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Abstract
In this bachelor’s thesis the impact of the jet energy scale (JES) on the reconstruction
of top pair (tt̄) events at the ATLAS experiment is examined in the context of a
kinematic fitting method. Based on a Maximum Likelihood approach, simulated tt̄
events in the semileptonic decay channel with one electron and four jets are fitted
with the JES as a free parameter. A requirement of equal top and antitop masses
or a Breit-Wigner function centered at a fixed value for both top masses are used
as kinematic constraints, respectively.
The estimated JES extracted from the first fit is used as a new a priori probability
for a second fit. While the most significant improvement of the energy resolution
is achieved by the first fit, the second fit particularly yields higher reconstruction
efficiencies and a better top mass reconstruction. The two steps of this fitting
procedure reduce the influence of the JES on the reconstructed variables.

Zusammenfassung
In dieser Bachelorarbeit wird der Einfluss der Jet-Energie-Skala (JES) auf die Re-
konstruktion von Top-Paaren am ATLAS-Experiment mit einem kinematischen Fit
untersucht. Dabei werden simulierte, semileptonisch in ein Elektron und vier Jets
zerfallende tt̄ Ereignisse nach dem Maximum-Likelihood-Prinzip kinematisch gefit-
tet, wobei die JES als freier Parameter variiert wird. Als kinematische Zwangsbe-
dingungen werden entweder gleiche Massen des Top- und Antitop-Quarks oder eine
Breit-Wigner-Verteilung beider Topmassen verwendet.
Die Bestimmung der geschätzten JES aus dem Fit dient als neue a priori Wahr-
scheinlichkeit für einen zweiten Fit. Während sich im ersten Fit die Energieauflösung
am deutlichsten verbessert, erzielt der zweite Fit vor allem höhere Rekonstruktions-
effizienzen und eine bessere Topmassen-Rekonstruktion. Insgesamt verringern die
beiden Schritte des Fittens den Einfluss der JES auf die rekonstruierten Größen.
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1 Introduction

The question about the world’s constitution of smallest components has mattered
to humans from the Greek antiquity until now. The principles of experiments in
the field of High Energy Physics are collisions of strongly accelerated particles and
the detection of their decay products from which conclusions about the particles
and processes can be drawn. The smaller the scale of investigation is, the higher
energies and larger colliders are required to study the properties and interactions
of elementary particles in collision experiments. The Large Hadron Collider (LHC)
provides the potential to test today’s Standard Model of Particle Physics (SM) at
high precision and search for the up to now undetected Higgs bosons, but also to
look for new physics beyond the SM, for example, testing supersymmetric theories
and searching for Dark Matter.

Especially the top quark with its extremely short lifetime of the order of 10−25 s and
huge mass of the order of a gold atom is a field of strong interest. For example,
it is important to measure its mass very precisely because the top mass constrains
the prediction of the SM Higgs boson mass. But one of the dominating systematic
uncertainties at hadron colliders is the determination of the jet energy scale (JES).
In particular in first data, top events can be used for the calibration of the detector.
In this thesis the jet energy scale is therefore included in a kinematic fit which can
be used for the reconstruction of top-antitop pairs.
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1 Introduction

The following chapter gives an introductory review of the Standard Model of Par-
ticle Physics with emphasis on the top quark. Chapter 3 will describe the ex-
perimental setup of the ATLAS detector at the LHC and the jet energy scale is
introduced. Chapter 4 contains a description of the events generated by a Monte
Carlo simulation and used as ”measured data” after smearing. In chapter 5 the pro-
cedure of the kinematic fit based on a Likelihood approach is presented. Chapter 6
shows the results of the fit comparing the energy resolution, the reconstructed top
mass and the reconstruction efficiency before the fit and after two steps of fitting,
respectively. Finally, the procedure and the results are summarized and an outlook
for future studies is given in chapter 7.
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2 The Top Quark in the Context of
the Standard Model

This chapter gives a short introduction to the field of physics this analysis of top-
antitop-decays is based on. A summary of the Standard Model of Particle physics
is followed by a discussion of the properties of the top quark and its production and
decay processes.

2.1 A Brief Summary of the Standard Model

The Standard Model of Particle Physics [1] describes particles and their interac-
tions. It is based on a quantum field theory and gauge symmetries which lead to the
fundamental interactions as the electromagnetic, weak and strong forces. It com-
prises of twelve initially massless fermions (spin s = 1/2), namely six quarks and six
leptons together with their antiparticles. The interactions are mediated by gauge
bosons (spin s = 1). The particles acquire mass by the so-called Higgs mechanism.
However, the manifestation of the Higgs field – the Higgs boson – has not yet been
observed.

2.1.1 Particles

The fermions (spin s = 1
2
) are arranged in three families, each, forming left-handed

weak isospin (I3) doublets and right-handed singulets. While each lepton doublet
contains one uncharged neutrino (νe, νµ, ντ ) and one lepton with the elementary
charge Q = e (e, µ, τ), both quarks in a quark doublet are charged. Those with pos-
itive electric charge Q = +2

3
are called up-type (u, c, t), those with negative charge

Q = −1
3
are called down-type (d, s, b). The masses of the particles range from the

nearly massless neutrinos over me ≈ 0.511 MeV/c2 to mt = 173.1±1.3 GeV/c2 [2] as
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2 The Top Quark in the Context of the Standard Model

can be seen in tab. (2.1). The antiparticles have the same mass1 as the correspond-
ing particles, but opposite charge and weak isospin. All particles are represented by
fermionic or bosonic fields, respectively.

Table 2.1: Mass and lifetime of leptons and quarks [3], mt from [2].

Lepton Mass m [MeV] Lifetime τ Quark Mass m [MeV] Lifetime τ [s]
e 0.510998910(13) ≥ 4.6 · 1026 yr u 1.5-3.3
µ 105.658367(4) 2.197019(21) · 10−6s d 3.5-6.0
τ 1776.84(17) 290(1).6 · 10−15s c 1270+700

−110

νe ≤ 2 · 10−6 s 104+26
−34 ∼ 10−23

νµ ≤ 2 · 10−6 t 173100(1300) 5 · 10−25

ντ ≤ 2 · 10−6 b 4200+170
−70

The following table (2.2) gives an overview of the particle properties like the spin
s, the third component of the isospin I3, the electromagnetic charge Q, the weak
hypercharge Y = 2(Q− I3) and the colour charge C.

The weak q′ and the mass eigenstates q are not equal, but they are linear combi-
nations of each other. The coefficients are written in a matrix. In case of mixing of
the first two quark generations only, this is the 2× 2 Cabibbo matrix (1963) with
the Cabibbo angle θC . In 1973 Cabibbo, Kobayashi and Maskawa extended the
quark2 mixing to three generations with the so called CKM matrix [4]. While a
unitary 2 × 2 matrix contains only two real parameters, a 3 × 3 matrix has three
real and one imaginary parameter, which is responsible for CP-violation. The CKM
matrix V parametrizes the mixture of mass eigenstates d, s, b to weak eigenstates3

d′, s′, b′: 


d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b




Unitarity of V interdicts flavour changing neutral currents.

1if CPT is conserved
2Neutrino mixing is described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
3The mixture refers to the down-type quarks, but could equivalently also be based on the up-type
quarks.

4



2.1 A Brief Summary of the Standard Model

Table 2.2: Fundamental particles in the Standard Model [3] and their properties
spin s, weak isospin I3, electric charge Q, weak hypercharge Y and colour
charge C. q′ denotes the weak eigenstates.

