Modulverzeichnis

für den konsekutiven Master-Studiengang "Physik" (zur Prüfungs- und Studienordnung für den Bachelor-Studiengang "Physik" sowie den konsekutiven Master-Studiengang "Physik" in der Fassung der Bekanntmachung vom 05.04.2012 (Amtl. Mitt. I Nr. 13/2012 S. 453))

Module

B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experimen	
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experimen	
B.Phy.5003: Sammlung und Physikalisches Museum	967
B.Phy.5501: Aerodynamik	968
B.Phy.5502: Aktive Galaxien	969
B.Phy.5503: Astrophysikalische Spektroskopie	970
B.Phy.5504: Computational Physics	971
B.Phy.5505: Data Analysis in Astrophysics	972
B.Phy.5506: Einführung in die Strömungsmechanik	973
B.Phy.5507: Elektromagnetische Tiefenforschung	974
B.Phy.5508: Geophysikalische Strömungsmechanik	975
B.Phy.5509: Einführung in die theoretische Astrophysik	976
B.Phy.5510: Physics of the Interstellar Medium	977
B.Phy.5511: Magnetohydrodynamik	978
B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten	979
B.Phy.5514: Physics of the Interior of the Sun and Stars	980
B.Phy.5515: Transportmechanismen in heterogenen Medien	981
B.Phy.5516: Physik der Galaxien	982
B.Phy.5517: Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwissen	983
B.Phy.5518: Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwetter Anwendungen.	984
B.Phy.5519: Plattentektonik und Geophysikalische Exploration	985
B.Phy.5520: Seismology of the Sun and Stars	986
B.Phy.5521: Seminar zu einem Thema der Geophysik	987
B.Phy.5522: Solar Eclipses and Physics of the Corona	988
B.Phy.5601: Theoretical and Computational Neuroscience I	989
B.Phy.5602: Theoretical and Computational Neuroscience II	990
B.Phy.5603: Einführung in die Laserphysik	991
B.Phy.5604: Foundations of Nonequilibrium Statistical Physics	992

B.Phy.5605: Grundlagen Computational Neuroscience	993
B.Phy.5606: Mechanik der Zelle	994
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts	995
B.Phy.5608: Mikro- und Nanofluidik	996
B.Phy.5609: Moderne Optik (Optik II)	997
B.Phy.5610: Optische Messtechnik	998
B.Phy.5611: Optische Spektroskopie und Mikroskopie	999
B.Phy.5612: Physics of Extreme Events	1000
B.Phy.5613: Physik der weichen kondensierten Materie	1001
B.Phy.5614: Proseminar Computational Neuroscience/Neuroinformatik	1002
B.Phy.5615: Biologie und Biochemie für Physiker	1003
B.Phy.5616: Biophysik der Zelle	1004
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie	1005
B.Phy.5618: Seminar zur Biophysik der Zelle	1006
B.Phy.5619: Seminar zur Mikro- und Nanofluidik	1007
B.Phy.5620: Sportphysik	1008
B.Phy.5621: Stochastic Processes	1009
B.Phy.5622: Weiterführende Optik	1010
B.Phy.5623: Theoretische Biophysik	1011
B.Phy.5624: Introduction to Theoretical Neuroscience	1012
B.Phy.5701: Weiche Materie: Flüssigkristalle	1013
B.Phy.5702: Dünne Schichten	1014
B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene	1015
B.Phy.5704: Magnetismus	1016
B.Phy.5705: Magnetismus Seminar	1017
B.Phy.5707: Nanoscience	1018
B.Phy.5708: Physik der Nanostrukturen	1019
B.Phy.5709: Seminar on Nanoscience	1020
B.Phy.5710: Spintransport und Dynamik	1021
B.Phy.5711: Starkkorrelierte Elektronensysteme	1022
B.Phy.5712: Tieftemperaturphysik	1023

B.Phy.5801: Classical field theory	1024
B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik	1025
B.Phy.5804: Quantenmechanik II	1026
B.Phy.5805: Quantenfeldtheorie I	1027
B.Phy.5806: Spezielle Relativitätstheorie	1028
M.Phy.401: Forschungspraktikum Astro- und Geophysik	1029
M.Phy.402: Forschungspraktikum Biophysik und Physik komplexer Systeme	1030
M.Phy.403: Forschungspraktikum Festkörper- und Materialphysik	1031
M.Phy.404: Forschungspraktikum Kern- und Teilchenphysik	1032
M.Phy.405: Forschungshauptpraktikum Astro- und Geophysik	1033
M.Phy.406: Forschungshauptpraktikum Biophysik und Physik komplexer Systeme	1034
M.Phy.407: Forschungshauptpraktikum Festkörper- und Materialphysik	1035
M.Phy.408: Forschungshauptpraktikum Kern- und Teilchenphysik	1036
M.Phy.409: Forschungsseminar Astro- und Geophysik	1037
M.Phy.410: Forschungsseminar Biophysik und Physik komplexer Systeme	1038
M.Phy.411: Forschungsseminar Festkörper- und Materialphysik	1039
M.Phy.412: Forschungsseminar Kern- und Teilchenphysik	1040
M.Phy.413: Profilierungsseminar	1041
M.Phy.5001: Festkörperspektrsokopie mit Kernspins	1042
M.Phy.501: Forschungsschwerpunkt Astro- und Geophysik	1043
M.Phy.502: Forschungsschwerpunkt Biophysik und Physik komplexer Systeme	1044
M.Phy.503: Forschungsschwerpunkt Festkörper- und Materialphysik	1045
M.Phy.504: Forschungsschwerpunkt Kern- und Teilchenphysik	1046
M.Phy.5501: Kompressible Strömungen	1047
M.Phy.551: Fortgeschrittene Themen der Astro- und Geophysik I	1048
M.Phy.552: Fortgeschrittene Themen der Astro- und Geophysik II	1049
M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik	1050
M.Phy.5602: Vertiefung Computational Neuroscience: Lernen und adaptive Algorithmen	1051
M.Phy.561: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme I	1052
M.Phy.562: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme II	1053
M.Phy.5701: Advanced Solid State Theory	1054

Inhaltsverzeichnis

M.Phy.5702: Kinetik und Phasenumwandlungen in Materialien	1055
M.Phy.5703: Materialforschung mit Elektronen	1056
M.Phy.571: Fortgeschrittene Themen der Festkörper- und Materialphysik I	1057
M.Phy.572: Fortgeschrittene Themen der Festkörper- und Materialphysik II	1058
M.Phy.5801: detectors for particle physics and imaging	1059
M.Phy.5802: Einführung in die Quantenchromodynamik	1060
M.Phy.5803: Symmetries in Quantum Field Theory	1061
M.Phy.581: Fortgeschrittene Themen der Kern- und Teilchenphysik I	1062
M.Phy.582: Fortgeschrittene Themen der Kern- und Teilchenphysik II	1063
M.Phy.601: Planung und Durchführung wissenschaftlicher Arbeit	1064
M.Phy.602: Knüpfung und Pflege von Arbeitskontakten	1065
M.Phy.603: Verfassen wissenschaftlicher Fachartikel	1066
M.Phy-AM.001: Active Galactic Nuclei	1067
M.Phy-AM.002: Stellar structure and evolution	1068
M.Phy-AM.003: Stellar Atmosphere	1069
M.Phy-AM.004: Physics of the Sun, Heliosphere and Space Weather	1070
M.Phy-AM.005: Cosmological Structure Formation	1071
M.Phy-AM.006: Aspects of Early Universe Cosmology	1072
M.Phy-AM.007: Introduction in String Theory	1073
M.Phy-AM.008: The origin and evolution of supermassive black holes	1074
M.Phy-AM.009: Numeric Experiments in Astrophysics	1075
M.Phy-AM.010: Introduction to Helioseismology	1076
M.Phy-AM.011: Computer simulation methods in statistical physics	1077

Übersicht nach Modulgruppen

1) Master-Studiengang "Physik"

Es müssen nach Maßgabe der folgenden Bestimmungen wenigstens 120 C erworben werden.

a) Pflichtmodule

Es müssen folgende Pflichtmodule im Umfang von insgesamt 16 C erfolgreich absolviert werden:

M.Phy.413: Profilierungsseminar (4 C, 2 SWS)......1041

M.Phy.601: Planung und Durchführung wissenschaftlicher Arbeit (9 C)...... 1064

b) Forschungsschwerpunkt

Der Master-Studiengang Physik muss mit einem der vier Studienschwerpunkte Astro- und Geophysik, Biophysik und Physik komplexer Systeme, Festkörper- und Materialphysik oder Kern- und Teilchenphysik im Umfang von jeweils 50 C nach Maßgabe der folgenden Bestimmungen studiert werden.

aa) Forschungsschwerpunkt Astro- und Geophysik

Es müssen Module im Umfang von insgesamt wenigstens 50 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

i) Wahlpflichtmodule I

Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

M.Phy.405: Forschungshauptpraktikum Astro- und Geophysik (18 C).......1033

ii) Wahlpflichtmodule II

Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:

B.Phy.5501: Aerodynamik (3 C, 2 SWS).......968

B.Phy.5502: Aktive Galaxien (3 C, 2 SWS)......969

B.Phy.5506: Einführung in die Strömungsmechanik (6 C, 4 SWS)	973
B.Phy.5507: Elektromagnetische Tiefenforschung (3 C, 2 SWS)	974
B.Phy.5508: Geophysikalische Strömungsmechanik (4 C, 4 SWS)	975
B.Phy.5509: Einführung in die theoretische Astrophysik (3 C, 2 SWS)	976
B.Phy.5510: Physics of the Interstellar Medium (3 C, 2 SWS)	977
B.Phy.5511: Magnetohydrodynamik (3 C, 2 SWS)	978
B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten (3 C, 2 SWS)	979
B.Phy.5514: Physics of the Interior of the Sun and Stars (3 C, 2 SWS)	980
B.Phy.5515: Transportmechanismen in heterogenen Medien (3 C, 2 SWS)	981
B.Phy.5516: Physik der Galaxien (3 C, 2 SWS)	982
B.Phy.5517: Physik der Sonne, Heliosphäre und des Weltraumwetters Schlüsselwissen (3 2 SWS)	
B.Phy.5518: Physik der Sonne, Heliosphäre und des Weltraumwetters: Weltraumwetter Anwendungen (3 C, 2 SWS)	984
B.Phy.5519: Plattentektonik und Geophysikalische Exploration (3 C, 2 SWS)	985
B.Phy.5520: Seismology of the Sun and Stars (3 C, 2 SWS)	986
B.Phy.5521: Seminar zu einem Thema der Geophysik (3 C, 2 SWS)	987
B.Phy.5522: Solar Eclipses and Physics of the Corona (3 C, 2 SWS)	988
B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen i Experiment Teil I (6 C, 4 SWS)	
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen i Experiment Teil II (6 C, 4 SWS)	
B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	967
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	997
B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)	1026
B.Phy.5806: Spezielle Relativitätstheorie (3 C, 2 SWS)	.1028
M.Phy.5501: Kompressible Strömungen (3 C, 2 SWS)	. 1047
M.Phy-AM.001: Active Galactic Nuclei (6 C, 2 SWS)	1067
M.Phy-AM.002: Stellar structure and evolution (6 C, 2 SWS)	. 1068
M.Phy-AM.003: Stellar Atmosphere (6 C, 4 SWS)	. 1069
M.Phy-AM.004: Physics of the Sun, Heliosphere and Space Weather (6 C, 2 SWS)	. 1070
M.Phy-AM.005: Cosmological Structure Formation (3 C, 2 SWS)	. 1071
M.Phy-AM.006: Aspects of Early Universe Cosmology (3 C, 4 SWS)	1072

M.Phy-AM.007: Introduction in String Theory (4 C, 2 SWS)
M.Phy-AM.008: The origin and evolution of supermassive black holes (4 C, 2 SWS)1074
M.Phy-AM.009: Numeric Experiments in Astrophysics (6 C, 4 SWS)
M.Phy-AM.010: Introduction to Helioseismology (3 C, 2 SWS)
M.Phy-AM.011: Computer simulation methods in statistical physics (3 C, 2 SWS)1077
M.Phy.551: Fortgeschrittene Themen der Astro- und Geophysik I (6 C, 6 SWS)1048
M.Phy.552: Fortgeschrittene Themen der Astro- und Geophysik II (6 C, 6 SWS)1049
bb) Forschungsschwerpunkt Biophysik und Physik komplexer Systeme
Es müssen Module im Umfang von insgesamt wenigstens 50 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.
i) Wahlpflichtmodule I
Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:
M.Phy.502: Forschungsschwerpunkt Biophysik und Physik komplexer Systeme (6 C, 6 SWS)
M.Phy.402: Forschungspraktikum Biophysik und Physik komplexer Systeme (13 C, 10 SWS)
M.Phy.410: Forschungsseminar Biophysik und Physik komplexer Systeme (4 C, 2 SWS)1038
M.Phy.406: Forschungshauptpraktikum Biophysik und Physik komplexer Systeme (18 C) 1034
ii) Wahlpflichtmodule II
Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:
B.Phy.5601: Theoretical and Computational Neuroscience I (3 C, 2 SWS)989
B.Phy.5602: Theoretical and Computational Neuroscience II (3 C, 2 SWS)990
B.Phy.5603: Einführung in die Laserphysik (3 C, 2 SWS)
B.Phy.5604: Foundations of Nonequilibrium Statistical Physics (3 C, 2 SWS)992
B.Phy.5605: Grundlagen Computational Neuroscience (3 C, 2 SWS)
B.Phy.5606: Mechanik der Zelle (3 C, 2 SWS)
B.Phy.5607: Mechanik und Dynamik des Zytoskeletts (3 C, 2 SWS)
B.Phy.5608: Mikro- und Nanofluidik (3 C, 2 SWS)996
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)
B.Phy.5610: Optische Messtechnik (3 C, 2 SWS)998

B.Phy.5611: Optische Spektroskopie und Mikroskopie (3 C, 2 SWS)99	9
B.Phy.5612: Physics of Extreme Events (3 C, 2 SWS)100	0
B.Phy.5613: Physik der weichen kondensierten Materie (6 C, 4 SWS) 100	1
B.Phy.5614: Proseminar Computational Neuroscience/Neuroinformatik (5 C, 2 SWS)1002	2
B.Phy.5615: Biologie und Biochemie für Physiker (3 C, 2 SWS)	13
B.Phy.5616: Biophysik der Zelle (6 C, 4 SWS))4
B.Phy.5617: Seminar zur Physik der weichen kondensierten Materie (3 C, 2 SWS) 1008	5
B.Phy.5618: Seminar zur Biophysik der Zelle (3 C, 2 SWS)	16
B.Phy.5619: Seminar zur Mikro- und Nanofluidik (3 C, 2 SWS)100	7
B.Phy.5620: Sportphysik (3 C, 2 SWS))8
B.Phy.5621: Stochastic Processes (3 C, 2 SWS))9
B.Phy.5622: Weiterführende Optik (3 C, 2 SWS)101	0
B.Phy.5623: Theoretische Biophysik (6 C, 4 SWS)101	1
B.Phy.5624: Introduction to Theoretical Neuroscience (3 C, 2 SWS)	2
B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I (6 C, 4 SWS)96	ì5
B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II (6 C, 4 SWS)	36
B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	7
B.Phy.5501: Aerodynamik (3 C, 2 SWS)96	8
B.Phy.5506: Einführung in die Strömungsmechanik (6 C, 4 SWS)	'3
B.Phy.5707: Nanoscience (3 C, 2 SWS)	8
B.Phy.5709: Seminar on Nanoscience (3 C, 2 SWS)102	20
M.Phy.5001: Festkörperspektrsokopie mit Kernspins (3 C, 3 SWS)	.2
M.Phy.5501: Kompressible Strömungen (3 C, 2 SWS)	7
M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik (5 C, 2 SWS)105	0
M.Phy.5602: Vertiefung Computational Neuroscience: Lernen und adaptive Algorithmen (5 C, 2 SWS)	51
M.Phy.5801: detectors for particle physics and imaging (3 C, 3 SWS)	9
M.Phy.561: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme I (6 C, 6 SWS)	52
M.Phy.562: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme II (6 C, 6 SWS)	

cc) Forschungsschwerpunkt Festkörper- und Materialphysik

Es müssen Module im Umfang von insgesamt wenigstens 50 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

i) Wahlpflichtmodule I

Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:

Λ	M.Phy.503: Forschungsschwerpunkt Festkörper- und Materialphysik (6 C, 6 SWS)1045
٨	M.Phy.403: Forschungspraktikum Festkörper- und Materialphysik (13 C, 10 SWS)1031
٨	M.Phy.411: Forschungsseminar Festkörper- und Materialphysik (4 C, 2 SWS)1039
Ν	1.Phy.407: Forschungshauptpraktikum Festkörper- und Materialphysik (18 C) 1035
ii	i) Wahlpflichtmodule II
	s müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt venigstens 9 C erfolgreich absolviert werden:
В	B.Phy.5701: Weiche Materie: Flüssigkristalle (3 C, 2 SWS)
Е	3.Phy.5702: Dünne Schichten (3 C, 2 SWS)
	8.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene 3 C, 2 SWS)1015
Е	3.Phy.5704: Magnetismus (6 C, 4 SWS)
Е	3.Phy.5705: Magnetismus Seminar (3 C, 2 SWS)
Е	3.Phy.5707: Nanoscience (3 C, 2 SWS)
Е	3.Phy.5708: Physik der Nanostrukturen (3 C, 2 SWS)
В	3.Phy.5709: Seminar on Nanoscience (3 C, 2 SWS)1020
В	B.Phy.5710: Spintransport und Dynamik (3 C, 2 SWS)
Е	3.Phy.5711: Starkkorrelierte Elektronensysteme (4 C, 2 SWS)
Е	3.Phy.5712: Tieftemperaturphysik (3 C, 2 SWS)
	8.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im experiment Teil I (6 C, 4 SWS)
	8.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im experiment Teil II (6 C, 4 SWS)
В	3.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)
Е	3.Phy.5608: Mikro- und Nanofluidik (3 C, 2 SWS)996
Е	3.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)

	B.Phy.5619: Seminar zur Mikro- und Nanofluidik (3 C, 2 SWS)1007
	B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)
	B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)
	M.Phy.5001: Festkörperspektrsokopie mit Kernspins (3 C, 3 SWS)
	M.Phy.5701: Advanced Solid State Theory (6 C, 6 SWS)
	M.Phy.5702: Kinetik und Phasenumwandlungen in Materialien (3 C, 2 SWS)1055
	M.Phy.5703: Materialforschung mit Elektronen (6 C, 4 SWS)
	M.Phy.5803: Symmetries in Quantum Field Theory (3 C, 2 SWS)1061
	M.Phy.571: Fortgeschrittene Themen der Festkörper- und Materialphysik I (6 C, 6 SWS) 1057
	M.Phy.572: Fortgeschrittene Themen der Festkörper- und Materialphysik II (6 C, 6 SWS) 1058
d	d) Forschungsschwerpunkt Kern- und Teilchenphysik
	s müssen Module im Umfang von insgesamt wenigstens 50 C nach Maßgabe der nachfolgenden estimmungen erfolgreich absolviert werden.
	i) Wahlpflichtmodule I
	Es müssen folgende vier Wahlpflichtmodule im Umfang von insgesamt 41 C erfolgreich absolviert werden:
	M.Phy.504: Forschungsschwerpunkt Kern- und Teilchenphysik (6 C, 6 SWS)1046
	M.Phy.404: Forschungspraktikum Kern- und Teilchenphysik (13 C, 10 SWS)1032
	M.Phy.412: Forschungsseminar Kern- und Teilchenphysik (4 C, 2 SWS) 1040
	M.Phy.408: Forschungshauptpraktikum Kern- und Teilchenphysik (18 C)1036
	ii) Wahlpflichtmodule II
	Es müssen wenigstens zwei der folgenden Wahlpflichtmodule im Umfang von insgesamt wenigstens 9 C erfolgreich absolviert werden:
	B.Phy.5801: Classical field theory (3 C, 4 SWS)
	B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik (3 C, 3 SWS)
	B.Phy.5804: Quantenmechanik II (6 C, 6 SWS)1026
	B.Phy.5805: Quantenfeldtheorie I (6 C, 6 SWS)
	B.Phy.5806: Spezielle Relativitätstheorie (3 C, 2 SWS)1028
	B.Phy.5001: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil I (6 C, 4 SWS)
	B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II (6 C, 4 SWS)966

B.Phy.5003: Sammlung und Physikalisches Museum (3 C, 2 SWS)	. 967
B.Phy.5609: Moderne Optik (Optik II) (6 C, 4 SWS)	. 997
M.Phy.5001: Festkörperspektrsokopie mit Kernspins (3 C, 3 SWS)	1042
M.Phy.5801: detectors for particle physics and imaging (3 C, 3 SWS)	1059
M.Phy.5802: Einführung in die Quantenchromodynamik (3 C, 2 SWS)	1060
M.Phy.5803: Symmetries in Quantum Field Theory (3 C, 2 SWS)	1061
M.Phy.581: Fortgeschrittene Themen der Kern- und Teilchenphysik I (6 C, 6 SWS)	1062
M.Phy.582: Fortgeschrittene Themen der Kern- und Teilchenphysik II (6 C, 6 SWS)	1063

c) Profilierungsbereich

Es müssen Module im Umfang von insgesamt wenigstens 24 C nach Maßgabe der nachfolgenden Bestimmungen erfolgreich absolviert werden.

aa) Mathematisch-naturwissenschaftlicher Wahlbereich

Es müssen aus dem Lehrangebot der mathematisch-naturwissenschaftlichen Fakultäten Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden. Wählbar sind insbesondere die nachfolgenden Module; darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

M.Phy.603: Verfassen wissenschaftlicher Fachartikel (6 C, 2 SWS)......1066

bb) Nichtphysikalischer Wahlbereich

Es müssen Module im Umfang von insgesamt wenigstens 12 C aus dem Lehrangebot der Universität außerhalb der Fakultät für Physik erfolgreich absolviert werden. Wählbar sind Angebote aufgrund der Prüfungsordnung für Studienangebote der Zentralen Einrichtung für Sprachen und Schlüsselqualifikationen (ZESS); darüber hinaus wird ein Verzeichnis wählbarer Module durch die Fakultät für Physik in geeigneter Weise bekannt gemacht.

cc) Alternativmodule

Anstelle der Module nach Buchstaben aa. und bb. können auf Antrag, der an die Studiendekanin oder den Studiendekan der Fakultät für Physik zu richten ist, andere Module (Alternativmodule) nach Maßgabe der nachfolgenden Bestimmungen absolviert werden. Dem Antrag ist die Zustimmung der Studiendekanin oder des Studiendekans der Fakultät oder Lehreinheit, die das Alternativmodul anbietet, beizufügen. Die Entscheidung trifft die Studiendekanin oder der Studiendekan der Fakultät für Physik. Der Antrag kann ohne Angabe von Gründen abgelehnt werden; ein Rechtsanspruch der Antragstellerin oder des Antragstellers auf Zulassung eines Alternativmoduls besteht nicht.

d) Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 30 C erworben.

2) Erasmus-Mundus-Joint-Degree-Option "AstroMundus"

Studierende des Erasmus-Mundus-Joint-Degree-Programms in Astrophysik (AstroMundus) müssen abweichend von Nr. 1 120 C nach Maßgabe der nachfolgenden Bestimmungen erwerben.

a) Erster Studienabschnitt

Es müssen Module des ersten Studienabschnitts im Umfang von insgesamt 60 C an der Leopold-Franzens-Universität Innsbruck sowie der Università degli Studi di Padova oder der Università degli Studi di Roma "Tor Vergata" nach Maßgabe der dort geltenden prüfungsrechtlichen Bestimmungen erfolgreich absolviert werden.

b) Zweiter Studienabschnitt

aa) Pflichtmodule

Es müssen nachfolgende Module im Umfang von insgesamt 18 C erfolgreich absolviert werden:

M.Phy-AM.001: Active Galactic Nuclei (6 C, 2 SWS) - Pflichtmodul	1067
M.Phy-AM.002: Stellar structure and evolution (6 C, 2 SWS) - Pflichtmodul	.1068
M.Phy-AM.003: Stellar Atmosphere (6 C, 4 SWS) - Pflichtmodul	1069

bb) Wahlpflichtmodule

Es müssen wenigstens 3 der folgenden Module im Umfang von insgesamt wenigstens 12 C erfolgreich absolviert werden:

M.Phy-AM.004: Physics of the Sun, Heliosphere and Space Weather (6 C, 2 SWS) 1070
M.Phy-AM.005: Cosmological Structure Formation (3 C, 2 SWS)1071
M.Phy-AM.006: Aspects of Early Universe Cosmology (3 C, 4 SWS)1072
M.Phy-AM.007: Introduction in String Theory (4 C, 2 SWS)
M.Phy-AM.008: The origin and evolution of supermassive black holes (4 C, 2 SWS)1074
M.Phy-AM.009: Numeric Experiments in Astrophysics (6 C, 4 SWS)
M.Phy-AM.010: Introduction to Helioseismology (3 C, 2 SWS)
M.Phy-AM.011: Computer simulation methods in statistical physics (3 C, 2 SWS)1077

cc) Masterarbeit

Durch die erfolgreiche Anfertigung der Masterarbeit werden 25 C erworben.

dd) Kolloquium zur Masterarbeit

Durch das erfolgreiche Absolvieren des Kolloquiums zur Master-Arbeit werden 5 C erworben.

Georg-August-Universität Göttinger	1	6 C
Modul B.Phy.5001: Die Vermittlung mungsphysikalischen Vorgängen ir	4 SWS	
Lernziele: Auftrieb, Bernoulli-Gleichung, Energiebetrachtung von Strömungsvorgängen, Wirbelablösung, Kontinuitätsgleichung, Wirbelbildung/Entstehung in Abhängigkeit von der Reynoldszahl, Messverfahren zur Visualisierung Kompetenzen: Die Studenten sollen die strömungsphysikalische Grundlagen beherrschen und Messverfahren zur Strömungsvisualisierung an Beispielen anwenden können. Weiterhin sollen sie die Strömungsphysikalischen Phänomene anhand von Experimenten vorstellen und erklären können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		2 SWS 2 SWS
Prüfung: mündliche Prüfung (ca. 30 Min.) + Praktische Prüfung (Experiment) (ca. 30 Min.) Prüfungsvorleistungen: eigenständige Durchführung eines Experiments in der Übung		
Prüfungsanforderungen: Umsetzung strömungsphysikalischer Grundlagen in Experimenten mittels Visualisierungsverfahren		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 3 - 6; Master: 1		
Maximale Studierendenzahl:		

6 C Georg-August-Universität Göttingen 4 SWS Modul B.Phy.5002: Die Vermittlung und Untersuchung von strömungsphysikalischen Vorgängen im Experiment Teil II Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Wirbelbildung/Entstehung in Abhängigkeit von der Reynoldszahl, Präsenzzeit: Schwingungs- und Flatteranalyse, Schallentstehung, Ausbreitung, Quellenund 56 Stunden Entfernungsabhängigkeiten, Strömungsvorgänge unter Selbststudium: Schwerelosigkeit, Strahlungsinduzierte Strömungsvorgänge, Einfluss der 124 Stunden Corioliskraft auf großräumige Strömungen Kompetenzen: Die Studenten sollen die theoretischen Grundlagen praxisbezogen anwenden können und strömungsphysikalische Gesetzmäßigkeiten in Experimenten verifizieren. Weiterhin sollen sie die Strömungsphysikalischen Phänomene anhand von Experimenten vorstellen und erklären können. Lehrveranstaltungen: 1. Vorlesung 2 SWS 2. Übung 2 SWS Prüfung: mündliche Prüfung (ca. 30 Min.) + Praktische Prüfung (Experiment) (ca. 30 Min.) Prüfungsvorleistungen: eigenständige Durchführung eines Experiments in der Übung Prüfungsanforderungen: Umsetzung theoretischer Grundlagen und Verifizierung in Experimenten Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Bachelor: 3 - 6; Master: 1

Maximale Studierendenzahl:

20

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5003: Sammlung und Physikalisches Museum		2 SWS
Lernziele/Kompetenzen: Lernziele: Darstellung der Funktion, Entwicklungsgeschichte und pädagog. Präsentation dieses Inhaltes eines Gerätes der historischen Sammlung. Kompetenzen: Die Studenten sollen eigenständig Inhalte erarbeiten und als Ziel diese Inhalte publikumswirksam im Museum im Rahmen der laufenden Ausstellung präsentieren.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Hausarbeit und Poster (max. 15 S.)		
Prüfungsanforderungen: Aufarbeitung und Darstellung eines Gerätes der historischen Sammlung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5501: Aerodynamik		2 SWS
Lernziele/Kompetenzen: Lernziele: Physikalische Grundlagen der Aerodynamik		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62
Kompetenzen: Kontinuumsphysikalische Grundlagen, Grundgleichungen der reibungsfreien und reibungsbehafteteten Strömung, Theorie des Auftriebs, induzierter Widerstand, Kompressibilitäts- und Reibungseffekte und ihre Einordnung über entsprechende Kennzahlen (Machzahl, Reynoldszahl), Grundzüge der Flugmechanik		Stunden
Lehrveranstaltung: Vorlesung Inhalte: Aerodynamik I und II		2 SWS
Prüfung: Klausur (120min.) oder mündliche Prüfu		
Prüfungsanforderungen: Anwendung der Grundlagen der Aerodynamik auf elementare aerodynamische Zusammenhänge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 2	
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen	3 C	
Modul B.Phy.5502: Aktive Galaxien	2 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Klassifizierung Aktiver Galaxien(kerne),	spektrale und	Präsenzzeit:
Kontinuums-Emission, vereinheitlichte Modelle, Ur	sache der Aktivität,	28 Stunden
Struktur der Kernregion, Massenbestimmung von	Schwarzen Löchern	Selbststudium: 62
Kompetenzen: Die Studenten sollen die spektrale	n Eigenschaften und die	Stunden
grundlegende Physik der Aktiven Galaxien versteh	en.	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Beobachtung, Struktur, Kinematik und Physik Aktiver Galaxien, Schwarze Löcher.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	Grundvorlesung zur Astronomie	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Angebotshäufigkeit: Dauer:	
Jedes Sommersemester 1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig	Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl:		
40		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5503: Astrophysikalische Sp	2 SWS	
Lernziele/Kompetenzen: Lernziele: Grundlagen astronomischer Spektroskopie, Teleskope, Abbildungsfehler, Instrumentierung; Aufnahme, Reduktion und Analyse spektroskopischer Daten Kompetenzen: Verstaendnis spektroskopischer Beobachtungstechniken, Interpretation astronomischer Daten; Aufbau von und Anforderungen an moderne astronomische Instrumentierung		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung Inhalte: Astrophysikalische Spektroskopie		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfu		
Prüfungsanforderungen: Kenntnis astronomischer Teleskope und Messverfahr Prinzipien und Aufbau von Spektrographen; Verständ astronomischer Beobachtungen, Datenaufbereitung u		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.501		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 2	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen Modul B.Phy.5504: Computational Physics		4 C 4 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene Verfahren der Computerphysik, insbesondere Lösen nichtlinearer algebraischer Gleichungssysteme, Diagonalisierung von Matrizen (Eigenwert-Problem), Fast Fourier Transforms sowie Methoden zur Lösung von gewöhnlichen und partiellen Differentialgleichungen. Kompetenzen: Die Studenten sollen fortgeschrittene Methoden aus der Computerphysik kennen- und anwenden lernen.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 64 Stunden
Lehrveranstaltung: Vorlesung + Übung		4 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prü	ifung (ca. 30 Min.), unbenotet	
Prüfungsanforderungen: Anwendung fortgeschrittener numerischer Verfahren aus der Computerphysik zur Lösung physikalischer Probleme; Beschreiben der Methoden und Auswahl geeigneter Methoden für ein gegebenes Problem.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.605 Programmierkenntnisse, einfache numerische Algorithmen	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 3 - 6; Master: 1	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5505: Data Analysis in Astrophysics		2 SWS
Lernziele/Kompetenzen: Lernziele: Introduction to methods of data analysis in astrophysics: Random signal and noise; correlation analysis; model fitting by least squares and maximum likelihood; Monte Carlo simulations; Fourier analysis; filtering; signal and image processing; Hilbert transform; mapping; applications to problems of astrophysical relevance.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen: Ability to model noise and signal.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 6; Master: 1		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5506: Einführung in die Strömungsmechanik		4 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: theoretische und experimentelle Grundlage	en der Strömungsmechanik	Präsenzzeit:
tropfbarer Flüssigkeiten und Gase: Kontinuumshypoth		56 Stunden
und Dynamik von Fluiden; Kontinuitätsgleichung; Bew		Selbststudium:
Dimensionsanalyse; reibungsbehaftete Strömungen,	<u> </u>	124 Stunden
Grenzschichten, Turbulenz; Potentialströmungen; Wir Impulsmomentengleichungen; Energiegleichung; Stro	•	
Kompetenzen : Studierende sollen die grundlegender auf entsprechende Fragestellungen aus den Bereiche		
der Biophysik und der Physik komplexer	en der Geo- und Astrophysik bzw.	
Systeme anwenden können.		
Lehrveranstaltung: Vorlesung		4 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen:		
Anwendung der Grundlagen der Strömungsmechanik auf elementare		
strömungsmechanische Vorgänge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine keine		
Sprache:	Modulverantwortliche[r]:	
Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
Jedes Sommersemester	1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig Bachelor: 4 - 6; Master: 1 - 3		
Maximale Studierendenzahl:		
30		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5507: Elektromagnetische Tiefenforschung		2 SWS
Lernziele/Kompetenzen: Lernziele: Elektromagnetische Induktion, Schätzung der Übertragungsfunktionen und ihrer Vertrauensbereiche, Dimensionalität und Verzerrung, Inversion elektromagnetischer Sondierungskurven, Leitungsmechanismen und Zusammenhänge mit Geodynamik Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Elektromagnetischen Tiefenforschung kennen lernen und danach gemessene elektromagnetische Daten selbstständig auswerten können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Die wichtigsten Parameter und Algorithmen der Elektromagnetischen Tiefenforschung		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 5 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5508: Geophysikalische Strö	4 SWS	
Lernziele/Kompetenzen: Lernziele: Bewegungsformen der flüssigen Bestandte Ozeane, Kern) oder anderer Planeten. Thermodynam	· ·	Arbeitsaufwand: Präsenzzeit: 56 Stunden
Kompetenzen: Aufbau der Erdatmosphäre, adiabatischer Gradient und Temperaturschichtung, Corioliskraft und Besonderheiten rotierender Strömungen (geostrophisches Gleichgewicht, Inertial- und Rossbywellen, Ekmanschichten), Strahlungshaushalt, globale Zirkulation der Atmosphäre und Ozeane, Wettersysteme der mittleren Breiten, Schwerewellen, Konvektion, Instabilität und Turbulenz, Magnetohydrodynamik und Entstehung planetarer Magnetfelder.		Selbststudium: 64 Stunden
Lehrveranstaltungen: 1. Geophysikalische Strömungsmechanik I 2. Geophysikalische Strömungsmechanik II	2 SWS 2 SWS	
Prüfung: mündliche Prüfung (ca. 30 Min.) oder Kla		
Prüfungsanforderungen: Mechanik, Thermodynamik, Mathematik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5509: Einführung in die theo English title: Introduction to theoretical astrophysics	2 SWS	
Lernziele/Kompetenzen: Lernziele: Grundlagen der theoretischen Astrophysik, von N-Körper- Problemen, Hydrodynamik, Magneto- Hydrodynamik bis zu ISM-Chemie und Strahlungstransport.		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kompetenzen: Die Studenten lernen, wissenschaftliche Vorträge über Themen der theoretischen Astrophysik vorzubereiten und zu halten.		Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar	2 SWS	
Prüfung: Vortrag (45 Minuten)		
Prüfungsanforderungen: Angemessene Aufbereitung und Präsentation eines Themas der theoretischen Astrophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.501		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5510: Physics of the Interstellar Medium		2 SWS
Lernziele/Kompetenzen: Lernziele: Components of the interstellar medium (ISM), cooling and heating processes, thermal equilibrium and instabilities, magnetic fields in the ISM, shock waves, turbulence, virial theorem, gravitational fragmentation and collapse, molecular clouds, star formation, HII regions, supernovae Kompetenzen: Knowing and understanding the physical processes in the interstellar		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
medium.	· 	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Describing particular physical processes in the ISM and explaining the physical principles (cooling and heating, hydrogen chemistry, radiation, magnetohydrodynamics, shocks, turbulence, and gravity)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.501		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5511: Magnetohydrodynamik		2 SWS
Lernziele/Kompetenzen: Lernziele: Induktionsgleichung, Alfvén-Theorem, Dynamotheorie und Magnetfeldentstehung, Alfvén-Wellen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Magnetohydrodynamik auf geo- und astrophysikalische Fragestellungen anwenden können.		Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Induktionsgleichung, Alfvén-Theorem, Dynamotheorie und Magnetfeldentstehung, Alfvén-Wellen.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5512: Massearme Sterne, Braune Zwerge und Planeten English title: Low-mass stars, brown dwarfs, and planets		2 5 0 5
Lernziele/Kompetenzen: Lernziele: Aufbau, Entstehung und Entwicklung sowie Atmosphären massearmer Sterne und sub-stellarer Objekte, Nachweis und Suchmethoden sowie Charakterisierung massearmer Sterne und sub-stellarer Objekte. Kompetenzen: Anwendung physikalische Konzepte in astrophysikalischem Kontext. Kenntnis von aktuellen Fragestellungen in der stellaren Astrophysik.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.501	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5514: Physics of the Interior of the Sun and Stars		2 SWS
Lernziele/Kompetenzen: Lernziele: introduction to stellar structure, evolution, and dynamics; rotation; convection; dynamos; observations of solar and stellar oscillations; introduction to stellar pulsations; normal modes; weak perturbation theory; numerical forward modeling Kompetenzen: The students should be able to understand the equations of stellar structure, to understand current questions about the physics of solar/stellar interiors and magnetism, to understand the physics of solar/stellar oscillations and their diagnostic potential.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5515: Transportmechanismen in heterogenen Medien		2 SWS
Lernziele/Kompetenzen: Lernziele: Heterogenität und Zweiphasensysteme, das effektive Medium, Perkolation, Selbstähnlichkeit, die Renormierungsgruppe, eingebettete Netzwerke, Zufallsnetzwerke Kompetenzen: Die Studenten sollen die wichtigsten Mischungsgesetze verstehen und auf verschiedene Transportmechanismen (z.B. elektrische Leitung und Fluidtransport) anwenden können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Die wichtigsten Parameter und Algorithmen der Mischungsgesetze für das effektive Medium und für Perkolation		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: wechselnd	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5516: Physik der Galaxien		2 5 0 0 5
Lernziele/Kompetenzen: Lernziele: Galaxienklassifikation; Aufbau, Struktur und Kinematik von Galaxien; stellare und Gas-Komponenten in Galaxien, Galaxienentwicklung, großräumige Galaxienstrukturen Kompetenzen: Galaxien sind die fundamentalen Bausteine des Universums. Die Studenten sollen die Klassifizierung, die Eigenschaften sowie die grundlegende Physik der Galaxien verstehen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Klassifikation, Struktur, stellare und Gaskomponente, Kinematik, Entwicklung, Umgebung von Galaxien.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5517: Physik der Sonne, Heliosphäre und des Welt- raumwetters Schlüsselwissen English title: Physics of the Sun, Heliosphere and Space Weather: Key Knowledge		2 SWS
Lernziele/Kompetenzen: Lernziele: Einführung in die grundlegenden physikalischen Prozesse der Sonnen- und Heliosphärenphysik. Kompetenzen: Verständnis der grundlegenden physikalischen Prozesse der Sonnen- und Heliosphärenphysik.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung (ca. 30 Min.) oder Klausur (120 Min.)		
Prüfungsanforderungen: grundlegende physikalischen Prozesse der Sonnen- und Heliosphärenphysik		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5518: Physik der Sonne, Heliosphäre und des Welt- raumwetters: Weltraumwetter Anwendungen English title: Physics of the Sun, Heliosphere and Space Weather: Space Weather Applications		2 5005
Lernziele/Kompetenzen: Lernziele: Einführung in die physikalischen Prozesse des Weltraumwetters anhand angewandter Problemstellungen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kompetenzen: Verständnis der physikalischen Proze Anwendungsorientiertes Wissen über das Weltraumw selbstständigen Bearbeitung von Aufgabenstellungen	Selbststudium: 62 Stunden	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung (ca. 30 Min.) oder Kla		
Prüfungsanforderungen: Physikalischen Prozesse des Weltraumwetters		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1	
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5519: Plattentektonik und Geophysikalische Exploration		2 SWS
Lernziele/Kompetenzen: Lernziele: Kontinentalverschiebungstheorie, Paläomagnetismus, Konduktion und Konvektion, Plattentektonik, Subduktion, Erdbeben, Seismologie, Anisotropie, Lattice-preferred Orientation Kompetenzen: Die Studenten sollen die Entstehung der modernen Theorie der Plattentektonik nachvollziehen und die wichtigsten Beiträge der verschiedenen Explorationsverfahren zur Rekonstruktion der Plattenbewegungen kennen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (60 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Die wichtigsten Beiträge der verschiedenen Explorationsverfahren zur Rekonstruktion der Plattenbewegungen, die drei verschiedenen Moden der Plattentektonik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5520: Seismology of the Sun and Stars		2 SWS
Lernziele/Kompetenzen: Lernziele: global mode seismology (2D structure and rotation); local helioseismology		Arbeitsaufwand: Präsenzzeit:
(3D tomography); effects of magnetic activity cycles; introduction to the analysis of space observations; applications to the study of the interior of the Sun and Sunlike stars: global properties and age, evolutionary changes; sound speed, internal rotation, border of convection zones, meridional circulation, convective flows, sunspot seismology.		28 Stunden Selbststudium: 62 Stunden
Kompetenzen : Understanding of the physics of solar/stellar oscillations and how they can be used to extract information about the internal structure and dynamics of stars. The students should be able to start simple research projects in helioseismology or asteroseismology.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Demonstrate an understanding of concepts developed in lecture		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.5514 empfohlen aber nicht verlangt	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester Beginn SoSe2013	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5521: Seminar zu einem The	2 3 7 7 3	
Lernziele/Kompetenzen: Lernziele: Fragestellungen aus der Geophysik und ihrem fachlichen Umfeld. Kompetenzen: Selbständige Literaturrecherche, Vorbereitung eines Vortrages mit schriftlicher Zusammenfassung.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (60 Minuten)		
Prüfungsanforderungen: Selbständige Einarbeitung in ein Thema der Geophysik, Vorbereitung eines für Bachelor-Studenten verständlichen Vortrages mit schriftlicher Zusammenfassung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		

nicht begrenzt

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5522: Solar Eclipses and Physics of the Corona		2 SWS
Lernziele/Kompetenzen: Lernziele: Phenomenology of solar eclipses, timing of eclipses. Phyics of hot gases, interaction of gas and magnetic field in the outer atmosphere of the Sun and other stars, phyiscal processes for plasma heating ("coronal heating"), wave and Ohmic heating, acceleration of plasma to form a solar wind, solar-terrestrial relations.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen : The students should understand the basic processes on how a cool star can heat and sustain its million Kelvin hot outer atmosphere, the corona. Using basic concepts of magnetohydrodynamics they should also be able to explain the structure and dynamics of the corona.		
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Understanding of basic physical process in the corona of a star. The exam will be based on excecises distributed during the lecture course.		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.Phy.501 Elektrodynamik		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen 3 C 2 SWS Modul B.Phy.5601: Theoretical and Computational Neuroscience I Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: Grundlagen der Membranbiophysik, Bifurkationen anregbarer Präsenzzeit: System, Verständnis der Grundlagen der Modellierungsansätze der Neurophysik, 28 Stunden Selbststudium: 62 kollektive Zustände spikender Neuronaler Netzwerke, insbesondere Synchonizität, Balanced State, Phase-Locking und diesen Zuständen unterliegenden lokalen und Stunden Netzwerkeigenschaften: Netzwerktopologie, Delays, inhibitorische und exzitatorische Kopplung, sparse random networks Kompetenzen: Methoden und Methodenentwicklung für die Analyse hochdimensionaler Modelle ratenkodierter Einheiten in Feldmodellen; Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten Lehrveranstaltung: Collective Dynamics Biological Neural Networks I (Vorlesung) 2 SWS Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit). Prüfungsanforderungen: Das vertiefte Verstaendnis genannter Themen: TCN I: biophysikalische Grundlagen neuronaler Anregbarkeit, mathematische GRundlagen neuronaler Anregbarkeit, input-output Beziehungen und Bifurkationen, Klassifizierung, Existenz, Stabilitaet und Koexistenz sychroner und asynchroner Zustaende in spikenden neuronalen Netzwerken **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: Jedes Sommersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** Bachelor: 4 - 6: Master: 1 dreimalia

Maximale Studierendenzahl:

90

dreimalia

90

Maximale Studierendenzahl:

3 C Georg-August-Universität Göttingen 2 SWS Modul B.Phy.5602: Theoretical and Computational Neuroscience II Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: Ratenmodelle von Einzelneuronen, Feldansatz in der theoretischen Präsenzzeit: Neurophysik, Grundlagen der Bifurkationen anregbarer System, Verständnis der 28 Stunden Selbststudium: 62 Grundlagen der Modellierungsansätze der Neurophysik, Zusammenhang diskrete/ kontinuierliche Modelle, kollektive Zustände ein- und zweidimensionaler Feldmodelle, Stunden insbesondere ring model of feature selectivity, orientation preference maps. Kompetenzen: Methoden und Methodenentwicklung für die Analyse spikender neuronaler Netzwerke mit und ohne Delays, Handhabung von Bifurkationsszenarien und zugehörigen Instabilitäten 2 SWS Lehrveranstaltung: Collective Dynamics Biological Neural Networks II (Vorlesung) Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit). Prüfungsanforderungen: Das vertiefte Verständnis genannter Themen: TCN II: Grundlagen neuronaler Anregbarkeit, input-output Beziehungen bei Einzelneuronen, eindimensionale Feldmodelle (Feature Selectivity, Contrastinvariance), zweidimensionale Feldmodell (Zusammenwirken von kurz- und langreichweitigen Verbindungen sowie lokaler Nichtlinearitaeten), Amplitudengleichungen und ihre Loesungen. **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:**

Bachelor: 4 - 6: Master: 1

Georg-August-Universität Göttingen Modul B Phy 5603: Finführung in die Laserphysik		3 C 2 SWS
Modul B.Phy.5603: Einführung in die Laserphysik Lernziele/Kompetenzen: Lernziele: Entwicklung des Laserprinzips aus einfachen Grundbegriffen: Licht und Materie, Laserprinzip, Ratengleichungen, Lasertypen, optische Resonatoren, ausgewählte Thermen. Kompetenzen: Die Studenten sollten grundlegende Kenntnisse auf dem Gebiet der		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Elektrizitätslehre und der Optik besitzen. Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfu	ıng (ca. 30 Min.)	
Prüfungsanforderungen: Laserprinzip, Ratengleichungen, Funktionsweise von Lasern (Festkörper, Farbstoffl, Gas, Halbleiter und Freier-Elektronen), Wellengleichung, Strahlen- und Wellenoptische Behandlung von Resonatoren.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Phy.5604: Foundations of Nonequilibrium Statistical Physics

Lernziele/Kompetenzen:

Lernziele: Invariant densities of phase-space flows with local and global conservation of phase-space volume; reduction of a microscopic dynamics to a stochastic description, to kinetic theory and to hydrodynamic transport

equations; fluctuation theorems; Green-Kubo relations; local equilibrium; entropy balance and entropy production; the second law; statistical physics of equilibrium processes as a limit of a non-equilibrium processes;

applications in nanotechnology and biology: small systems far from thermodynamic equilibrium.

Kompetenzen: The students will come to know modeling approaches for a statistical-physics description of small systems far from thermodynamic equilibrium: in homework problems, that will be presented in a subsequent

symposium, this will be highlighted by explicitly working out examples in nanotechnology and biology.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62

Stunden

Lehrveranstaltung: lecture 2 SWS

Prüfung: Presentation (30 min) and handout (max 4 pages)

Prüfungsanforderungen:

Modeling of an experimental system by a Master equation, kinetic theory or Non-Equilibrium Molecular Dyanamics with discussion of the appropriate fluctuation relations and/or the relation of models on different levels of coarse graining.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.203
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen Modul B.Phy.5605: Grundlagen Computational Neuroscience

3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Einführung in die verschiedenen Gebiete der Computational Neuroscience: Modelle einzelner Nervenzellen, kleine Netzwerke, Implementation aller gängigen einfachen sowie komplexeren Rechenoperationen mit wenigen Neuronen

Aspekte sensorischer Signalverarbeitung (Neuronen als 'Filter'). Enstehung topographischer Abbildungen ('Landkarten') sensorischer Modalitäten (z.B. Sehen, Hören) im Gehirn. Erste Modelle zur Hirnentwicklung, Grundlagen von Adaptivität und Lernen. Berechenbarkeit von kognitiven Eigenschaften.

Kompetenzen: Gewinn einer Übersicht in die verschiedenen Gebiete der Computational Neuroscience; Erster Einblick und erstes Erfassen der Komplexität von Hirnfunktion in seiner ganzen Bandbreite; Erlernen des Zusammenhangs und Wechselspiels zwischen Wahl der mathematischen Methode und dem modellierten Substrat (Synapse, Nervenzelle, Netzwerk, etc.); Realisierung verschiedener Modellebenen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium: 62 Stunden

Lehrveranstaltung: Vorlesung

2 SWS

Prüfung: Klausur (90 Minuten)

Prüfungsanforderungen:

Gewinn einer Übersicht in die verschiedenen Gebiete der Computational Neuroscience; Erster Einblick und erstes Erfassen der Komplexität von Hirnfunktion in seiner ganzen Bandbreite; Erlernen des Zusammenhangs und Wechselspiels zwischen Wahl der mathematischen Methode und dem modellierten Substrat (Synapse, Nervenzelle, Netzwerk, etc.); Realisierung verschiedener Modellebenen.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Inf.1451
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Phy.5606: Mechanik der Zelle		3 C 2 SWS
Lernziele/Kompetenzen: Lernziele: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle Kompetenzen: Die Studierenden sollen grundlegende Begriffe der zellulären Mechnik beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung oder Seminarvortrag	Prüfung: Mündliche Prüfung oder Seminarvortrag (je ca. 30 Min.)	
Prüfungsanforderungen: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5607: Mechanik und Dynamik des Zytoskeletts		2 SWS
Lernziele/Kompetenzen: Lernziele: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle		Arbeitsaufwand: Präsenzzeit: 28 Stunden
Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.		Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (30 Minuten)		
Prüfungsanforderungen: Polymerphysik und Polymernetzwerke, Membrane, Physik auf kleiner Längenskala, Zellmechanik, molekulare Motoren, Zellmotilität, Dynamik in der Zelle		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 20		

Ocean Assessed Hedroneität Otttinanen		3 C	
Georg-August-Universität Göttingen		2 SWS	
Modul B.Phy.5608: Mikro- und Nanofluidik			
English title: Micro- and Nanofluidics			
Lernziele/Kompetenzen:	Lernziele/Kompetenzen:		
Lernziele: Einführung in die Hydrodynamik auf der M	likro- und Nanoskala und ihre	Präsenzzeit:	
Anwendung in der Biologie, Biophysik, Materialwisse	nschaften und Biotechnologie;	28 Stunden	
Benetzung und Kapillarität, "Leben" bei kleinen Reyn	oldszahlen, "weiche" Lithographie,	Selbststudium: 62	
Fluidik in der Biologie und Biophysik, "Lab on a Chip"	-Anwendungen; Navier-Stokes-	Stunden	
Gleichung			
Kompetenzen: Die Studierenden sollen grundlegende Begriffe der Fluiddynamik auf kleinen Skalen beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.			
Lehrveranstaltung: Vorlesung		2 SWS	
Prüfung: mündliche Prüfung (ca. 15 Min.) oder Se			
Prüfungsanforderungen:			
Fluiddynamik			
Zugangsvoraussetzungen:	Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine		
Sprache:	Modulverantwortliche[r]:		
Deutsch, Englisch Prof. Dr. Andreas Tilgner			
Angebotshäufigkeit: Dauer:			
unregelmäßig	1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:			
dreimalig	Bachelor: 4 - 6; Master: 1 - 3		
Maximale Studierendenzahl:			
nicht begrenzt			

Georg-August-Universität Göttingen Modul B.Phy.5609: Moderne Optik (Optik II)		6 C 4 SWS
Lernziele/Kompetenzen: Lernziele: Vermittlung der Grundlagen der Modernen Optik, insbesondere der Fourieroptik, Quantenoptik, Abbildungstheorie, Spektroskopie, Kurzzeitoptik und Röntgenphysik Kompetenzen: Fähigkeit, für gegebenes optisches Problem die richtige Modellebene zu wählen, Verständnis Wellengleichungen und ihre Lösungen, Verständnis von Spektroskopie und Signalanalyse, Kompetenz in der Interpretation experimenteller Ergebnisse, Kompetenz in der Planung optischer Experimente		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung		4 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min. 2 Wochen Vorbereitur		
Prüfungsanforderungen: Grundlagen der Modernen Optik, insbesondere der Fourieroptik, Quantenoptik, Abbildungstheorie, Spektroskopie, Kurzzeitoptik und Röntgenphysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.102, B.Phy.103, B.Phy.104		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: mind. alle 2 Jahre Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 6; Master: 1 - 2		
Maximale Studierendenzahl: 50		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5610: Optische Messtechnik		2 3 7 7 3
Lernziele/Kompetenzen: Lernziele: Verständnis optischer Messprinzipien und -verfahren Kompetenzen: Anwendung von Lichtmodellen, Verständnis grundlegender optischer Messprinzipien, Überblick über optische Messverfahren zur Messung unterschiedlicher physikalischer Größen in unterschiedlichen Größenordnungen		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Vortrag oder mündliche Prüfung (je ca. 30 Min.)		
Prüfungsanforderungen: Verständnis optischer Messprinzipien und -verfahren		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 5 - 6; Master: 1		
Maximale Studierendenzahl: 30		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5611: Optische Spektroskop	2 SWS	
Lernziele/Kompetenzen: Lernziele: Grundlagen der Physik der Fluoreszenz und Fluoreszenzspektroskopie, Fluoreszenzanisotropie, Fluoreszenzlebenszeit, Fluoreszenzkorrelationsspektroskopie, Grundlagen der Fluoreszenzmikroskopie, Beugungsgrenze der optischen Auflösung, Weitfeld- und Konfokalmikroskopie, Superresolutions-Mikroskopie. Kompetenzen: Die Studenten sollen mit den Grundlagen und modernsten Verfahren		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
der Fluoreszenzspektroskopie und -mikroskopie vertr	aut gemachte werden.	
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Verständnis der Physik der Fluoreszenz und der verschiedenen Verfahren der Fluoreszenzspektroskopie und -mikroskopie.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5612: Physics of Extreme Events		2 SWS
Lernziele/Kompetenzen: Lernziele: Grundlagen der Physik extremer Events, analytische und numerische Methoden für die statistische Analyse und Vorhersage extremer Events, Anwendung der Theorie extremer Events u. a. in Wellensystemen, Biophysik und Ökonophysik. Kompetenzen: Entwicklung und Handhabung statistischer Modelle, die extreme Events beschreiben; analytische und numerische Methoden für deren Analyse und Vorhersage.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 60 Min.) inkl. Diskus	sion	
Prüfungsanforderungen: Analytische und numerische Methoden für die statistische Analyse und Vorhersage extremer Events		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5613: Physik der weichen kondensierten Materie		4 SWS
Lernziele/Kompetenzen: Lernziele: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation Kompetenzen: Die Studierenden sollen grundlegende Begriffe der Physik der weichen kondensierten Materie beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		3 SWS 1 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		5 C
Modul B.Phy.5614: Proseminar Computat informatik	2 SWS	
Lernziele/Kompetenzen: Lernziele: Vertiefung der Kenntnisse aus der Computational Neuroscience / Neuroinformatik durch eigenständige Ausarbeitung eines Themas. Kompetenzen: Erlernen von Methoden der Präsentation von Themen aus der Informatik. Erwerb von Fähigkeiten im Umgang mit (englischsprachiger) Fachliteratur, Präsentation eines informatischen Themas, Führung einer wissenschaftlichen Diskussion.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 122 Stunden
Lehrveranstaltung: Proseminar		2 SWS
Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 7 S.)		
Prüfungsanforderungen: Nachweis der erworbenen Kenntnisse und Kompetenzen zum Umgang mit wissenschaftlicher Literatur aus dem Gebiet der Computational Neuroscience/ Neuroinformatik unter Anleitung durch Vortrag und Ausarbeitung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Inf.1401		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5615: Biologie und Biochemie für Physiker		2 SWS
Lernziele/Kompetenzen: Lernziele: Aufbau und Erweiterung von Kenntnissen über biologische Grundlagen der Biophysik. Kompetenzen: Die Studenten sollen grundlegende Kenntnisse über Struktur und Funktion von Makromolekülen in der Zelle, die wichtigsten zellulären Vorgänge, sowie		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
über die Signaltransduktion und biologische Information	onsverarbeitung erwerben.	2 6 14 6
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Minuten)		
Prüfungsanforderungen: Fundierte biologische Kenntnisse als Grundlage für die Bearbeitung von Fragestellungen der Biophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 35		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5616: Biophysik der Zelle		4 SWS
Lernziele/Kompetenzen: Lernziele: Physikalische Prinzipien in Zellen: Adhäsion, Bewegung, zelluläre Kommunikation, Signaltransduktion, Biopolymere und deren Netzwerke, Nervenleitung, Extrazelluläre Matrix, Experimentelle Methoden, Aktuelle Forschung Kompetenzen: Die Studierenden sollen grundlegende Begriffe der Zell-Biophysik beherrschen und selbständig auf ausgewählte Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		3 SWS 1 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Zell-Biophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.502		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl: nicht begrenzt		

		3 C
Modul B.Phy.5617: Seminar zur Physik de Materie	2 SWS	
Lernziele/Kompetenzen: Lernziele: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Intermolekulare Wechselwirkungen, Phasenübergänge, Grenzflächenphysik, amphiphile Moleküle, Kolloide, Polymere, Polymernetzwerke, Gele, Fluiddynamik, Selbstorganisation		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.502, B.Phy.503		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5618: Seminar zur Biophysik der Zelle		2 SWS
Lernziele/Kompetenzen: Lernziele: Physikalische Prinzipien in Zellen: Adhäsion, Bewegung, zelluläre Kommunikation, Signaltransduktion, Biopolymere und deren Netzwerke, Nervenleitung, Extrazelluläre Matrix, Experimentelle Methoden, Aktuelle Forschung Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltungen: 1. Übung 2. Vorlesung Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Physikalische Prinzipien in Zellen		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.502		
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1 - 3		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen Modul B.Phy.5619: Seminar zur Mikro- und Nanofluidik English title: Seminar on Micro- and Nanofluidics 3 C 2 SWS

Lernziele/Kompetenzen:

Lernziele: Einführung in die Hydrodynamik auf der Mikro- und Nanoskala und ihre Anwendung in der Biologie, Biophysik, Materialwissenschaften und Biotechnologie; Benetzung und Kapillarität, "Leben" bei kleinen Reynoldszahlen, "weiche" Lithographie, Fluidik in der Biologie und Biophysik, "Lab on a Chip"-Anwendungen; Navier-Stokes-Gleichung

Kompetenzen: Die Studierenden sollen anhand eines oder mehrerer Publikationen oder Buchkapitel ausgewählte Fragestellungen erarbeiten und in einem Seminarvortrag vorstellen.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden

Lehrveranstaltung: Seminar 2 SWS

Prüfung: Seminarvortrag (ca. 30 Min.)