Particles s I3 Q[e] Y C

Fermions(
νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

1
2

(
+1

2

−1
2

) (
0
−1

)
-1 0

(
u
d′

)

L

(
c
s′

)

L

(
t
b′

)

L

1
2

(
+1

2

−1
2

) (
+2

3

−1
3

)
+1

3
r, g, b

eR µR τR
1
2

0 -1 -2 0
uR cR tR

1
2

0 +2
3

+4
3

r, g, b
d′R s′R b′R

1
2

0 −1
3

−2
3

r, g, b
Gauge Bosons

γ 1 0 0 0 0
Z0 1 0 0 0 0
W± 1 ±1 ±1 0 0
8 g 1 0 0 0 r, g, b

2.1.2 Interactions

The theory of the electromagnetic, weak, and strong interactions is mathematically
expressed by local gauge symmetries, i.e. the invariance of the Lagrangian under
a transformation of a certain Lie-group. Relevant Lie-groups are here the (special)
unitary groups. The dimension of any SU(N) group is N2 − 1 which equals the
numbers of generators and gauge fields identified with the interaction.
In case of quantum electrodynamics the corresponding Abelian Lie-group U(1)em

consists of phase transformations Ψ(x) → Ψ′(x) = eiαΨ(x) and is connected to
the field Bµ with a coupling constant g. On the contrary, SU(2)weak is generated
by the three Pauli matrices σi with i ∈ 1, 2, 3 which do not commute. Hence, the
SU(2) is not Abelian. There are three gauge fields W i

µ with the coupling strength
g′. The weak and electromagnetic interaction are unified to the symmetry group
SU(2)L ⊗ U(1)Y which contains the U(1)em as a subgroup. L denotes the exclusive
coupling to left-handed particles and Y = 2(Q − I3) is the weak hypercharge. The
exchange bosons Aµ and Zµ are obtained from linear combinations of the gauge
fields Bµ and W 3

µ . The angle between the two is called Weinberg angle with
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2 The Top Quark in the Context of the Standard Model

sin2(θW) = g′2
g2+g′2 = 0.23. It represents the electroweak mixing:

W±
µ =

1√
2

(
W 1

µ ∓W 2
µ

) ↔ W± (2.1)

Aµ = +Bµ cos(θW ) + W 3
µcos(θW) ↔ γ (2.2)

Zµ = −Bµ sin(θW ) + W 3
µ cos(θW ) ↔ Z0 (2.3)

Breaking the SU(2)L ⊗ U(1)Y symmetry by the ground states leads to the mass
creating Higgs mechanism. An additional field – the Higgs-field – needs to be in-
troduced. The coupling strength of a particle to the Higgs-field is proportional to
its mass.
The symmetry group SU(3)C of quantum chromodynamics is generated by the eight
Gell-Man matrices λa. Here, the index C indicates the colour charge red, green,
blue. There are eight gluon fields Ga

µν , with a ∈ 1, ..., 8 which carry a colour charge
themselves. Combining the electroweak and strong interaction results in the sym-
metry group of the Standard Model:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y

All particles participate in the weak interaction, whereas only charged particles can
interact electromagnetically. Gluons only couple to colour-charged particles, i.e., to
quarks and to themselves. While the weak gauge bosons can couple to themselves,
too, the photon, however, is uncharged so that a self-interaction is not possible.
Mathematically, this is due to the Abelian nature of the group U(1).
The masses and total decay widths of the exchange bosons as well as the relative
interaction strength are listed in table (2.3). Due to renormalization of the charge,
the coupling strengths are not constant, but they run with the energy. It increases
for higher energies in the electromagnetic case. The strong coupling, by constrast,
diverges at low and decreases at high energies which is known as confinement and
asymptotic freedom. For this reason no free quarks can be observed.

Despite the excellent accordance of the SM predictions with current precision ex-
periments the Standard Model is not regarded as a complete theory. Neither the
unification of the electromagnetic, weak and strong interaction nor the implementa-
tion of gravity can be accomplished within the framework of the SM. Furthermore,
the matter-antimatter-imbalance and Dark Matter require more sophisticated the-
ories which are to be tested at the LHC.

6



2.2 Overview over the Top Quark

Table 2.3: Coupling strenght, mass and lifetime of the gauge bosons [3].
Particle γ (photon) Z0 W± g (8 gluons)
Interaction electromagnetic weak weak strong
Relative strength 10−2 10−6 10−6 1
Mass m [GeV] 0 91.1876(21) 80.398(25) 0
Total width Γ [GeV] 0 2.4952(23) 2.141(41) 0

2.2 Overview over the Top Quark

Although the top quark had already been predicted when the 3 × 3 CKM matrix
was postulated in 1973, it was only discovered in tt̄ pair production in 1995. The
CDF [5] and D0 collaborations [6] found the heaviest and last of the six quarks
at the Tevatron proton antiproton collider in Run I with

√
s = 1.8 TeV. Recently

in 2009, both collaborations stated the dicovery of electroweak single top quark
production at the Tevatron in Run II with

√
s = 1.96 TeV [7] [8]. The large mass of

mt = 173.1 GeV/c2 and the extremely short lifetime of τt ≈ 5 · 10−25 s of this quark
impeded its discovery. In the following, the properties, production mechanisms and
decay schemes of the top quark will be described.

2.2.1 Top Quark Properties

The top quark is the weak isospin partner of the bottom quark. Although not
measured experimentally, it is assumed to have a charge of Q = +2

3
and a spin of

s = 1
2
.

Mass There are different definitions for the top mass. One has to distinguish
between the on-shell or pole mass and the concept of mass in various renormalization
schemes. On the one hand, the pole mass is understood as the real part of the
complex pole

√
p2 = mt− i

2
Γt of the quark propagator in a finite-order perturbation

theory [9]. On the other hand, the Modified Minimal Substraction scheme (MS)
removes infinities and finite terms from the divergent mass as a renormalization.
The pole and MS mass can differ by about 10 GeV [9].
Experimentally, the top mass is typically reconstructed from its 4-momentum m =√

pµpµ/c2 by measuring the 4-momenta of the particles the top quark decays into (see
section 3.3). Results from both Tevatron experiments CDF and D0 were combined

7



2 The Top Quark in the Context of the Standard Model

in order to yield the current world average of [2]

mworld
t = (173.1± 0.6± 1.1) GeV/c2.

The uncertainties refer to the statistical and systematic uncertainties, respectively.
The main contribution to the systematic uncertainties originates from the jet energy
scale (s. section 3.3). Comparing the total uncertainty

σtot =
√

σ2
stat + σ2

syst = 1.25 GeV/c2

to the top mass yields a very high relative precision which exceeds the precision of
other quark masses by far:

σrel =
σtot

mt

= 0.72%

Lifetime Due to its large mass, the top quark can decay into an on-shell W-boson
and a b-quark with Vtb ≈ 1 which results in an extremely short proper lifetime of

τt =
1

Γt

' 5 · 10−25s < 3 · 10−24s ' τhad =
1

ΛQCD

.

Thus, the top quark decays before it can form hadrons. Therefore, toponium bound
states (mesons of t and t̄) do not exist. The total width Γ = ~

τ
is proportional to

|Vtb|2 and depends on the ratio mW

mt
. Neglecting the bottom mass and taking into

account the leading order (LO) only, the width reads as follows [10]:

Γ(t → Wb) =
GF

8π
√

2
m3

t |Vtb|2
(

1− 3

(
mW

mt

)4

+ 2

(
mW

mt

)6
)

The result according to [9] is ΓBorn
t = 1.44 GeV. The QCD corrections can be written

in an expansion of the Born approximation in terms of αs:

Γt = ΓBorn
t (1− 0.81αs − 1.81α2

s)

Owing to the running coupling αs = αs(mt), the width increases significantly with
the top mass, e.g., [3] [11]

Γt(mt = 160 GeV/c2) = 1.02 GeV/c2, Γt(mt = 180 GeV/c2) = 1.56 GeV/c2.

8



2.2 Overview over the Top Quark

2.2.2 Top Quark Production at Hadron Colliders

Top quarks can be produced in tt̄ pairs or as a single top quark.

tt̄ Pair production Top pairs are produced via the strong interaction, either by
quark-antiquark annihilation or by gluon fusion. At high energies, this can be de-
scribed by perturbative QCD interactions of quarks and gluons as the constituents
of the colliding hadrons [12]. In leading order there are three Feynman diagrams
with gg → tt̄ and one for qq̄ → tt̄, which are shown in fig. (2.1).

Figure 2.1: Leading order diagrams for strong tt̄ production with qq̄ (left) annihila-
tion and gg fusion [13].

Figure 2.2: Parton density functions of Q =
100 GeV [14].

The relative contributions to the
total cross section depend on the
center-of-mass energy because of
the parton density function. The
Bjorken-x represents the ratio of
a parton momentum to the to-
tal momentum. At small x the
parton distribution of the gluons
dominates over the quarks. That
means the tt̄ production is dom-
inated by qq̄ annihilation at the
Tevatron. Conversely, at the LHC
a predominant production via gg-
fusion is expected on account of
the higher center-of-mass energy.
The relative contribution of both
production mechanisms are sum-
marized in table (2.4) [9] and the
parton distributions can be found
in fig. (2.2).
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2 The Top Quark in the Context of the Standard Model

Table 2.4: Contribution of qq̄ annihilation and gg fusion to the total tt̄ production
cross section.

experiment s [TeV] qq̄[%] gg[%]
Tevatron Run I 1.8 85 15
Tevatron Run II 1.96 90 10
LHC (2009/10) 10
LHC (2010?-..) 14 10 90

Single top Single top quarks can be produced via the weak interaction. The
processes can be mediated by a W-boson in the t- or s- channel. An associated
production of a top quark and W-boson is also possible [10]. All these processes are
proportional to |Vtb|2 which allows for its direct measurement. In addition, the top
quarks produced in this way are highly polarized so that charged weak currents can
be investigated. But these signatures suffer from a larger background and a smaller
cross section compared to the tt̄ production.

2.2.3 Top Quark Decay

From unitarity of the CKM matrix

(V ∗V )ik =
∑

j

V ∗
ijVjk = δik (2.4)

for i = k = t and j = d, s, b it can be concluded that

V ∗
tdVdt + V ∗

tsVst + V ∗
tbVbt = |Vtd|2 + |Vts|2 + |Vtb|2 = 1. (2.5)

V is approximately diagonal which becomes apparent in theWolfenstein parametriza-
tion [15]. Measurements [16] revealed Vtb ∈ [0.9990, 0.9993]. Consequently, top
quarks decay almost exclusively into an (anti-)bottom quark and a W± boson. Sub-
sequently, both b-quarks of the tt̄ decay hadronize to jets which contain B mesons
and can thus be distinguished from jets originating from light quarks. Further, each
W-boson can either decay into two light quarks q1, q2 which then form jets (hadronic
decay), or into a charged lepton and its corresponding antineutrino (leptonic decay).
Since both W-bosons decay independently and the order of the first and second W-
boson does not influence the final state, the two decay channels can be combined in
three ways: dileptonic, semileptonic (lepton+jets) and all-jets. The branching ra-

10



2.2 Overview over the Top Quark

tios (BR) for the combined tt̄ decays are obtained from multiplying the probabilities
of the independent channels, taking into account the colour factors N lep

C = 1 and
Nhad

C = 3 (see table 2.5).

Table 2.5: Branching ratios of the final states from a decay of a W+, analogously
for W−.

Final states e+νe µ+νµ τ+ντ ud cs̄
NC 1 1 1 3 3
BR 1/9 1/9 1/9 1/3 1/3

The τ + ντ final states are difficult to identify and they are therefore neglected.
Consequently, the probabilities of leptonic and hadronic decays are:

P (lep) =
2

9
P (had) =

2

3

In the following, the three different channels are characterized [9]:

• dileptonic: Both W-bosons decay leptonically (e or µ) so that the branching
ratio BR =

(
2
9

)2
= 4

81
is rather small. The signature consists of two oppo-

sitely charged, isolated leptons with a high transversal momentum pT , at least
two jets from b-quarks and a large amount of missing transversal energy ET

from the undetected neutrino. Although the clear signature has little back-
ground, the missing ET of the two unobserved neutrinos prevents a complete
reconstruction.

• semileptonic: If one W-boson decays leptonically and the second hadroni-
cally, the branching ratio BR = 2 · 2

9
2
3

= 8
27

is larger, but there is also more
background. The neutrino momentum can be reconstructed from momentum
and energy conservation. The signature is compound of one charged isolated,
high pt lepton, at least four jets (two originating from b-quarks) and large
missing energy.

• all-jets: The branching ratio for the hadronic decay of both W-bosons BR =(
2
3

)2
= 4

9
is the highest, but a large QCD multĳet background superposes the

at least six jets signature. All particles in the final state can be detected so
that no missing energy needs to be taken into consideration.

The analysis presented in the following has been performed assuming the semilep-
tonic channel with one electron and four jets.

11
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3 The ATLAS Detector at the LHC

The Large Hadron Collider (LHC) [17] is a proton-proton (pp) collider at CERN
(Geneva). It is built to search for the up to now undetected Higgs boson, to look
for physics beyond the Standard Model (SM) like supersymmetry, Dark Matter and
extra dimensions and to test the SM at high precision. The LHC accelerator was
already conceived in the 1980s and approved for construction by the CERN Council
in 1994. The first particle beam was accelerated in September 2008 and the LHC is
expected to provide pp collisions in the fall 2009.
The LHC was designed to collide two proton beams at a center-of-mass energy of√

s = 14 TeV at an instantaneous peak luminosity of 1034 cm−2s−1. Due to limited
currents in the magnets, the LHC is forced to operate at lower energy (10 TeV)
and less luminosity in the beginning. The luminosity is supposed to be achieved by
2808 proton bunches with approximately 1011 protons in each bunch. Assuming the
design technical characteristics [17], a bunch crossing is expected every 25 ns with
approximately 23 interactions [18] per bunch crossing. Thus, nearly one billion pp
interactions per second are expected.
Before entering the 27 km circumference LHC accelerator, the protons are pre-
accelerated in a chain of several smaller linear and ring accelerators as shown in
figure (3.1). The particles are accelerated by radio frequency cavities located along
the beam pipe with an ultrahigh vacuum of 10−10 mbar. While dipole magnets bend
the beam around the ring, quadrupole magnets are responsible for the focusing. The
necessary strong magnetic fields are realized by superconducting coils which require
as low temperatures as 1.9K. This cooling is obtained with superfluid helium.
Four experiments are located at the four interaction points along the beam pipe

of the LHC.

• ALICE (A Large Ion Collider Experiment) [20] collides lead ions and
produces a quark-gluon-plasma in order to study the conditions shortly after
the Big Bang before the confinement of gluons and quarks.

• LHCb (Large Hadron Collider Beauty experiment) [21] focuses on the

13



3 The ATLAS Detector at the LHC

Figure 3.1: CERN accelerators [19]. The particles are pre-accelerated before entering
the LHC.

interaction of b-quarks to investigate the CP violation and matter-antimatter-
asymmetry in the B-sector. Several sub-detectors detect mainly forward par-
ticles.

• CMS (Compact Muon Solenoid) with TOTEM (TOTal Elastic and
diffractive cross section Measurement) [22] is one of the two general-
purpose detectors. The trajectories of charged particles are bent by a 4T
magnetic field produced by a superconducting solenoid coil. They are tracked
by strip and pixel silicon sensors. Furthermore, there are electromagnetic and
hadronic calorimeters and muon detectors (drift tubes, cathod strip chambers
and resistive plate chambers). With a length of 21m, 15m in diameter and a
weight of 14000 t, CMS is smaller and heavier than the ATLAS detector.1

• ATLAS (A Toroidal LHC Apparatus) with LHCf (forward) [23] is also
a general-purpose detector. 44m long and 25m in diameter, ATLAS is the
largest detector for particle physics ever built. It weights 7000 t. Its properties
will be discussed in the following chapter in more detail. LHCf consists of two
detectors which measure cascades of particles similar to cosmic rays in the

1Therefore, it earns the name ”compact”.
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3.1 The ATLAS Detector

very forward region.

ATLAS and CMS are two multi-purpose detectors with the same aims of studies,
but with different techniques in order to cross-check each other’s results.

3.1 The ATLAS Detector

ATLAS [18] consists of several subdetectors (see fig. 3.1): the inner detector, the
calorimeters, the muon spectrometer, and the solenoidal and toroidal magnets.
The innermost part contains the pixel detector with over 80 million rectangular pix-
els. These provide a spatial resolution of the order of µm. The Semi-Conductor
Tracker (SCT) uses layers of silicon microstrip sensors and has 6.3 million read-
out channels. The Transition Radiation Tracker (TRT) consists of 4mm diameter
straw tubes. Pions and electrons traversing the detector can be distinguished by
their transition radiation. The timing of the pulse allows the determination of the
distance between the particle track and the wire with a precision of 0.17mm. In
general, tracking and vertexing belong to the identification of particles.
There are different types of calorimeters. The Liquid Argon Calorimeter can be
specified in the electromagnetic and hadronic one and the Liquid Argon Forward
Calorimeter. Furthermore, there is a Hadronic Tile Calorimeter. In sampling
calorimeters, passive absorber material and active material alternate. The active
medium is equipped with a read-out system and it can be realized by scintillators,
semiconductors or gas chambers. Alltogether they form the calorimeter system.
It surrounds the inner detector and measures the energy deposited by electrons,
muons, photons and hadrons, respectively, based on their interaction with matter.
The muon spectometer as the outermost layer measures the momenta of muons with
a precision of σpT

pT
≤ 10 % [24]. Divided into high precision and trigger chambers, it

consists of gas-filled Monitored Drift Tubes (MDT) for the determination of muon
positions by the drift time of electrons, the Thin Gap Chambers (TGC) for the
identification of energetic muons, Cathode Strip Chambers (CSC) for the muon tra-
jectories and Resistive Plate Chambers (RPC) with a good timing resolution.
The central solenoid with a peak magnetic field of 2T is located outside of the inner
detector. A large system of air-core toroids is arranged outside the calorimeter vol-
ume. The inhomogenous magnetic field with a peak in the end-cap regions of ∼ 1 T

bends the trajectory of the muons.
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3 The ATLAS Detector at the LHC

Figure 3.2: The ATLAS detector with the inner detector, the electromagnetic and
hadronic calorimeters, the muon system and the toroidal and solenoidal
magnets.