Prüfungsanforderungen:

Hydrodynamik auf der Mikro- und Nanoskala und ihre Anwendung in der Biologie, Biophysik, Materialwissenschaften und Biotechnologie; Benetzung und Kapillarität, "Leben" bei kleinen Reynoldszahlen, "weiche" Lithographie, Fluidik in der Biologie und Biophysik, "Lab on a Chip"-Anwendungen; Navier-Stokes-Gleichung

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:
Sprache: Deutsch, Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 20	

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5620: Sportphysik		2 SWS
Lernziele/Kompetenzen: Lernziele: Modellierung komplexer physikalischer Zusammenhänge: von der Anschauung zum Feststellen der relevanten physikalischen Grundlagen, Aufstellen eines geeigneten Modells und Diskussion der Lösungen; Literatur-Recherche Kompetenzen: Die Studenten lernen Literatur zu suchen und kritisch zu bewerten. Sie erwerben grundlegende Fertigkeiten in der Modelbildung und in der Diskussion nichtlinearer Partialgleichungen und/oder partieller Differentialgleichungen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.) mit Handout (max. 4 S.)		
Prüfungsanforderungen: Modellierung eines komplexen physikalischen Zusammenhanges aus der Sportphysik; gegebenenfalls unter Berücksichtigung und kritischer Diskussion der bestehenden Literatur.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.201		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 3 - 6; Master: 1		
Maximale Studierendenzahl: 22		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5621: Stochastic Processes		2 SWS
Lernziele/Kompetenzen: Lernziele: Random Walks, Raumzeitliche Ausbreitungsmodelle (von Information und Epidemien), Entropie-Konzepte, Informationstheorie zur Beschreibung von stochastischen Prozessen, Markov-Ketten, Fokker- Planck-Formalismus		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen : Die Studenten sollen die grundlegenden Begriffe von stochastischen Prozessen auf Fragestellungen anweden können, die im Grenzgebiet von Biologie, Physik und Ökonomie liegen.		Otdriden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 60 Min.) inkl. Diskussion		
Prüfungsanforderungen: Informationstheorie, Markov-Ketten, Fokker-Planck-Formalismus		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	•	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5622: Weiterführende Optik		2 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene Themen der Optik mit Schwerpunkt auf Mikroskopie und Spektroskopie: Propagation von EM Wellen und skalare Beugungstheorie, Kohärenz, Interferometrie, Absorption und moderne Spektroskopie, Fluoreszenz, Mikroskopie Grundlagen, Mikroskopie höchste Auflösung Kompetenzen: Die Studenten sollten grundlegende Kenntnisse auf dem Gebiet der Elektrizitätslehre und der Optik besitzen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (30 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Wellengleichung, Brechung, Skalare Beugungstheorie, Kohärenz, Methoden der Interferometrie, Methoden der Spektroskopie, Fluoreszenz, Grundlagen der Mikroskopie, Methoden zur Umgehung der Beugungslimitierung.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen Modul B.Phy.5623: Theoretische Biophysik		6 C 4 SWS
Lernziele/Kompetenzen: Lernziele: Wahrscheinlichkeiten und Stochastische Differentialgleichungen Fokker- Planck-Gleichung, Fluktuations-Dissipations-Theoreme, Stochastische Resonanz, Thermische Ratschen, Polymere und Membrane, Ligand-Rezeptor-Wechselwirkung, Proteinfaltung, Zelladhäsion, Hydrodynamik in und um die Zelle, Elastohydrodynamik weicher und biologischer Materie, Populationsdynamik, Evolutionsmodelle.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Kompetenzen : Die Studenten sollen fundamentale theoretische Kenntnisse über stochastische Prozesse mit Anwendungen im Bereich der Biophysik von Biomolekülen, Zellen, und Populationen erhalten.		
Lehrveranstaltung: Vorlesung mit Selbststudium Literatur		4 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Ableiten fundamentaler Beziehungen stochastischer Differentialgleichungen, Ableitung von analytischen und Näherungs-Lösungen der verschiedenen behandelten Probleme.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5624: Introduction to Theore	2 SWS	
Lernziele/Kompetenzen: Lernziele: Elementare Kenntnisse von Aufbau, Biophysik und Funktion von Nervenzellen, Probabilistischer Analyse sensorischer Codierung, einfacher Modelle zur Dynamik und Informationsverarbeitung in Netzwerken biologischer Neurone, Modellierung der biophysikalischen Grundlagen von Lernprozessen. Kompetenzen: Die Studierenden sollen lernen grundlegenden Begriffe Modellvorstellungen und mathematische Methoden der theoretischen Physik neuronaler Systeme zu verstehen und anzuwenden.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Vortrag (ca. 60 Min.)		
Prüfungsanforderungen: Elementare Kenntnisse von Aufbau, Biophysik und Funktion von Nervenzellen. Modellierung der biophysikalischen Grundlagen von Lernprozessen		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester Dauer: 1 Semester		
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl:		

Modul B.Phy.5701: Weiche Materie: Flüssigkristalle	Georg-August-Universität Göttingen	3 C 2 SWS
	Modul B.Phy.5701: Weiche Materie: Flüssigkristalle	2 3 7 7 3

Modul B.Phy.5701: Weiche Materie: Flüssigkristalle	2 SWS
Lernziele/Kompetenzen:	Arbeitsaufwand:
Lernziele: Nematische Flüssigkristalle: anisotrope Eigenschaften;	Präsenzzeit:
Orientierungsverteilung und Ordnungsparameter; Theorien zum nematisch-isotrop	28 Stunden
Phasenübergang; Direktorfeld, elastische Eigenschaften und Kontinuumsbeschreibung;	Selbststudium: 62
Wirkung äußerer Felder und Frederiks-Übergang; Eigenschaften der chiral-nematischen Phase; Flüssigkristalldisplays.	Stunden
Smektische Flüssigkristalle: Phasen- und Strukturübersicht; Eigenschaften der smektischen A und C Phase.	
Diskotische und columnare Flüssigkristalle.	
Lyotrope Flüssigkristalle und biologische Aspekte.	
Kompetenzen: Die Studenten sollen die grundlegenden Konzepte zur Beschreibung	
von Festkörpern und Flüssigkeiten auf Flüssigkristalle anwenden können.	
Lehrveranstaltung: Vorlesung	2 SWS
Prüfung: Seminarvortrag oder mündliche Prüfung (je ca. 30 Min.)	
Prüfungsanforderungen:	
Kenntnis der grundlegenden Eigenschaften von thermotropen Flüssigkristallen und der	
Konzepte zu ihrer Beschreibung	

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
keine	keine
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Andreas Tilgner
Angebotshäufigkeit:	Dauer:
Jedes Sommersemester	1 Semester
Wiederholbarkeit:	Empfohlenes Fachsemester:
dreimalig	Bachelor: 5 - 6; Master: 1
Maximale Studierendenzahl:	
20	

Georg-August-Universität Göttingen Modul B.Phy.5702: Dünne Schichten		3 C 2 SWS
-		Arbeitsaufwand:
Lernziele/Kompetenzen: Lernziele: Oberflächen, UHV, Dünnschichtverfahren	Keimhildung und Wachstum	Präsenzzeit:
dünner Schichten, Epitaxie, Untersuchungsmethoder	-	28 Stunden
Schichten.	,, opoziono zigonosnanon danno	Selbststudium: 62
Kompetenzen: Die Studenten sollen die grundlegen Schichten und Schichtstrukturen anwenden können.	den Begriffe der Physik Dünner	Stunden
Schichten und Schichtstrukturen anwenden konnen.		
Lehrveranstaltung: Vorlesung mit Seminar (je zur Hälfte)		2 SWS
Prüfung: Vortrag (ca. 30 Min.)		
Prüfungsanforderungen:		
Kenntnisse der Physik Dünner Schichten		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
unregelmäßig	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig		
Maximale Studierendenzahl:		
24		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5703: Vorlesungszyklus: Eigenschaften fester Stoffe und grundlegende Phänomene		2 SWS
Lernziele/Kompetenzen: Lernziele: Beispiele und Grundlagen zum Zusammenhang von Materialklassen, physikalischen Phänomenen und Anwendungen. Nanostrukturierte Materialien, Materialien für magnetische, optische und elektronische Anwendungen, weiche und granulare Materialien, Polymere und biologische Werkstoffe. Kompetenzen: Die Studenten sollen die grundlegenden Materialklassen, Strategien zum Materialdesign und die aktuelle Forschungsgebiete aus der Perspektive der unterschiedlichen beteiligten Fakultäten/Institute (Physik, Chemie, Forstwissenschaften) kennenlernen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Kenntnisse zu zwei der Vortragsthemen		
Zugangsvoraussetzungen: keine Empfohlene Vorkenntnisse: B.Phy.503		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul B.Phy.5704: Magnetismus 6 C 4 SWS

Lernziele/Kompetenzen:

Lernziele: Spin und Bahnmoment klassisch/ QM, Spin-Bahn Kopplung, Diaund Paramagnetismus, Thermische Statistik: Curie Gesetz, Brillouinfunktion, Magnetismus delokalisierter Elektronen, Weiss Molekularfeld, Curie-Weiss Gesetz, Phasenübergang bei Tc, Landau Theorie, Antiferromagnetische Ordnung, Magnetische Korrelationen in Oxiden, Doppel und Superaustausch, Kristallfeld, Ligandenfeldtheorie, Jahn Teller Effekt, Hubbard Modell, Magnetostatik, Domänenwände, Magnetische Nanostrukturen, Stoner Modell und Bandstruktur im Rigid Band Modell Magnetismus von Oberflächen, Methoden APRES, Spinaufgelöste PE, Antiferromagnetismus, Spindichtewellen, RKKY Wechselwirkung und Zwischenschichtkopplung, Kondoeffekt, Magnetische Anisotropie, Magnetostriktion, Stoner-Wohlfarth Modell, Hysterese, Landau-Lifshitz-Gilbert Gleichung, Spintransport, Mottsches Zweistrommodell, Spintransport, Magnonik

Kompetenzen: Die Studenten sollen die grundlegenden Eigenschaften magnetischer Materialien und deren moderne Anwendung erfahren.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden

Lehrveranstaltung: Vorlesung mit Blockseminar

4 SWS

Prüfung: Mündliche Prüfung (ca. 30 Min.), Klausur (30 Min.) oder Vortrag (ca. 30 Min.)

Prüfungsanforderungen:

Wiedergabe und weiterführendes Verständnis des Stoffes der Vorlesung.

Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:
Sprache:	Modulverantwortliche[r]:
Deutsch	Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1 - 3
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen Modul B.Phy.5705: Magnetismus Seminar

Lernziele/Kompetenzen:

Lernziele: Spin und Bahnmoment klassisch/ QM, Spin-Bahn Kopplung, Diaund Paramagnetismus, Thermische Statistik: Curie Gesetz, Brillouinfunktion, Magnetismus delokalisierter Elektronen, Weiss Molekularfeld, Curie-Weiss Gesetz, Phasenübergang bei Tc, Landau Theorie, Antiferromagnetische Ordnung, Magnetische Korrelationen in Oxiden, Doppel und Superaustausch, Kristallfeld, Ligandenfeldtheorie, Jahn Teller Effekt, Hubbard Modell, Magnetostatik, Domänenwände, Magnetische Nanostrukturen, Stoner Modell und Bandstruktur im Rigid Band Modell Magnetismus von Oberflächen, Methoden APRES, Spinaufgelöste PE, Antiferromagnetismus, Spindichtewellen, RKKY Wechselwirkung und Zwischenschichtkopplung, Kondoeffekt, Magnetische Anisotropie, Magnetostriktion, Stoner-Wohlfarth Modell, Hysterese, Landau-Lifshitz-Gilbert Gleichung, Spintransport, Mottsches Zweistrommodell, Spintransport, Magnonik.

Kompetenzen: Die Studenten sollen die grundlegenden Eigenschaften magnetischer Materialien und deren moderne Anwendung erfahren und eigenständig präsentieren.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden

Selbststudium: 62

Stunden

Lehrveranstaltung: Seminar	2 SWS
Prüfung: Vortrag (ca. 30 Min.)	

Prüfungsanforderungen:

Aufarbeitung und Darstellung eines aktuellen Themas aus dem Bereich Magnetismus.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: jährlich	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 4 - 6; Master: 1
Maximale Studierendenzahl: 50	

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5707: Nanoscience		2 SWS
Lernziele/Kompetenzen: Lernziele: Electronic properties of electrons confined in low-dimensional nanostructures (2D, 1D and 0D). Experimental methods for the preparation and characterization of nanostrucures. Semiconductor materials will be on focus. Kompetenzen: The students should be able to gain a knowledge basis of the relevant concepts and methods needed when dealing with nanostructures.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Mündliche Prüfung oder Seminarvortrag (je ca. 30 Min.) - student choice if in German or in English		
Prüfungsanforderungen: The students should show a knowledge basis of the relevant concepts and methods needed when dealing with nanostructures.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5708: Physik der Nanostrukturen		2 SWS
Lernziele/Kompetenzen: Lernziele: Klassifizierung von Nanostrukturen, Cluster, Fullerene, Quantendots, nanokristalline Materialien, Schichtpakete, Zonenplatten, Strukturierungsverfahren, Messverfahren an Nanostrukturen, spezielle Eigenschaften von Nanostrukturen Kompetenzen: Die Studenten sollen die grundlegenden Begriffe der Physik nanostrukturierter Materialien anwenden können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung mit Seminar (je zur Hälfte)		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Kenntnisse der Physik nanostrukturierter Materialien		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 24		

Maximale Studierendenzahl:

20

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5709: Seminar on Nanoscience		2 3 7 7 3
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele : Electronic properties of electrons confined in low-dimensional structures (2D, 1D and 0D). Experimental methods for the preparation and characterization of nanostructures. Functional nanostructures. Devices in nanoelectronics. Semiconductor materials will be on focus.		Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Kompetenzen : The students should be able to gain a deep knowledge of a current topic in nanoscience and nanodevices from the recommended scientific literature. The student will present and discuss the topic in a Seminar.		
Lehrveranstaltung: Seminar (Blockveranstaltung)		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.) - student choice if in German or in English		
Prüfungsanforderungen: The students should achieve a deep knowledge of a current topic in nanoscience and nanodevices from the recommended scientific literature. The student should be able to transfer this knowledge to an audience in a seminar.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503, B.Phy.5707	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 2	

Georg-August-Universität Göttingen Modul B.Phy.5710: Spintransport und Dynamik		3 C 2 SWS
Lernziele/Kompetenzen: Lernziele: Aktuelle Themen des Spintransport und Spindynamik. Kompetenzen: Die Studenten sollen die spezielle Themen des Spintransport und Spindynamik Eigenständig präsentieren.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min.)		
Prüfungsanforderungen: Aufarbeitung und Darstellung eines aktuellen Themas aus dem Bereich Magnetismus.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: jährlich	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl: 12		