3.2 Energy Resolution

There are different contributions to the uncertainty of the energy measured in the
calorimeter. As the deposited energy E is proportional to the number of ionized
particles N and counting experiments follow Poisson statistics (σN =

√
N), the

relative statistical error of the energy reads:

σstat
E

E
=

a√
E

where a stands for statistical fluctuations like intrinsic shower fluctuations and pho-
toelectron statistics [3]. In addition, a constant term b takes systematic uncertainties
such as detector non-uniformity and calibration inaccuracy into account. Moreover,
a noise term c is due to instrumental effects like pedestal shifts so that the relative
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energy uncertainty of the calorimeter is hence given as:

σE

E
=

a√
E
⊕ b⊕ c

E
≡

√
a2

E
+ b2 +

c2

E2
(3.1)

The term c
E
can be neglected at high energies so that the systematic term dominates.

The noise term, on the contrary, has the largest influence at lower energies. The
most important contribution to the systematic uncertainty - the jet energy scale -
will be defined in the next section.

3.3 Jet Energy Scale

The energy recorded by a calorimeter is not necessarily the correct energy of a jet,
but it can be stretched or clinched by a factor, the so-called Jet Energy Scale (JES)
which is specific for each detector and for the calibration, the jet algorithm and
clustering. So the measured energy Em must be scaled with the JES α:

Em → Em

α
.

For calibrating the JES in an experiment, the knowledge of the W mass can be used
to scale the energy of two light quarks as pW = pq1 +pq2 and mW =

√
(pq1 + pq2)

2 =

80.4 GeV/c2. This usage of the W mass constraint is one kind of in-situ calibra-
tion. The JES uncertainty can be sub-divided into more specified components as
in analyses of the Tevatron [2]. But several of the JES contributions must also be
taken into consideration at other hadron colliders. The following listing gives some
examples for experiment-independent JES uncertainties:

• uncertainties from the in-situ calibration;

• uncertainties arising from different detector responses for b-jets and light-quark
jets including jet identification and b-jet tagging;

• the modeling of b-jets, light-quark fragmentation and out-of-jet/ out-of-cone
corrections influences the interpretation of the JES;

• the calibration data sample limits the JES accuracy.
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4 Generation of the Events

4.1 Generation of The Monte Carlo Sample

The following analysis uses Monte Carlo Samples (MC) of tt̄ decays in the semilep-
tonic channel (with an electron and four jets) on tree level. They are generated
by MadEvent [25] which is based on MadGraph [26]. All Feynman rules for pro-
cesses in first order of perturbation theory are implemented in MadGraph. After
the choice of a model (here SM) and an initial and final state, MadGraph calculates
the matrix elements on tree level for each process between those two given states
which are allowed according to the chosen model. Subsequently, the square of the
absolute value of the matrix elements is integrated over the phase space using Monte
Carlo techniques. The amplitudes are complicated functions of the momenta with
sharp peaks in different regions of the phase space. Hence, an efficient numerical
integration requires an identification of the position of those peaks and a mapping
onto different sets of variables, called ”channels”. The process-specific information
about the mapping is delivered to the multi-purpose generator MadEvent. These
samples are understood as the ”true” data set.

4.2 Smearing of the Energies

Neglecting the terms b an c in eq. (3.1) and assuming that the true energy Etrue is
known1 we get an energy resolution of

σE√
Etrue

=
E − Etrue√

Etrue

(4.1)

1as it is the case with Monte-Carlo samples
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4 Generation of the Events

The ”measured”2 values are produced by smearing the generated jet energies (from
light and b-quarks) according to a Gaussian distribution with ajets = 50%, electron
energies with ael = 10%. According to the simplified energy resolution (4.1), the
width is σ = a·√Etrue. Random numbers are generated to produce a Gauss function
centered at the true energy Etrue with a width of σ. Then these values are scaled
with the jet energy scale (JES) α so that the probability P for the ”measured”
energy Em reads:

P (Em) = α · Esmeared (4.2)

= α · 1

σ
√

2π
· e−

(Em−Etrue)2

2σ2

= α · 1

a
√

2πEtrue

· e
− (Em−Etrue)2

2a2Etrue

(4.3)

Afterwards, the momenta are scaled with the ratio of the absolute values of the
measured and true 3-momenta:

β :=
|~pm|
|~ptrue| =

√
E2

m −m2

√
E2 −m2

(4.4)

→ pmeasured = (Em, β · px,true, β · py,true, β · pz,true)

This ensures that the measured angles

η := ln

(
tan

(
θ

2

))
and

φ := arctan

(
py

px

)

are equal to the true ones. The z-axis is defined as the beam axis. η is called the
pseudorapidity which depends on the polar angle θ measured from the z-axis. φ is
the azimuthal angle in the plane perpendicular to the beam direction.

This smearing and scaling imitates a dummy detector with a well-known behaviour
concerning the energy resolution. From the MadEvent sample 10000 smeared events
are produced for each JES from 0.6 to 1.4 in steps of ∆JES = 0.1.

2In the following, measured does not refer to real measured data, but to these smeared MC
energies.
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5 Kinematic Fitting

Physical parameters are estimated in a kinematic fit which is supposed to increase
the precision. More information is gained by exploiting energy and momentum con-
servation at each vertex in the form of constraints. This is possible if the knowledge
about the top decay is applied to kinematic calculations.
This is performed by the Kinematic Likelihood (KL) Fitter [27] which is based on
ROOT [28] in C++, the Bayesian Analysis Toolkit (BAT) [29] and MINUIT for the
optimization.

5.1 Maximum Likelihood

The kinematic fit aims at determining the most probable values for certain variables
by maximizing a Likelihood function. Such a fit parameter has to be estimated
depending on the underlying data set of N elements (x1, x2, ..., xN) by a so called
estimator â for the true value a. It can have the three independent properties [30]:

• â is consistent :⇔ limN→∞ â = a so that the accuracy improves for larger data
sets.

• â is unbiased :⇔ 〈â〉 = a, which means there is no systematic shift to larger or
smaller values. Every consistent estimator is unbiased for N →∞ (asymptotic
limit).

• â is efficient :⇔ the variance V (â) is small, i.e. there are no large deviations.

The Likelihood L(x1, x2, ..., xN ; a) =
∏

P (xi; a) is a product of individual prob-
abilities P (xi; a), i.e., the probability for the data set (x,..., xN) given a [31]. a is
estimated by â(x1, ..., xN) and obtained by maximizing L(x1, .., xN ; a) (Maximum
Likelihood, ML). ML estimators are usually biased for small N , but they are in-
variant under scale transformations: ˆf(a) = f(â). The maximum of L(~x; a) with
respect to a is the same as the maximum of L(~x; f(a)) with respect to f(a) [30].
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5 Kinematic Fitting

On account of the monotony of the natural logarithm, L(~x; a) is maximal if and
only if ln(L(~x; a)) is maximal, too. With sums instead of products, it is easier to
compute the maximum of ln L generalized to m parameters {aj}j=1,...m:

∂lnL(x1, x2, ..., xN; a1, ..., am)

∂aj

= 0 ∀j (5.1)

In case of Gaussian distributions the method of the least squares

χ2 :=
N∑

i=1

[
yi − f(xi, a)

σi

]2

follows directly from the ML principle where a parameter dependent function f(x, a) =

y describes the relation between the two data sets {xi}i=1...N and {yi}i=1...N with
given y-errors σi. The best choice of all parameters must fulfill ∂χ2

∂aj
= 0 ∀j = 1...m.

5.2 Fit Parameters

Candidates for top-pair-events are reconstructed with a kinematic fit using a Like-
lihood approach. The KLFitter estimates the energies of the four jets and the
charged lepton as well as pz of the neutrino. Furthermore, the jet energy scale is
added as a new fit parameter. The Likelihood function equals the product of the
four quark energy resolution functions, one energy resolution function of the lepton
and the Breit-Wigner functions of the W-boson masses. The implementation of the
jet energy scale takes place in the Likelihood. Here, the probability of the energy
resolution which depends on the estimated Eest and measured energy Em is divided
by the JES α for reasons of parametrization and Em is scaled as desribed in chapter
(3.3):

p (Eest, Em) 7→ 1

α
p

(
Eest,

Em

α

)
⇒ 1

α

∫
p

(
Eest,

Em

α

)
dEm = 1

The range in which JESest is allowed to vary is limited to [0.5 · JEStrue, 1.5 · JEStrue].

Mass Constraints Some physical constants in [GeV/c2] are (partially) delivered
to the fit:

mb = 4.7 mt = 170 Γt = 1.5 mW = 80.4 ΓW = 2.1 mlight quarks = 0

22



5.2 Fit Parameters

The information about mW and ΓW is used to constrain the momenta of the two
light quarks and the two leptons, as their combined momenta must be in the range
of the W mass and width. This option involves two constraints because the Breit-
Wigner (BW) distribution of mW+ = mW− with the width ΓW is used for both the
hadronically and leptonically decaying W-boson.
In addition to the W mass, constraints on the top mass are also possible. Without
any further input to the fit, the masses of the top mt and the antitop mt̄ are treated
independently. Yet, implying the invariance under CPT (charge conjugation, parity
and time reflection) yields mt = mt̄. However, the absolute value of mt is not known
in this so-called Equal Mass Constraint (EM). The numerical realization of ”equal”
is in this case a normalized Gauss function of mt − mt̄ around zero with a width
approximating Γt. This requirement on mt corresponds to one constraint.
Fixing the top and antitop mass to a Breit-Wigner (BW) function with a peak at
170 GeV/c2 and a width of 2.1GeV introduces one more piece of information to the
fit. The Breit-Wigner constraint is strong and helpful for combinatorics on the one
hand, but on the other hand, it renders a mass measurement impossible because the
mass is fixed already.
Let N be the number of variables, M the number of fitted parameters and P the
number of constraints. Then the number k of degrees of freedom in the fit increases
with more constraints [32]:

k = N −M + P

In this case there are N = 5 measured energies Ebhad, Eblep, Eq1, Eq2, Elepton. The
z-component of the ν momentum pz(ν) and the JES cannot be measured, but they
are fitted so that M = N + 2 = 7. The number of constraints P depends on the
applied constraints which can be switched on or off by flags in the KLFitter.

Table 5.1: Degrees of freedom k in dependence of the number of constraints P .

Constraint P k Fit
BW for mW 2 0 not possible
BW for mW plus equal top mass 3 1 possible, no more parameters
BW for mW plus for mt 4 2 possible with even one more parameter

In case of k = 0 there is either one solution of the system of equations or there
is none. Accordingly, a fit is not necessary or not possible. That means that the
KLFitter cannot be used with the implemented JES without any constraint. But
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5 Kinematic Fitting

without the JES the KLFitter can estimate the W mass. The equal mass constraint
for the top has exactly as many constraints as needed for a fit. However, no more
parameter can be added in this mode - unlike in case of the BW constraint for mt.
For example two different jet energy scales for light and b-quarks could be defined.

Combinatorics The four detected jets have to be assigned to the four quarks for
which there are |S4| = 4! = 24 permutations. But interchanging the two indistin-
guishable light quarks leaves the Likelihood invariant since the hadronic W mass

mWhad
= mq1 + mq2 = mq2 + mq1

does not depend on the order of the indices of the two light quarks q1, q2. For this
reason the switched permutation indices are removed and the number of physically
relevant combinations reduces to 12. For each combination the parameters are fitted
separately and the Likelihood is calculated. That combination with the highest value
for the Likelihood is labelled as the best permutation, which is not necessarily the
true combination.

5.3 Output Files

All values are saved in ROOT trees. The tree ”Truth” contains the MC-generated
events, the values in the tree ”Measured” are smeared as mentioned in section (3.4)
and ”Model” is the tree for the fitted results. While in the truth-tree the jets are
only called ”jet 1,...,jet 4”, they are assigned as bhad, blep, qup, qdown in the model-tree.
The fitted variables are always arrays with 12 entries, one for each permutation.
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6 Results

The Kinematic Likelihood Fitter (KLFitter) is applied to all input files with differ-
ent jet energy scales (JES) from 0.6 to 1.4. An analysis of the energy resolution,
the reconstructed top mass and the reconstruction efficiency is performed in order
to study the impact of the JES on the top reconstruction with the kinematic fit.
The JES is estimated in the fitting procedure. In a second step, the JES estimated
in the sample and its uncertainty are used as an input to enhance the quality of the
top reconstruction in a subsequent fit.
As an example, the energy resolution of the hadronic b-quark is plotted for every
JES in the three steps: before the fit, after the first and after the second fit.

Throughout all the plots of this analysis, the colour code for the different jet energy
scales is chosen such that JES = 1 is indicated as a solid, red line. Two jet energy
scales with the same difference to unity (e.g. 0.9 and 1.1) are drawn in the same
colour. JES < 1 have dotted lines, JES > 1 by contrast have dashed lines.

6.1 Energy Resolution before the Fit

Before the generated events are fitted, the energy resolution of the original (smeared)
sample is analysed in order to get reference plots for later comparisons (see chapter
6.5). All energy resolutions of the four jets and the electron are shown in fig. (A.1).
The pz resolution of the neutrino can only be analysed after the fit as pz(ν) cannot
be measured. The energy resolution is defined as Etrue−Em√

Etrue
, where Em is the mea-

sured (smeared) energy and Etrue the true, unsmeared energy.
The energy resolutions of bhad are shown as one example in fig. (6.1). They differ
substantially from each other for different jet energy scales. For JES 6= 1 the dis-
tributions are asymmetric because the energy difference is divided by the square
root of the true energy. Exclusively for JES = 1 the resolution is symmetrically
distributed around zero. This means < Em >≈< Etrue >. The root mean squared
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6 Results

(RMS) of the distribution RMS/
√

GeV = 0.496 ± 0.004 is the smallest here com-
pared to the other jet energy scales. It is consistent with the smearing parameter
ahad = 50% within the error. The mean of each resolution distribution is shifted
towards larger values for decreasing jet energy scales. Accordingly, the measured
energies are smaller than the true ones due to the JES < 1. Increasing the jet
energy scales with JES > 1 leads to Em > Etrue resulting in a negative mean of the
energy resolution. The widths of the distributions broaden for increasing |JES−1|,
symmetrically for JES < 1 and JES > 1. The mean and RMS of the energy
resolution of bhad are determined for each JES and compared (in

√
GeV) in table

(6.1). The mean ranges from −4.379 (JES=1.4) to +4.401 (JES=0.6), the RMS
from 0.496 (JES=1.0) to 1.723 (JES=1.4).
On the other hand, the electron energy has not been scaled and is therefore approx-
imately independent of the JES.
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Figure 6.1: Energy resolution of the hadronic b-quark before the kinematic fit: Both
the mean and the width depend strongly on the JES. The different jet
energy scales are represented by the colours as explained in the legend.
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6.2 Results of the First Fit

Table 6.1: Mean and RMS of the energy resolution of the hadronic b-quark (smeared,
unfitted).

JES Mean [
√

GeV] RMS [
√

GeV]
0.6 +4.401(16) 1.620(11)
0.7 +3.348(13) 1.342(9)
0.8 +2.246(9) 0.956(7)
0.9 +1.112(6) 0.627(4)
1.0 +0.004(5) 0.496(4)
1.1 −1.130(7) 0.708(5)
1.2 −2.241(11) 1.055(7)
1.3 −3.354(14) 1.445(10)
1.4 −4.379(17) 1.723(12)

6.2 Results of the First Fit

The KLFitter is applied to the smeared samples using the two different mass con-
straints, i.e., equal top and antitop masses (EM) or a Breit-Wigner (BW) function
for both top masses centered at 170 GeV. The results for the energy resolution, the
reconstruction efficiency and mt are only preliminary because a second fit will be
performed afterwards.

Energy resolution After the input samples are fitted, the energy resolution can be
compared to the energy resolution before the fit. Fig. (A.2) and (A.3) show ∆E√

Etrue
for

the b- and light quarks for both constraints. Paradigmatically, the energy resolution
of the hadronic b-quarks is analysed for both constraints (fig. 6.2). The mean and
the width are extracted and summarized in table (6.2).