Georg-August-Universität Göttingen		4 C
Modul B.Phy.5711: Starkkorrelierte Elektronensysteme English title: Strongly correlated electron systems		2 SWS
Lernziele/Kompetenzen: Lernziele: Aktuelle Fragen der Forschung auf dem Gebiet der starkkorrelierten Elektronensysteme Kompetenzen: Wichtigste Eigenschaften starkkorrelierter Elektronensysteme		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Seminar		2 SWS
Prüfung: Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Verständnis grundlegender Begriffe und Modelle der Physik der starkkorrelierten Elektronensysteme		
Zugangsvoraussetzungen: für Bachelor- und Masterstudierende, welche ihre Abschlussarbeit in der Arbeitsgruppe durchführen	Empfohlene Vorkenntnisse: B.Phy.101, B.Phy.102, B.Phy.103, B.Phy.104, B.Phy.202, B.Phy.503	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 6; Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5712: Tieftemperaturphysik		2 SWS
Lernziele/Kompetenzen: Lernziele: Erzeugung tiefer Temperaturen, Kryoflüssigkeiten, Suprafluidität in Helium, spezifische Wärme, elektrischer Widerstand und andere Eigenschaften von Metallen bei tiefen Temperaturen, klassische und Quanten-Phasenübergänge Kompetenzen: Die Studierenden sollen mit den grundlegenden Begriffen und Modellen der Tieftemperaurphysik umgehen.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung mit Demonstrations	sexperimenten	2 SWS
Prüfung: Mündliche Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen: Verständnis grundlegender Begriffe und Modelle der Tieftemperaturphysik		
Zugangsvoraussetzungen:Empfohlene Vorkenntnisse:keineB.Phy.101, B.Phy.102, B.Phy.103,B.Phy.202, B.Phy.503		B.Phy.104,
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1 - 3	
Maximale Studierendenzahl: 90		

Georg-August-Universität Göttingen		3 C
Modul B.Phy.5801: Classical field theory		4 SWS
Lernziele/Kompetenzen: Lernziele: Basic concepts in field theories, elasticity and hydrodynamics, special relativity and covariant formulation of Maxwell's theory, elements of differential geometry and general relativity, lagrangian field theories, gauge theories Kompetenzen: Abstraction of daily concepts to formal objects, general structure of space-time, formulation of scientific theories		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 34 Stunden
Lehrveranstaltungen: 1. Lecture 2. Exercises		3 SWS 1 SWS
Prüfung: Klausur (60 Minuten)		
Prüfungsanforderungen: Derivation of equations of motion and conservation laws for field theories, construction of solutions to the equations of motion for simple geometries		
Zugangsvoraussetzungen:Empfohlene Vorkenntnisse:keineB.Phy.201, B.Phy.202		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Thomas Puschke		
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester	
Wiederholbarkeit:Empfohlenes Fachsemester:dreimaligBachelor: 4 - 6; Master: 1		
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen Modul B.Phy.5803: Wechselwirkung zwischen Strahlung und Materie - Detektorphysik

Lernziele/Kompetenzen:

Lernziele: Mechanismen der Teilchendetektion, Wechselwirkung geladener Teilchen und Photonen mit Materie, Ionisationsdetektoren, Drift und Diffusion, Gas-gefüllte Drahtkammern, Proportional- und Driftkammern, Halbleiterdetektoren, Mikrostreifenund Pixeldetektoren, Tscherenkov-Detektoren, Übergangssstrahlungsdetektoren, Szintillation (anorganische Kristalle und Plastikszintillatoren), elektromagnetische Kalorimeter, Hadronkalorimeter

Kompetenzen: Die Studierenden sollen mit grundlegenden Methoden der Detektion von Teilchen/Strahlung in der Hochenergiephysik und ähnlichen Anwendungsgebieten vertraut gemacht werden.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden Selbststudium: 48 Stunden

Lehrveranstaltung: Vorlesung mit Übung

3 SWS

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsanforderungen:

Konzeptionelles Verständnis der Funktionsweise verschiedener Teilchendetektoren und den der Messung zugrunde liegenden Wechselwirkungen

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.504
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1
Maximale Studierendenzahl: 30	

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5804: Quantenmechanik II		6 SWS
Lernziele/Kompetenzen: Lernziele: Spezielle Themen der Quantenmechanik: Streutheorie, Symmetrien in QM und Dreh-impulsdarstellungen, Vielteilchensysteme, Quantisierung des elektromagnetischen Feldes, Klein-Gordon Gleichung, Dirac Gleichung. Kompetenzen: Die Studenten sollten mit den Konzepten der fortgeschrittenen QM vertraut werden und sie in expliziten Rechnungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Übung 2. Vorlesung		2 SWS 4 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Behandlung konkreter Aufgaben aus dem Bereich der Vorlesung, Rechnung von Lösungen der Vielteilchen-Schrödinger Gleichung, Anwendung von QM Methoden		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.5801		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Bachelor: 5 - 6; Master: 1 - 3		
Maximale Studierendenzahl: 80		

Georg-August-Universität Göttingen		6 C
Modul B.Phy.5805: Quantenfeldtheorie I		6 SWS
Lernziele/Kompetenzen: Lernziele: Grundkonzepte und Fundamente der Quantenfeldtheorie; skalare QFT, Spinoren und Dirac Gleichung, QED und abelsche Eichsymmetrien; Störungstheorie; Renormierung. Kompetenzen: Die Studenten sollten mit den Methoden und Konzepten der QFT vertraut werden und sie in expliziten Rechnungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Vorlesung 2. Übung		4 SWS 2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Lösung von Problemen in QFT, Rechnung von Wirkungsquerschnitten, Anwendung von QFT Methoden		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine B.Phy.202, B.Phy.5801, B.Phy.580)4
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Bachelor: 6; Master: 1 - 2		
Maximale Studierendenzahl: 50		

Georg-August-Universität Göttingen		3 C 2 SWS
Modul B.Phy.5806: Spezielle Relativitätstheorie		2 0000
Lernziele/Kompetenzen: Lernziele: Lorentzgruppe, relativistische Mechanik, Konzept der Raum-Zeit-		Arbeitsaufwand: Präsenzzeit:
Mannigfaltigkeit, Vierergroessen, Energie-Impuls-Ten	•	28 Stunden
Kompetenzen: Umgang mit der Lorentzgruppe, Verstaendnis der Raum-Zeit-Konzepte, Einsatz von Gedankenexperimenten		Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Minuten)		
Prüfungsanforderungen: Einfache Fragestellungen gemäß Stoff der Vorlesung Zugangsvoraussetzunge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Bachelor: 5 - 6; Master: 1	
Maximale Studierendenzahl: nicht begrenzt		

Georg-August-Universität Göttingen		13 C 10 SWS
Modul M.Phy.401: Forschungspraktikum Astro- und Geophysik		10 5005
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Methoden zur Lö¬sung physikalischer Fragestellungen aus dem Gebiet der Astro- und Geophysik. Kompetenzen: Die Studierenden sollen lernen, sich selbständig in komplexe		Arbeitsaufwand: Präsenzzeit: 140 Stunden Selbststudium:
Themen einzuarbeiten und unter Anleitung in Teamarbeit experimentelle Aufgaben durchzuführen und wissenschaftliche Protokolle im Sinne guter wissenschaftlicher Praxis anzufertigen.		250 Stunden
Lehrveranstaltung: Vorlesung		
Prüfung: Protokolle Prüfungsvorleistungen: 8 erfolgreich durchgeführte Experimente. Prüfungsanforderungen: Modulprüfung: 8 testierte Protokolle (max. 25 S.)		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache:	Modulverantwortliche[r]:	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Alle Studiendekan
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: nicht begrenzt	

Georg-August-Universität Göttingen Modul M.Phy.402: Forschungspraktikum Biophysik und Physik komplexer Systeme Lernziele/Kompetenzen: Arbeitsaufwand:

Lernziele: Fortgeschrittene experimentelle Methoden zur Lösung physikalischer
Fragestellungen aus dem Gebiet der Biophysik und Physik komplexer Systeme.

Kompetenzen: Die Studierenden sollen lernen, sich selbständig in komplexe
Themen einzuarbeiten und unter Anleitung in Teamarbeit experimentelle Aufgaben durchzuführen und wissenschaftliche Protokolle im Sinne guter wissenschaftlicher
Praxis anzufertigen.

Lehrveranstaltung: Praktikum	
Prüfung:	
Prüfungsvorleistungen:	
8 erfolgreich durchgeführte Experimente.	
Prüfungsanforderungen:	
8 testierte Protokolle (max. 25 S.)	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Alle Studiendekan
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 2 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen 13 C 10 SWS Modul M.Phy.403: Forschungspraktikum Festkörper- und Materialphysik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Fortgeschrittene experimentelle Methoden zur Lösung physikalischer Präsenzzeit: Fragestellungen aus dem Gebiet der Festkörper- und Materialphysik. 140 Stunden Selbststudium: Kompetenzen: Die Studierenden sollen lernen, sich selbständig in komplexe 250 Stunden Themen einzuarbeiten und unter Anleitung in Teamarbeit experimentelle Aufgaben durchzuführen und wissenschaftliche Protokolle im Sinne guter wissenschaftlicher Praxis anzufertigen. Lehrveranstaltung: Praktikum Prüfung: Praktikum Prüfungsvorleistungen: 8 erfolgreich durchgeführte Experimente. Prüfungsanforderungen: 8 testierte Protokolle (max. 25 S.) **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: keine keine Sprache: Modulverantwortliche[r]: Deutsch Alle Angebotshäufigkeit: Dauer: Jedes Sommersemester 2 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen		13 C
Modul M.Phy.404: Forschungspraktikum Kern- und Teilchenphysik		10 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Methoden zur Lösung physikalischer Fragestellungen aus dem Gebiet der Kern- und Teilchenphysik.		Arbeitsaufwand: Präsenzzeit: 140 Stunden Selbststudium:
Kompetenzen: Die Studierenden sollen lernen, sich selbständig in komplexe Themen einzuarbeiten und unter Anleitung in Teamarbeit experimentelle Aufgaben durchzuführen und wissenschaftliche Protokolle im Sinne guter wissenschaftlicher Praxis anzufertigen.		250 Stunden
Lehrveranstaltung: Forschungspraktikum Kern- und Teilchenphysik Inhalte: Praktikum		
Prüfung: Praktikum		
Prüfungsvorleistungen: 8 erfolgreich durchgeführte Experimente.		
Prüfungsanforderungen: 8 testierte Protokolle (max. 25 S.)		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Alle	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 2 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen 18 C Modul M.Phy.405: Forschungshauptpraktikum Astro- und Geophysik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Methoden zur vertieften Einarbeitung in ein wissenschaftliches Arbeitsgebiet, Präsenzzeit: kritische Bewertung von Literatur, wissenschaftlich korrekte Präsentation, gute 0 Stunden Selbststudium: wissenschaftliche Praxis. 540 Stunden Kompetenzen: Die Studierenden sollen sich eigenständig in ein aktuelles wissenschaftliches Forschungsprojekt einarbeiten, es erfolgreich durchführen und die Ergebnisse einem Fachpublikum präsentieren können. Lehrveranstaltung: Forschungshauptpraktikum Astro- und Geophysik" Prüfung: Praktikum Prüfungsanforderungen: Seminarvortrag (30 Min., 2 Wochen Vorbereitungszeit) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig

Maximale Studierendenzahl:

Georg-August-Universität Göttingen Modul M.Phy.406: Forschungshauptpraktikum Biophysik und Physik komplexer Systeme

Lernziele/Kompetenzen: Lernziele: Methoden zur vertieften Einarbeitung in ein wissenschaftliches Arbeitsgebiet, kritische Bewertung von Literatur, wissenschaftlich korrekte Präsentation, gute wissenschaftliche Praxis. Kompetenzen: Die Studierenden sollen sich eigenständig in ein aktuelles wissenschaftliches Forschungsprojekt einarbeiten, es erfolgreich durchführen und die Ergebnisse einem Fachpublikum präsentieren können.

Lehrveranstaltung: Forschungshauptpraktikum Biophysik und Physik komplexer Systeme	
Prüfung: Praktikum, Block	
Prüfungsvorleistungen:	
Praktikum	
Prüfungsanforderungen:	
Seminarvortrag (30 Min., 2 Wochen Vorbereitungszeit)	

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine
Sprache: Deutsch	Modulverantwortliche[r]: Alle
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen 18 C Modul M.Phy.407: Forschungshauptpraktikum Festkörper- und Materialphysik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Methoden zur vertieften Einarbeitung in ein wissenschaftliches Arbeitsgebiet, Präsenzzeit: kritische Bewertung von Literatur, wissenschaftlich korrekte Präsentation, gute 0 Stunden Selbststudium: wissenschaftliche Praxis. 540 Stunden Kompetenzen: Die Studierenden sollen sich eigenständig in ein aktuelles wissenschaftliches Forschungsprojekt einarbeiten, es erfolgreich durchführen und die Ergebnisse einem Fachpublikum präsentieren können. Lehrveranstaltung: Forschungshauptpraktikum Festkörper- und Materialphysik Prüfung: Praktikum, Block Prüfungsanforderungen: Seminarvortrag (30 Min., 2 Wochen Vorbereitungszeit) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig

Maximale Studierendenzahl:

Maximale Studierendenzahl:

40

Georg-August-Universität Göttingen 18 C Modul M.Phy.408: Forschungshauptpraktikum Kern- und Teilchenphysik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Methoden zur vertieften Einarbeitung in ein wissenschaftliches Arbeitsgebiet, Präsenzzeit: kritische Bewertung von Literatur, wissenschaftlich korrekte Präsentation, gute 0 Stunden Selbststudium: wissenschaftliche Praxis. 540 Stunden Kompetenzen: Die Studierenden sollen sich eigenständig in ein aktuelles wissenschaftliches Forschungsprojekt einarbeiten, es erfolgreich durchführen und die Ergebnisse einem Fachpublikum präsentieren können. Lehrveranstaltung: Forschungshauptpraktikum Kern- und Teilchenphysik Prüfung: Praktikum, Block Prüfungsanforderungen: Seminarvortrag (30 Min., 2 Wochen Vorbereitungszeit) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig

Georg-August-Universität Göttingen		4 C
Modul M.Phy.409: Forschungsseminar A	2 SWS	
Lernziele/Kompetenzen:	Arbeitsaufwand:	
Lernziele: Erlernen der Aufbereitung komplexer The	emen zur Präsentation und	Präsenzzeit:
wissenschaftlichen Diskussion		28 Stunden
Kompetenzen: Die Studierenden sollen komplexe	Argumentationsketten darstellen und	Selbststudium: 92
in kritischer Diskussion eigene und fremde Präsenta	tionen bewerten können.	Stunden
Lehrveranstaltung: Forschungsseminar Astro- und Geophysik		
Prüfung: Praktikum		
Prüfungsanforderungen:		
Seminarvortrag (60 Min., 4 Wochen Vorbereitungsz	eit)	
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch Alle		
Angebotshäufigkeit:	Dauer:	
Jedes Semester 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:		
zweimalig		
Maximale Studierendenzahl:		
40		