These results consitute a significant improvement compared to the smeared, unfitted
energies. Firstly, all distributions are centered around ∼ 0 which means that the
estimator for the energy is hardly biased. Secondly, the widths (in [

√
GeV]) were

reduced to a range of 0.497 − 0.541 for BW and to a range of 0.820 − 0.918 for
EM. So, the maximum relative improvement RMSmeas−RMSfit

RMSmeas
is 70.37% for BW with

JES=1.4 and 48.02% for EM with JES=0.6.
In conlusion, it can be stated that in case of the BW constraint the width depends on
the JES only to a minor degree, whereas it varies more for the equal mass constraint.
The widths are reduced for both constraints, but a better resolution is achieved by
the BW constraint for both top quarks due to the additional constraint. An overview
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over the achievements of each fit is given in fig. (6.12).
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Figure 6.2: Energy resolution of the hadronic b-quark after the first fit with the BW
(left) and EM constraint (right) for the best combination.

Table 6.2: Mean and RMS of the energy resolution of the hadronic b-quark for the
BW and EM constraint.

JES BW Mean [
√

GeV] BW RMS [
√

GeV] EM Mean[
√

GeV] EM RMS [
√

GeV]
0.6 0.0655(54) 0.5414(39) −0.0086(85) 0.8421(60)
0.7 0.0242(49) 0.4971(35) −0.0490(83) 0.8203(59)
0.8 0.0176(51) 0.5093(36) −0.0459(83) 0.8198(59)
0.9 0.0108(51) 0.5066(36) −0.0447(91) 0.8901(64)
1.0 0.0108(51) 0.5058(36) −0.0682(83) 0.8202(59)
1.1 0.0073(51) 0.5172(37) −0.0779(84) 0.8287(60)
1.2 0.0104(50) 0.4994(35) −0.0724(84) 0.8246(59)
1.3 0.0125(51) 0.5066(36) −0.0811(84) 0.8228(60)
1.4 −0.0005(51) 0.5106(36) −0.2172(96) 0.9176(68)

Reconstruction Efficiency The reconstruction efficiency is defined as the ratio be-
tween correctly identified objects to all events. One can either count the frequency
that all the four jets are assigned correctly to the four quarks. Or a specific particle
is chosen. In the following, the efficiencies for a completely correct reconstruction
(true combination), the reconstruction of the hadronic W-boson and the two b-jets
are considered. Moreover, the separation of light and b-jets is analysed.
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6.2 Results of the First Fit

The two mass constraints are differently efficient in identifying the true combina-
tion. The first bins of fig. (6.2, left) and (6.2, right), respectively, display how often
the best combination agrees with the true combination. It emerges that the true
combination is found tin 80% of the events by the BW constraint and in 50% of
the events by the EM constraint. In the former case there is one more constraint
which can explain this difference.
If the kinematic fit is not taken into account, the probability P for the correct iden-
tification of a jet can be gained from pure statistics1. Only in one of the twelve cases
all the four jets are correctly identified (true combination), so P (all correct) = 1

12
≈

8.33%.
But there are two possibilities to reconstruct the hadronic W-boson correctly because
interchanging the two b-quarks does not alter the W-momentum pW = pq1 + pq2.
This implies P (Whad correct) = 2

12
≈ 16.66%.

For the right labelling of the hadronic (leptonic) b-quark it is still possible to com-
mute the remaining three jets among themselves. Thus, 3!

2
= 3 permutations re-

sult in a right assignment for the hadronic (leptonic) b-quark with a probability of
P (blep/had correct) = 3

12
= 25% each.

For example, for tests of b-tagging algorithms, it is essential to work out how re-
liably the reconstruction procedure can distinguish between light and b-jets. Let
P (b tag| truth b) be the probability to tag a true b-jet as a b-jet. Here, the leptonic
b-jet may still be labelled as the hadronic one and vice versa. With the knowledge
that two of the four jets are b-jets, the probability is P (b tag| truth b) = 2

4
= 50%

from a combinatorial point of view. If a true b-jet is omitted to be labelled as a b-
jet, this is called ’type I error’ (discarding a true event) in the context of hypothesis
testing. The error probability here is

α = P (type I error) = 1− P (b tag| truth b) = 50%.

The second question of interest is the probability to designate a jet as a b-jet provided
that it is in fact a jet from a light quark. This acceptance of a wrong event is called
a ’type II error’ with a probability of

β = P (type II error) = P (b tag| light quark) = 50%.

1As remarked in chapter (5.2) the combinations with interchanged light quarks are counted only
once.
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Figure 6.3: Reconstruction of all jets Whad, both b-jets and b-tagging efficiencies for
BW (left) and EM (right). Percentages from fit (coloured) are compared
to pure statistics (black).

These probablities from pure statistics are indicated in fig. (6.2, left) and (6.2,
right) with a black line. But the reconstruction efficiencies from the kinematic fit are
distinctly above the combinatorial ones. For instance, P (all correct) is augmented
from ∼ 8% to ∼ 80% (∼ 50%) in for BW (EM).
The leptonic b-jet is correctly identified at a percentage of ∼ 88% (∼ 70%) instead
of 25%. The identification of blep succeeds better to ∼ 10% (∼ 20%) compared to
bhad. This results from the separation of the top-/ antitop hemispheres using a top
mass constraint. The blep is the only jet in the leptonic hemisphere, whereas there
are also the two light jets on the hadronic site in addition to bhad.
While the P (all correct) ≈ P (Whad correct) in the BW case, there is a difference
of about 10% between the reconstruction efficiencies of all jets and the hadronic
W-boson for the EM constraint. Here, the two b-jets are mixed up which is also
reflected by the lower efficiencies for bhad and blep.
The b-tagging errors of type I and II are decreased by circa 40% (BW) or 25%

(EM) so that truth b-jets are labelled as b-jets with a probability of ∼ 90% (BW)
or ∼ 75% (EM) instead of only 50%. This comparison shows how the utilization of
kinematic constraints enhances the reconstruction quality.
Contrasting the efficiencies for both constraints, the percentages are higher for the
Breit-Wigner constraint on mt than for EM. It also becomes apparent that the
reconstruction efficiency depends on the JES to a greater degree for the equal mass
constraint. The reason is again the double constraint of BW for both top quarks.
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6.2 Results of the First Fit

Top Mass The masses of the leptonic and hadronic top quarks can be calculated
from the fitting results using energy and momentum conservation:

pWlep
= pν + pl, pWhad

= pqup + pqdown
(6.1)

ptlep = pWlep
+ pblep , pthad

= pWhad
+ pbhad

(6.2)

⇒ m2
tlep

= p2
tlep

/c2, m2
thad

= p2
thad

/c2 (6.3)

The reconstructed top masses shown in fig. (6.4) are those bins with the maximum
entry.
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Figure 6.4: Peak top masses after the first fit with BW (two left plots) and EM (two
right plots) constraint. The best and true combination are compared.
The hadronic and leptonic top are marked differently.

Although the BW constraint cannot be used for a top mass measurement, the top
mass dependence on the JES is studied as an approach of a cross-check. The BW
constraint uses mt = 170 GeV/c2 as a peak of the distribution. As expected, the
BW constraint returns the input top mass of mt = 170 GeV/c2 independently of the
JES. But the mass is not fixed by the EM constraint. Therefore, it varies in the
range mEM

t [GeV/c2] ∈ [169, 173]. Wrong combinatorics cause too large masses in
some cases in the best permutation. Besides, it can be observed that the leptonic
top tends to have a larger reconstructed mass than the hadronic.
Even though the reconstructed peak top masses are close to 170 GeV/c2, no con-

clusion about the mass distribution can be drawn from fig. (6.2). In fact, it is a
sharp peak for BW, but for EM it is a broad distribution with an asymmetric tail
to larger masses. For this reason, an accurate peak mass is not a sufficient criterion
for a ”good” mass estimation.
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Figure 6.5: Distribution of mthad
for JES=1.0 with EM after the first fit.

Thus, analysing the mean of the mass distributions instead of the maximum bins
leads to masses > 170 GeV/c2. The asymmetric EM masses are likely to result from
asymmetric JES distributions (fig.A.5). Tails with too low estimated jet energy
scales are correlated with tails of too large masses and vice versa. However, one
has to keep in mind that this was only the first step of the fitting procedure. The
development of the mass distributions will be examined in chapter (6.4.2).

6.3 Determination of the Global Jet Energy Scale

For each input file the true JES is known which was used in the MC simulation. But
the kinematic fit treats the JES as an additional free parameter. Consequently, the
fitted JES can differ from the true one. In order to reduce the uncertainties from
the JES, a calibration of the JES is necessary. For a given JEStrue the distribution of
JESest is plotted. This is done for all JEStrue in the best and true combination with
the BW and EM constraint on mt. These plots can be found in appendix A (fig.A.4
and A.5), the different jet energy scales are combined in summary plots (fig. 6.3). In
the following a procedure is desribed how to extract the mean and error of JESest

and to test if there is a linear dependency of JESest on JEStrue.
The various estimated jet energy scales JESest can be fitted by a Gaussian distribu-
tions in the region around the peak only because the tails are clearly non-Gaussian.
Therefore, the range for the fit is reduced to a ±10% neighbourhood of the bin with
the maximal content, binpeak. The corresponding JES is JESpeak = JES(binpeak)
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Figure 6.6: Estimated versus true JES for the BW (two plots left) and EM constraint
(two plots right) in the best (each left) and true (each right) combination.

The error on the peak JES is half of the bin width. Subsequently, JESest is fitted in
the range [0.9 · JESpeak , 1.1 · JESpeak], mean and σ are extracted from the fit.
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Figure 6.7: Gauss fit in the reduced range for JES=1.0 with EM constraint.

While the JES distributions agree well with a Gauss function for the BW con-
straint (fig.A.4), in case of the equal mass condition, however, the necessity of
limiting the fitting range becomes evident (fig.A.5).
Then the peak JES of the histogram as well as the mean of the Gauss fit are fitted
according to

JESfit(JEStrue) = p1 · JEStrue + p0

Fig. (6.3) show these straight line fits as calibration curves for the BW and EM
constraint in the best and true combination. A slope of p1 = 1 and an intercept
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of p0 = 0 are expected. Besides, the residuals ∆JES
σ

are computed, where ∆JES =

JESest − JESfit quantifies the deviation of the estimated points from the linear fit
and σ is the error on JESest. Since there are both positive and negative residuals,
no bias towards lower or higher jet energy scales is perceived. So the fit appears to
be balanced.
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Figure 6.8: Calibration curve of JESest versus JEStrue for BW (left) and EM (right).
The estimated JES represents the best permutation. Points of ”Histo
best” are the mean values of the histograms; ”Gauss best” denotes the
mean values of the Gaussian fit. The residuals (below) display the devi-
ation of a point from the fit, weighted with its error.
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6.4 Second Fit

Table 6.3: Fit parameters of the straight lines: slope and intercept for Gaussian fit
and histogram points, with BW and EM constraint.

BW p1 BW p0 EM p1 EM p0

Gauss best 1.00049 -0.00049 0.99405 0.00038
Gauss true 0.99986 0.00013 0.99393 0.00244
Histo best 1.01842 -0.00937 1.01985 -0.01173
Histo true 1.00234 0.00196 0.99097 0.00633

Table (6.3) summarizes the slopes and intercepts of the linear fits. The intercepts
turn out to be approximately zero so that no systematic bias of the JES estimator
needs to be considered. The slopes are approximately 1, but with different large
deviations. The straight lines referring to the histogram data are systematically
steeper due to small asymmetric tails towards higher jet energy scales which are
cut off in the Gauss fit. The slope for a BW constraint is close to unity while the
equal mass slope differs more due to broader distributions and asymmetric tails (see
fig.A.5). Nevertheless, the straight lines confirm the linear relation2. The deviation
discussed here are at or below the percent level and it is only the first fit.

6.4 Second Fit

With the insights from the extraction of the JES, the KLFitter runs a second time
over the MC sample using the JES estimated from the sample as an a priori prob-
ability for the renewed estimation. The goal is to improve the variables of physical
interest, to reduce the influence of the JES on them and to cross-check the consis-
tency of the KLFitter.

6.4.1 a priori Probabilities

Let p(a|x) be the probability that a is true provided that x is true and p0(a) the
a priori probability for a. Bayes’ Theorem gives an important relation between
conditional and a priori probabilities [30]:

p(a|x) = p(x|a) · p0(a)

p(x)
(6.4)

2Errors of the fit parameters can be found in fig. (A.6) and (A.7).
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With the partition of the set of events into disjoint events {ai}i=1,...,N this is gener-
alized to

p(ai|x) =
p(x|ai)p0(a)

p(x)
=

p(x|ai)p0(a)∑N
j=1 p(x|aj)p(aj)

with

N∑
i=1

p(ai|x) = 1

and in a continous set of events the normalization is an integral [29]:

∫
d~ap(~a|~x) =

∫
d~a

p(~x|~a)p0(~a)∫
d~ap(~x|~a)p(~a)

= 1 (6.5)

If no specific information is given, the a priori probability p0(~a) is uniformally
distributed and constant so that it cancels out in eq. (6.5). In the first run the
KLFitter does not get any information about the JES, the a priori probabilties are
automatically set to 1. But in the second fit the mean and σ of each JES is used as
parameters for a normalized Gauss function which overwrites the constant a priori
probability.

6.4.2 Results of the Second Fit
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Figure 6.9: Energy resolution of the hadronic b-quark after the calibration with the
BW (left) and EM constraint (right) for the best combination.
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6.4 Second Fit

As observed in chapter 6.2, the energy resolutions are centered aroung zero, the
widths are nearly constant for all jet energy scales and they are better for the
BW constraint than for EM. The improvement of the resolution after the calibra-
tion compared to the first fit is smaller, but nevertheless appreciable: The RMS is
changed for EM by 9.82% from 0.85

√
GeV to 0.775

√
GeV. For the BW constraint

the change from 0.5
√

GeV to 0.4
√

GeV means even a relative improvement of 20%.
Accordingly, the second fit with the BW constraint causes in fact falling below the
initial resolution of 0.5

√
GeV from the Gaussian smearing. The additional pieces of

information from the constraints prevail the fitting uncertainties so that the energy
resolution obtained from the fit is better than in the input samples.

Reconstruction Efficiency The reconstruction efficiencies are calculated anew as
described in chapter (6.2). They are shown in fig. (6.10).
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Figure 6.10: Reconstruction efficiencies for BW (left) and EM (right) after the sec-
ond fit taking the a priori probabilities into account.

Especially in case of the equal mass constraint the a priori probabilities result in
a notable improvement of the efficiencies. For example, the difference between the
lowest and highest reconstruction efficiency depending on the JES for the leptonic
b-jet is 6% before the calibration (fig. 6.2) and afterwards it is reduced to 2%. The
efficiencies for BW are nearly independent of the JES after the calibration. As seen
before, the BW constraint yields higher absolute efficiencies than EM, but the effect
of the second fit is less compared to EM.
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Top Mass Again, the top mass is analysed as it can be seen in fig. (6.11). On
the one hand, in comparison to fig. (6.4), the peak masses corresponding to the
maximum bin change little compared to the first fit. The BW constraint returns the
true top mass of 170 GeV/c2 in both steps of the fitting procedure as a sharp peak.
This indicates that the cross-check worked well. On the other hand, the range of
the top masses (in GeV/c2) with the EM constraint is reduced from [169, 173] to
[169, 172]. The top and antitop masses are similar, but not always equal due to the
top width and a weaker constraint than BW.
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Figure 6.11: Reconstructed peak top masses after the second fit with BW (two plots
left) and EM (two plots right).

The development of the widths of the mass distribution for the EM constraint might
also be interesting. The RMS of the hadronic top masses after the first is compared
to the second fit in table (6.4). After both steps of the fitting procedure the RMS
increases with the JES. Although no systematic improvement of the RMS is achieved
by the second fit, the range (in GeV/c2) in which the RMS can vary for different jet
energy scales is reduced from [29.57 , 33.39] to [29.64, 31.64].

Table 6.4: Width (RMS) of the hadronic top mass after the first and second fit for
the different jest energy scales.

RMS 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
1st [GeV

c2 ] 29.57 30.06 30.72 31.56 31.11 31.15 31.20 31.41 33.39
2nd [GeV

c2 ] 29.64 30.19 30.63 31.10 31.04 31.18 31.27 31.29 31.64
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6.5 Development of the JES Dependence

Energy resolution Fig. (6.12) shows how the width (RMS) and the mean of the
energy resolution of bhad change in the two different constraints and steps of fitting.
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Figure 6.12: Improvement of the width (left) and mean (right) of the energy resolu-
tion of the hadronic b using different constraint and fitting twice.