Georg-August-Universität Göttingen 4 C 2 SWS Modul M.Phy.410: Forschungsseminar Biophysik und Physik komplexer Systeme Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Erlernen der Aufbereitung komplexer Themen zur Präsentation und Präsenzzeit: 28 Stunden wissenschaftlichen Diskussion Selbststudium: 92 Kompetenzen: Die Studierenden sollen komplexe Argumentationsketten darstellen und Stunden in kritischer Diskussion eigene und fremde Präsentationen bewerten können. Lehrveranstaltung: Forschungsseminar Biophysik und Physik komplexer **Systeme** Prüfung: Seminar Prüfungsanforderungen: Seminarvortrag (60 Min., 4 Wochen Vorbereitungszeit) Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine keine Sprache: Modulverantwortliche[r]: Deutsch Alle Dauer: Angebotshäufigkeit: Jedes Semester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen		4 C
Modul M.Phy.411: Forschungsseminar Festkörper- und Materialphysik		2 SWS
Lernziele/Kompetenzen: Lernziele: Erlernen der Aufbereitung komplexer Themen zur Präsentation und wissenschaftlichen Diskussion Kompetenzen: Die Studierenden sollen komplexe Argumentationsketten darstellen und in kritischer Diskussion eigene und fremde Präsentationen bewerten können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Forschungsseminar Festkörper- und Materialphysik Prüfung: Seminar Prüfungsanforderungen: Seminarvortrag (60 Min., 4 Wochen Vorbereitungszeit)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
prache: Modulverantwortliche[r]: Alle		
Angebotshäufigkeit: Jedes Semester Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
Modul M.Phy.412: Forschungsseminar Ke	2 SWS	
Lernziele/Kompetenzen: Lernziele: Erlernen der Aufbereitung komplexer Themen zur Präsentation und wissenschaftlichen Diskussion Kompetenzen: Die Studierenden sollen komplexe Argumentationsketten darstellen und in kritischer Diskussion eigene und fremde Präsentationen bewerten können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Forschungsseminar Kern- und Teilchenphysik		
Prüfung: Seminar Prüfungsanforderungen: Seminarvortrag (60 Min., 4 Wochen Vorbereitungszeit)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Modulverantwortliche[r]: Deutsch Alle		
Angebotshäufigkeit: Jedes Semester Dauer: 1 Semester		
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		4 C
Modul M.Phy.413: Profilierungsseminar		2 SWS
Lernziele/Kompetenzen: Lernziele: Umgang mit Präsentationsmedien und Präsentation komplexer Sachverhalte vor Experten und fachfremden Zuhörern, Kommunikations- und Diskussionsfähigkeit, Kritikfähigkeit und Ausdrucksfähigkeit. Kompetenzen: Die Studierenden sollen selbständig den Inhalt wissenschaftlicher Publikationen (in der Regel englischsprachig) erarbeiten und vor einem breiten Publikum präsentieren und kritisch bewerten können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Profilierungsseminar Inhalte: (nicht aus dem Bereich des gewählten Studienschwerpunkts) Prüfung: Seminar Prüfungsanforderungen: Seminarvortrag (60 Min., 4 Wochen Vorbereitungszeit)		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Deutsch	Modulverantwortliche[r]: Alle	
Angebotshäufigkeit: Jedes Semester Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: zweimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul M.Phy.5001: Festkörperspektrsokopie mit Kernspins 3 C 3 SWS

Lernziele/Kompetenzen:

Kernspins als Sonden für magnetische und elektrische Felder in Festkörpern bieten eine einzigartige Möglichkeit zur Analyse magnetischer und elektronischer Eigenschaften, und sind zur Strukturbestimmung und zur Analyse chemischer Bindungen in Festkörpern und Makromolekülen unersetzlich. Drei

chemischer Bindungen in Festkörpern und Makromolekülen unersetzlich. Drei Nobelpreise wurden zur magnetischen Kernresonanz vergeben.

Lernziele: Grundlagen der Kern-, Atom- und Festkörperphysik, magnetische und elektrische Hyperfeinwechselwirkung, Methodik und Anwendungen der Mössbauerspektroskopie, der Myonenspinrotation und der magnetischen Kernresonanz zur Untersuchung von Festkörpern und insbesondere im Hinblick auf die Strukturaufklärung von Makromolekülen. Ein Schwerpunkt liegt bei der magn. Kernresonanz: Phänomenologische Beschreibung (Blochgleichungen), Quantenmechanische Beschreibung der NMR, NMRMethoden, Chemische Verschiebung, Spin-Spin Wechselwirkungen (J- und Dipolare Kopplung), , Knight Shift, Spin-Gitter-Relaxation, Magic-Angle Spinning, 2-d NMR, NMR Methoden zur Strukturaufklärung von Proteinen, Kernspintomographie.

Kompetenzen: Physikalische Grundlagen und aktuelle Anwendungen der Magnetischen Kernresonanz (NMR), der Mössbauerspektroskopie und der Myonspin-Rotation (μSR) zur Untersuchung der magnetischen, .elektronischen und chemischen Eigenschaften Festkörpern und zur Strukturaufklärung von Makromolekülen

Arbeitsaufwand:

Präsenzzeit: 42 Stunden

Selbststudium: 48
Stunden

Lehrveranstaltungen:

1. Vorlesung

2. Tutorium

2 SWS

1 SWS

Prüfung: Mündlich (ca. 30 Minuten)

Prüfungsanforderungen:

Kenntnisse der Hyperfeinwechselwirkung, Grundlagen, Methodik und Anwendungen Methoden magnetische Kernresonanz, Mössbauerspektroskopie und Myonspinrotation.

Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.503, B.Phy.504
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner
Angebotshäufigkeit: unregelmäßig	Dauer: 1 Semester
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 1 - 3
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen		6 C
Modul M.Phy.501: Forschungsschwerpunkt Astro- und Geophysik		6 SWS
Lernziele/Kompetenzen: Lernziele: Moderne experimentelle Techniken und theoretische Modelle der Astro- und Geophysik. Kompetenzen: Die Studierenden sollen mit aktuellen Konzepten und Ergebnissen im Bereich der Astro- und Geophysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Vorlesung mit Übung		6 SWS
Prüfung: Klausur (120 Min.) oder Mündlich (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min)		
Prüfungsanforderungen: Kenntnisse fortgeschrittener Fragestellungen und Methoden der Astro- und Geophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für P	hysik
Angebotshäufigkeit: Jedes Wintersemester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.502: Forschungsschwerpunkt Biophysik und Physik komplexer Systeme		6 SWS
Lernziele/Kompetenzen: Lernziele: Moderne experimentelle Techniken und theoretische Modelle der Biophysik und der Physik komplexer Systeme. Kompetenzen: Die Studierenden sollen mit aktuellen Konzepten und Ergebnissen im Bereich der Biophysik und Physik komplexer Systeme umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Vorlesung mit Übung		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		
Prüfungsanforderungen: Kenntnisse fortgeschrittener Fragestellungen und Methoden der Biophysik und der Physik komplexer Systeme.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: Jedes Wintersemester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.503: Forschungsschwerpunkt Festkörper- und Materialphysik		6 SWS
Lernziele/Kompetenzen: Lernziele: Moderne experimentelle Techniken und theoretische Modelle der Festkörper- und Materialphysik. Kompetenzen: Die Studierenden sollen mit aktuellen Konzepten und Ergebnissen im Bereich der Festkörper- und Materialphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Vorlesung mit Übung		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		
Prüfungsanforderungen: Kenntnisse fortgeschrittener Fragestellungen und Methoden der Festkörper- und Materialphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für P	hysik
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Götting	en	6 C
Modul M.Phy.504: Forschungssch sik	6 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Moderne experimentelle Technik	en und theoretische Modelle der Kern- und	Präsenzzeit:
Teilchenphysik.		84 Stunden
Kompetenzen: Die Studierenden sollen mit	aktuellen Konzepten und Ergebnissen im	Selbststudium: 96
Bereich der Kern- und Teilchenphysik umge	hen können.	Stunden
Lehrveranstaltung: Vorlesung mit Übung		6 SWS
, ,	Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).	
Prüfungsanforderungen: Kenntnisse fortgeschrittener Fragestellungen und Methoden der Kern- und Teilchenphysik.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
eutsch Studiendekan/in der Fakultät für Ph		Physik
Angebotshäufigkeit: Dauer:		
Jedes Wintersemester	1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		
40		

Georg-August-Universität Göttingen Modul M.Phy.5501: Kompressible Strömungen		3 C 2 SWS
Lernziele/Kompetenzen: Lernziele: Wellengleichung, Charakteristiken, Machsche Wellen, Prandtl-Meyer Expansion, Verdichtungsstöße (Rankine-Hugoniot Relation, Stoßpolaren), Wirbelsatz von Crocco, Detonation und Deflagration		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62
Kompetenzen: Fähigkeit, grundlegende Effekte in kompressiblen Strömungen zu erkennen und erklären.		Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Erläuterung elementarer strömungsmechanischer Vorgänge in kompressiblen Strömungen		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine Grundkenntnisse der Strömungsm		nechanik
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: unregelmäßig (im Wintersemester) Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.551: Fortgeschrittene Themen der Astro- und Geophysik I		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Astro- und Geophysik. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Astro- und Geophysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Eine Veranstaltung im Gesamtumfang von 6 C aus dem Lehrangebot der Geo- und Astrophysik		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Astro- und Geophysik		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.552: Fortgeschrittene Themen der Astro- und Geophysik II		6 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der		Präsenzzeit:
Astro- und Geophysik.		84 Stunden Selbststudium: 96
Kompetenzen: Die Studierenden sollen mit fortgesch	•	Stunden
Ergebnissen im Bereich der Astro- und Geophysik umgehen können.		Stariacii
Lehrveranstaltung: Fortgeschrittene Themen der Astro- und Geophysik IIa		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung ((ca. 30 Min.) oder	3 C
Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu	ngszeit)	
Lehrveranstaltung: Fortgeschrittene Themen der Astro- und Geophysik IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder		3 C
Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		
Prüfungsanforderungen:		
Spezialkenntnisse über aktuelle Themen aus dem Bereich der Astro- und Geophysik		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Deutsch	Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit:	Dauer:	
Jedes Semester	2 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig		
Maximale Studierendenzahl:		
40		

zweimalig

14

Maximale Studierendenzahl:

5 C Georg-August-Universität Göttingen 2 SWS Modul M.Phy.5601: Seminar Computational Neuroscience/Neuroinformatik Lernziele/Kompetenzen: Arbeitsaufwand: Lernziele: Selbständige Erarbeitung und Präsentation von forschungsbezogenen Präsenzzeit: Themen aus dem Bereich Computational Neuroscience/Neuroinformatik, sowie der 28 Stunden Biophysik neuronaler Systeme. Selbststudium: 122 Stunden Kompetenzen: 1. Vertiefung der Kenntnisse aus der Computational Neuroscience /Neuroinformatik durch eigenständige Ausarbeitung eines Themas. 2. Erlernen von Methoden der Präsentation von Themen aus der Informatik. Erwerb von Fähigkeiten im Umgang mit (englischsprachiger) Fachliteratur, Präsentation eines informatischen Themas, Führung einer wissenschaftlichen Disskussion. 2 SWS Lehrveranstaltung: Seminar Prüfung: Vortrag (ca. 45 Min.) mit schriftlicher Ausarbeitung (max. 7 S.) Prüfungsanforderungen: Selbständige Erarbeitung und Präsentation von forschungsbezogenen Themen aus dem Bereich Computational Neuroscience/Neuroinformatik sowie der Biophysik neuronaler Systeme. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** keine B.Phy.5614 Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner Angebotshäufigkeit: Dauer: Jedes Semester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:**

Master: 1 - 3

Georg-August-Universität Göttingen		5 C
Modul M.Phy.5602: Vertiefung Computational Neuroscience: Lernen und adaptive Algorithmen		2 SWS
Lernziele/Kompetenzen: Lernziele: Erlernen der heute bekannten neuronalen Algorithmen zum selbständigen Lernen und Strukturbildung in biologisch realistischen neuronalen Netzen. Kompetenzen: Gewinn eines Einblicks in die Möglichkeiten dieser Methoden im Bereich technischerSysteme (Roboter).		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 122 Stunden
Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (90 Min.) oder mündliche Prüfung (ca. 20 Min.)		
Prüfungsanforderungen: Erlernen der heute bekannten neuronalen Algorithmen zum selbständigen Lernen und Strukturbildung in biologisch realistischen neuronalen Netzen. Gewinn eines Einblicks in die Möglichkeiten dieser Methoden im Bereich technischer Systeme (Roboter).		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse: B.Inf.1401	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 1 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.561: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme I		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Biophysik und Physik komplexer Systeme. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Biophysik und Physik komplexer Systeme umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Eine Veranstaltung im Gesamt Lehrangebot der Biophysik und Physik komplexer Prüfung: Klausur (120 Min.) oder mündl. Prüfung (Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitu	6 SWS	
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Biophysik und der Physik komplexer Systeme.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen	6 C	
Modul M.Phy.562: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme II		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Biophysik und Physik komplexer Systeme. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Biophysik und Physik komplexer Systeme umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme IIa		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		3 C
Lehrveranstaltung: Fortgeschrittene Themen der Biophysik und Physik komplexer Systeme IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		3 C
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Biophysik und der Physik komplexer Systeme.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.5701: Advanced Solid State Theory		6 SWS
Lernziele/Kompetenzen: Lernziele: Quantum-field theoretical description of solids, elements of abinitio methods, symmetries and binding, optical properties of solids, correlated electron systems, elements of transport theory Kompetenzen: Formulation of theories based on experimental observation, description and interpretation of experiments in solids, knowledge of manybody techniques		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltungen: 1. Lecture 2. Exercises		4 SWS 2 SWS
Prüfung: Klausur (90 Minuten)		
Prüfungsanforderungen: Perform calculations using many-body techniques, de experimental observations, understand and use the la theory		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 2 - 3	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		3 C
Modul M.Phy.5702: Kinetik und Phasenumwandlungen in Materialien		2 SWS
Lernziele/Kompetenzen: Lernziele: Nicht-Gleichgewichts Thermodynamik; Transport; Diffusion; Klassifizierung von Phasenumwandlungen; Grenzflächenbewegung; morphologische Instabilitäten; Keimbildung; Wachstum; spinodale Entmischung; kinetische Umwandlungen Kompetenzen: Die Studierenden sollen die grundlegenden Begriffe der Nicht-Gleichgewicht-Prozesse und des Transports auf materialphysikalische Fragestellungen anwenden können.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung mit Übung		2 SWS
Prüfung: Klausur (120 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Analytische Verfahren zur Vereinfachung und Lösung Differentialgleichungen.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.503	
Sprache: Englisch, Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Sommersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 2 - 3	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.5703: Materialforschung mit Elektronen		4 SWS
Lernziele/Kompetenzen: Lernziele: Grundlagen der Transmissionselektronenmikroskopie, Wechselwirkung von Elektronen mit Materialien, Elektronenbeugung, Hochauflösung, Rastertransmissionselektronenmikroskopie Analytische Methoden wie EDX und EELS, In-situ Verfahren, Dyanmische und ultraschnelle Elektronenmikroskopie. Kompetenzen: Die Studenten sollen die grundlegenden elektronenoptischen und spektroskopischen Methoden kennen und in der Auswertung von Untersuchungsergebnissen anwenden können.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltung: Vorlesung mit Seminar		4 SWS
Prüfung: Seminarvortrag (ca. 60 Min.) oder mündl	iche Prüfung (ca. 30 Min.)	
Prüfungsanforderungen: Kenntnisse grundlegender elektronenoptischer und -sihrer praktischen Anwendung auf materialphysikalisch		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: B.Phy.202, B.Phy.503	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: 2jährig (SoSe)	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester: Master: 1 - 3	
Maximale Studierendenzahl: 25		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.571: Fortgeschrittene Themen der Festkörper- und Materialphysik I		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Festkörper- und Materialphysik. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Festkörper- und Materialphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Eine Veranstaltung im Gesamtumfang von 6 C aus dem Lehrangebot der Festkörper- und Materialphysik		6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfur Seminarvortrag (ca. 30 Min., 2 Wochen Vorbere		
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Festkörper- und Materialphysik.		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse:	
Sprache: Deutsch	Modulverantwortliche[r]: Studiendekan/in der Fakultät für Physik	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.572: Fortgeschrittene Themen der Festkörper- und Materialphysik II		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Festkörper- und Materialphysik. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Festkörper- und Materialphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Fortgeschrittene Themen der Festkörper- und Materialphysik IIa		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Lehrveranstaltung: Fortgeschrittene Themen der Festkörper- und Materialphysik IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Berterialphysik		
Zugangsvoraussetzungen: keine	Empfohlene Vorkenntnisse: keine	
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 2 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		3 C
Modul M.Phy.5801: detectors for particle physics and imaging		3 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Aufbauend auf der Einführungsveranstaltu	ng "Wechselwirkung zwischen	Präsenzzeit:
Strahlung und Materie" sollen speziellere Themen der	Detektorphysik wie der Aufbau	42 Stunden
bestimmter Detektortypen (z.B. Halbleiterdetektoren c	oder andere Ionisationsdetektoren),	Selbststudium: 48
Auslesesysteme und Rauschbeiträge in der Auslese,	Strahlenschäden am	Stunden
Detektormaterial/der Auslese, etc. und die Anwendun werden.	g solcher Detektoren betrachtet	
Kompetenzen: Die Studierenden sollen mit aktuellen	Fragestellungen der	
Detektorphysik in der Hochenergiephysik, der Bildgel	oung und ähnlichen	
Anwendungsgebieten vertraut gemacht werden.		
Lehrveranstaltung: Vorlesung mit Übung		2 SWS
Prüfung: Mündlich (ca. 30 Minuten)		
Prüfungsanforderungen: Detailliertes Verständnis der Funktionsweise der besprochenen Detektortypen sowie deren Anwendung.		
Zugangsvoraussetzungen:	Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:	
keine	keine	
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: Dauer:		
unregelmäßig 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester:		
dreimalig Master: 1 - 3		
Maximale Studierendenzahl:		
20		