The RMS and mean of the smeared energy resolutions depend strongly on the
JES. The first fit achieves that they become nearly JES-independent. Additionally,
it leads to a narrowing of the energy distributions which can be seen with the aid
of the smaller widths in fig. (6.12, left). But it also turns out that in the JES range
of [0.9 , 1.1] the resolution is worsened by the uncertainties of the fit with the EM
constraint only. The right plot shows an improvement of the accuracy Em ≈ Efit as
the mean becomes JES-independent and close to zero. The second fit is not able to
improve the resolution as much as the first fit. Nevertheless there is a notable change
which gains in case of the BW constraint an energy resolution after the second fit
which is better than the resolution of the unfitted, smeared energies.

Reconstruction efficiency Table (6.5) summarizes the narrowing of the efficiency
range on the example of all correct and blep. The lower limit of the efficiency range
is the percentage of the JES with the worst efficiency, the upper limit belongs to the
JES with the highest percentage. The efficiencies are a little improved or constant
for a given JES so that the worst results are cut off by the second fit.
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Table 6.5: Overview of the improvement of the reconstruction efficiencies for both
constraints after the calibration

Efficiency 1st fit 2nd fit
BW all 77− 80% 78− 80%
BW blep 86− 90% 90%
EM all 47− 53% 51− 53%
EM blep 68− 73% 71− 73%

Top mass The EM constraint reconstructs a too large mean due to the asymmetric
tails of the broad distribution. Yet, the second fit leads to considerably better
results. But the width of the distribution still depends on the JES. Concerning the
peak mass, the hadronic and leptonic top mass are similar, but not equal. The BW
constraint succeeds in finding the correct top peak mass directly in the first fit and
the correct mean after the second fit – independently of the JES. This cross-check
confirms the reconstruction.
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7 Conclusion

Finally, the methods and results of this thesis are summarized and further studies
are proposed in an outlook.

7.1 Summary

In the framework of this bachelor’s thesis the impact of the jet energy scale (JES)
on the reconstruction of top-antitop-pairs in the semileptonic decay channel with
one electron and four jets was studied in the context of a kinematic fit based on the
Maximum Likelihood principle.

The JES was added to the KLFitter as a new parameter which can be varied in-
dependently. The kinematic fit was then applied to different Monte Carlo samples
with jet energies ranging from 0.6 to 1.4 in steps of ∆JES = 0.1. As a toy model,
the detector response was assumed to be 50%√

E
for hadrons and 10%√

E
for electrons. The

reconstructed top mass, the energy resolution and the reconstruction efficiencies
were determined. The fitted events were compared to the truth MC samples and
the smeared (”measured”) values.

The conservation of energy and momentum at each decay vertex was taken into ac-
count in the Likelihood as kinematic constraints. These were a Breit-Wigner (BW)
function for a given mass of the W-boson mW = 80.4 GeV/c2 plus either the re-
quirement of an equal mass (EM) of the top and antitop quark or a Breit-Wigner
function for both top quarks centered at mt = 170 GeV/c2. Though introducing a
new parameter increases the uncertainties of the fit, the knowledge of the topology
of each vertex led to an improvement of the results. After the first fit, the energy
resolution was achieved to be distributed around zero for all jet energy scales – un-
like before. Additionally, the maximal relative reduction of the widths ranged from
∼ 48% for EM to ∼ 70% for BW.

Subsequently, the estimated JES was extracted from the first fit. Considering these
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results as a new a priori probability for the estimation of the JES, the fit was per-
formed again. This procedure led to an improvement of the reconstruction efficiency
by 4% and to a narrowing of the top mass distribution of up to 5.5%. The second
fit improved the energy resolution by 9.8% for EM and 20% for BW which yielded
a better resolution than the smeared, unfitted energies.

On the one hand, better absolute results were gained with the BW constraint, but on
the other hand, the relative effect of the second fit was larger with the requirement
of equal top masses. In general, the influence of the JES on the analysed variables
was reduced by the kinematic fit.

7.2 Outlook

Besides studying the effects of a global free jet energy scale parameter in the KLFit-
ter, there are more options for investigations in this context. First of all, a second
jet energy scale could be introduced if the BW constraint is applied. As shown in
chapter (5.2), an additional fit parameter is possible. This would allow to distin-
guish between a jet energy scale for light and b-jets.

It would also be interesting to repeat these studies with other energy resolutions in
the input samples, i.e. with a different width in the Gaussian smearing or with a
non-Gaussian energy resolution. In a next step the JES could also be studied in
Monte Carlo events including a full simulation of the ATLAS detector.
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A First Appendix: Plots

]GeV [
true

E)/ m−E
true

(E
−10 −8 −6 −4 −2 0 2 4 6 8 10

ev
en

ts

0

200

400

600

800

1000

1200

1400

1600

Energy resolution of bhad 0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Energy resolution of bhad

]GeV [
true

E)/ m−E
true

(E
−10 −8 −6 −4 −2 0 2 4 6 8 10

ev
en

ts

0

200

400

600

800

1000

1200

1400

1600

Energy resolution of blepEnergy resolution of blep

]GeV [trueE)/ m−E
true

(E
−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

ev
en

ts

20

40

60

80

100

120

140

160

180

Energy resolution of electronEnergy resolution of electron

]GeV [trueE)/ m−E
true

(E
−10 −8 −6 −4 −2 0 2 4 6 8 10

ev
en

ts

0

200

400

600

800

1000

1200

1400

Energy resolution of qupEnergy resolution of qup

]GeV [trueE)/ m−E
true

(E
−10 −8 −6 −4 −2 0 2 4 6 8 10

ev
en

ts

0

200

400

600

800

1000

1200

1400

1600

Energy resolution of qdownEnergy resolution of qdown

Figure A.1: Resolution of the measured energies before the fit.
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Figure A.2: Energy resolution with BW after the first fit (best combination).

]GeV [
true

E)/ 
fit

−E
true

(E
−3 −2 −1 0 1 2 3

ev
en

ts

0

50

100

150

200

250

300

350

Energy resolution of bhadEnergy resolution of bhad

]GeV [
true

E)/ 
fit

−E
true

(E
−3 −2 −1 0 1 2 3

ev
en

ts

0

50

100

150

200

250

300

350

Energy resolution of blepEnergy resolution of blep

]GeV [trueE)/ fit−E
true

(E
−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

ev
en

ts

20

40

60

80

100

120

140

160

180

Energy resolution of electronEnergy resolution of electron

]GeV [trueE)/ fit−E
true

(E
−40 −30 −20 −10 0 10 20 30 40

ev
en

ts

0

100

200

300

400

500

600

700

800

900

Pz resolution of neutrinoPz resolution of neutrino

]GeV [trueE)/ fit−E
true

(E
−3 −2 −1 0 1 2 3

ev
en

ts

0

100

200

300

400

500

Energy resolution of qupEnergy resolution of qup

]GeV [trueE)/ fit−E
true

(E
−3 −2 −1 0 1 2 3

ev
en

ts

0

100

200

300

400

500

Energy resolution of qdownEnergy resolution of qdown

Figure A.3: Energy resolution with EM after the first fit (best combination).
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Figure A.4: Distribution of the estimated JES for each true JES with the BW con-
straint. The best combination (left) is compared to the true one (right).
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A First Appendix: Plots
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Figure A.5: Distribution of the estimated JES for each true JES with the EM con-
straint. The best combination (left) is compared to the true one (right).
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Figure A.6: Calibration curve for BW after the first fit.
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Figure A.7: Calibration curve for EM after the first fit.
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Figure A.8: Calibration curve for BW after the second fit.
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Figure A.9: Calibration curve for EM after the second fit.
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Nomenclature

Symbol Meaning
α jet energy scale
β scaling factor of momenta
η pseudorapidity
θ polar angle
φ azimuthal angle
σ width or standard deviation
a statistical energy resolution parameter
b systematic energy resolution parameter or bottom quark
BW Breit-Wigner
c noise energy resolution parameterk
EM equal mass
Efit fitted energy
Em ”measured”, i.e. , smeared energy
Etrue true energy from MC
I3 third component of weak isospin
JES jet energy scale
k degrees of freedom in the fit
m mass
MC Monte Carlo
M number of fit parameters
N number of variables
P number of constraints or probability
Q electric charge
RMS root mean squared
SM Standard Model of Particle Physics
t top quark
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