Georg-August-Universität Göttingen		3 C
Modul M.Phy.5802: Einführung in die Quantenchromodynamik		2 SWS
Lernziele/Kompetenzen: Lernziele: Es sollen die Grundlagen der Quantenchromodynamik (QCD) vermittelt werden. Dies umfasst die Diskussion der Lagrange-Formulierung der Theorie, SU(3) Eichgruppe, Eichfixierung, Feynman Regeln, Renormierung der Theorie, asymptotische Freiheit, Faktorisierungstheorem, Partonverteilungsfunktionen, DGLAP Evolution, Jet Observablen an Leptonund Hadron-Beschleunigerexperimenten. Kompetenzen: Die Studenten sollen mit den theoretischen Konzepten der Beschreibung der starken Wechselwirkung vertraut werden und in die Lage versetzt werden, eigene Rechnungen durchzuführen und Fragestellungen aktueller		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Forschungsgegenstände zu verstehen. Lehrveranstaltung: Vorlesung		2 SWS
Prüfung: Klausur (30 Min.) oder mündliche Prüfung (ca. 30 Min.)		
Prüfungsanforderungen: Verständnis grundlegender Konzepte der QCD. Fähigkeit zur Durchführung eigener Rechnungen.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.5804, B.Phy.5805		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Master: 1 - 3		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul M.Phy.5803: Symmetries in Quantum Field Theory		2 SWS
Lernziele/Kompetenzen: Lernziele: Klassische Symmetrien, Gruppen und Darstellungen. Symmetrien in der Quantentheorie, Automorphismen und Derivationen, unitäre Operatoren und Generatoren, Implementierbarkeit und spontane Symmetriebrechung. Anwendungen in der Quantenfeldtheorie. Kompetenzen: Differenzierung zwischen unterschiedlichen Symmetrie-Konzepten, Kenntnis der angemessenen mathematischen Begriffsbildungen und übergreifenden Methoden.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 62 Stunden
Lehrveranstaltung: Vorlesung (Blockveranstaltung, eine Semesterhälfte)		2 SWS
Prüfung: Hausarbeit (maximal 15 S.) oder mündliche Prüfung (ca. 30 min.)		
Prüfungsanforderungen: Behandlung von Aufgaben und Kenntnis grundlegender Zusammenhänge		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: B.Phy.202		
Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Andreas Tilgner		
Angebotshäufigkeit: unregelmäßig Dauer: 1 Semester		
Wiederholbarkeit: Empfohlenes Fachsemester: dreimalig Master: 1 - 3		
Maximale Studierendenzahl: 20		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.581: Fortgeschrittene Themen der Kern- und Teilchen- physik I		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Kern- und Teilchenphysik. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Kern- und Teilchenphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Eine Veranstaltung im Gesamt Lehrangebot der Kern- und Teilchenphysik	tumfang von 6 C aus dem	6 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit).		
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Kern- und Teil- chenphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Modulverantwortliche[r]: Deutsch Studiendekan/in der Fakultät für Phy		hysik
Angebotshäufigkeit: Jedes Semester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		6 C
Modul M.Phy.582: Fortgeschrittene Themen der Kern- und Teilchen- physik II		6 SWS
Lernziele/Kompetenzen: Lernziele: Fortgeschrittene experimentelle Techniken und theoretische Modelle der Kern- und Teilchenphysik. Kompetenzen: Die Studierenden sollen mit fortgeschrittenen Konzepten und Ergebnissen im Bereich der Kern- und Teilchenphysik umgehen können.		Arbeitsaufwand: Präsenzzeit: 84 Stunden Selbststudium: 96 Stunden
Lehrveranstaltung: Fortgeschrittene Themen der Kern- und Teilchenphysik Ila		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Lehrveranstaltung: Fortgeschrittene Themen der Kern- und Teilchenphysik IIb		3 SWS
Prüfung: Klausur (120 Min.) oder mündl. Prüfung (ca. 30 Min.) oder Seminarvortrag (ca. 30 Min., 2 Wochen Vorbereitungszeit)		3 C
Prüfungsanforderungen: Spezialkenntnisse über aktuelle Themen aus dem Bereich der Kern- und Teil- chenphysik.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine		
Sprache: Deutsch	Modulverantwortliche[r]: Prof. Dr. Andreas Tilgner	
Angebotshäufigkeit: Jedes Semester	Dauer: 2 Semester	
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 40		

Georg-August-Universität Göttingen		9 C
Modul M.Phy.601: Planung und Durchführung wissenschaftlicher Arbeit		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Lernziele: Fähigkeit zur systematischen Literaturrech	erche, Nutzung von Li-	Präsenzzeit:
teraturdatenbanken, Beherrschung moderner Textver	arbeitungssysteme, gute	0 Stunden
wissenschaftliche Praxis.		Selbststudium:
Kompetenzen: Die Studierenden sollen selbständig o	lie Planung und das "Controlling"	270 Stunden
wissenschaftlicher Forschungsprojekte durchführen ko	önnen.	
Lehrveranstaltung: Praktikum		
Prüfung: Schriftlicher Bericht (max. 30 S.)		
Prüfungsanforderungen: Nutzung von Literaturdatenbanken, Beherrschung moderner Textverarbeitungssysteme		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
keine		
Sprache: Modulverantwortliche[r]:		
Deutsch Studiendekan/in der Fakultät für P		hysik
Angebotshäufigkeit: Dauer:		
Jedes Semester 1 Semester		
Wiederholbarkeit:	Empfohlenes Fachsemester:	
dreimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		3 C
Modul M.Phy.602: Knüpfung und Pflege von Arbeitskontakten		
Lernziele/Kompetenzen: Lernziele: Formulierung von Anträgen, Anmeldung, Finanzierung und Teilnahme an Kongressen Kompetenzen: Die Studierenden sollen in Eigeninitiative im wissenschaftlichen und		Arbeitsaufwand: Präsenzzeit: 0 Stunden Selbststudium: 90
beruflichen Umfeld eigenständige Antragstellung und anderen Institutionen durchführen können.	Kontaktaufnahme zu Kollegen an	Stunden
Lehrveranstaltung: Blockkurs		
Prüfung: Schriftlicher Bericht (max. 10 S.), unbenotet		
Prüfungsanforderungen: Durchführen von Kontaktaufnahmen zu Kollegen an anderen Institutionen und Antragstellung im wissenschaftlichen und beruflichen Umfeld in Eigeninitiative		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse: keine keine		
Sprache: Modulverantwortliche[r]: Deutsch Studiendekan/in der Fakultät für P		hysik
Angebotshäufigkeit: Jedes Semester Dauer: 1 Semester		
Wiederholbarkeit: dreimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 150		

nicht begrenzt

Georg-August-Universität Göttingen 6 C 2 SWS Modul M.Phy.603: Verfassen wissenschaftlicher Fachartikel Arbeitsaufwand: Lernziele/Kompetenzen: Lernziele: Grundlagen des Verfassens eines wissenschaftlichen Fachartikels, Form Präsenzzeit: und Inhalt einer wissenschaftlichen Arbeit, Korrespondenz mit Fachzeitschriften, Inhalte 28 Stunden Selbststudium: aktueller Forschung verstehen und vermitteln, wissenschaftliche Diskussion mit Co-Autoren 152 Stunden Kompetenzen: Die Studierenden sollen einen wissenschaftlichen Artikel verfassen und eine Publikation in dem jeweiligen Fachbereich einreichen können. Sie sollen eine selbständig erarbeitete wissenschaftliche Leistung verständlich vermitteln können. Lehrveranstaltungen: 1. Begleitendes Seminar **1 SWS** 2. Workshop 1 SWS Prüfung: Schriftlicher Bericht (max. 20 S.), unbenotet Prüfungsanforderungen: a) Verfassen wissenschaftlicher Artikel b) Einreichung wissenschaftlicher Publikationen Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Die Bachelor-Arbeit muss hohen wissenschaftlichen keine Ansprüchen genügen, einen Fortschritt in der Wissenschaft bedeuten und eine eigenständige Leistung der oder des Studierenden darstellen. Die Feststellung der Zugangsberechtigung erfolgt durch die oder den Modulverantwortlichen, die oder der die Stellungnahme einer im jeweiligen Fachgebiet zur selbständigen Lehre berechtigten Lehrperson einholen kann. Sprache: Modulverantwortliche[r]: Deutsch Studiendekan/in der Fakultät für Physik Angebotshäufigkeit: Dauer: unregelmäßig 2 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** dreimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen		6 C
Modul M.Phy-AM.001: Active Galactic Nuclei		2 SWS
Lernziele/Kompetenzen:		Arbeitsaufwand:
Learning outcome: Observational properties of acti	ve galaxies, taxonomy af AGN,	Präsenzzeit:
continuum and emission line physics, structure and l	ninematics of the central region,	28 Stunden
supermassive black holes, unified models, environm	ent, evolution of AGN.	Selbststudium:
Core skills: Spectroscopy and physical properties o	f active galaxies	152 Stunden
Lehrveranstaltung: Lecture with exercises		2 SWS
Prüfung: Oral Exam (ca. 30 Min.)		
Prüfungsanforderungen: classification, spectral properties and physics of the central region in active galaxies surrounding the central supermassive black hole, properties of the hostgalaxies, large scale environment, evolution of AGN.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
Previous AstroMundus courses (1.+2. Sem.)		
Sprache:	Modulverantwortliche[r]:	
Englisch Prof. Dr. Wolfram Kollatschny		
Angebotshäufigkeit: Dauer:		
Jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		
15		

Georg-August-Universität Göttingen 6 C 2 SWS Modul M.Phy-AM.002: Stellar structure and evolution Arbeitsaufwand: Lernziele/Kompetenzen: Learning outcome: The physics of stellar interiors and the evolution of stars belong Präsenzzeit: to the fundamentals of astrophysics. The following topics will be studied in detail: 28 Stunden Equations of stellar structure - Energy transport by diffusion of radiation, convection, and Selbststudium: conduction - Equation of state, opacity and nuclear energy generation - Methods for the 152 Stunden solution of the equations of stellar structure - Simple stellar models (polytropes) and their application - Stellar evolution: Pre - main sequence evolution, main sequence phase, post - main sequence evolution, final stages of stellar evolution... Core skills: Ability to describe and explain the fundamentals of stellar structure and evolution, application of the concepts and results of the subject to other areas of astrophysics Lehrveranstaltung: Lecture 2 SWS Prüfung: Oral Exam (ca. 30 Min.) Prüfungsvorleistungen: Solution of exercises Prüfungsanforderungen: Knowledge of the physics of stellar structure and evolution, the mechanics and thermodynamics of stellar structure, the methods for the solution of the equations of stellar structure, the various stages of stellar evolution and their interpretation. Zugangsvoraussetzungen: **Empfohlene Vorkenntnisse:** Previous AstroMundus courses (1.+2. Sem.) keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Wolfram Kollatschny Angebotshäufigkeit: Dauer: Jedes Wintersemester 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig

Maximale Studierendenzahl:

Georg-August-Universität Göttingen		6 C
Modul M.Phy-AM.003: Stellar Atmosphere		4 SWS
Lernziele/Kompetenzen: Learning outcome: Understanding of interaction of radiation and matter, radiative transfer, structure of stellar atmospheres; thorough understanding of the theoretical foundations of spectral analysis. Core skills: Application of physical concepts (such as atomic and molecular physics, thermodynamics, and statistical physics) in an astrophysical context, and their implementation in numerical simulations.		Arbeitsaufwand: Präsenzzeit: 56 Stunden Selbststudium: 124 Stunden
Lehrveranstaltungen: 1. Physics of stellar atmospheres 2. Stellar atmosphere modelling		2 SWS 2 SWS
Prüfung: Oral Exam (ca. 30 Min.) Prüfungsvorleistungen: Successful work on the assignments in both courses.		
Prüfungsanforderungen: Oral account of the context and concepts learned during the two courses on the topics of interaction of radiation and matter, radiative transfer, structure of stellar atmospheres, and theoretical foundations of spectral analysis; answering of specific questions on all the aspects in this field.		
Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2. Sem.)	Empfohlene Vorkenntnisse:	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen Modul M.Phy-AM.004: Physics of the Sun, Heliosphere and Space Weather

Lernziele/Kompetenzen:

Learning outcome: The heliosphere is a region in interstellar space filled by the solar wind. It extends into space over distances beyond 100 AU. The Sun's magnetic field varies on a variety of time-scales, leading to variations of the solar wind flow and in this way to changes in the structure of the heliosphere. The lecture series explains the associated physical processes, starting with the Sun as the source. The lectures focus on the key aspects of heliophysics, whilst the subject of space weather will be explained in depth in the lecture series "Physics of the Sun, Heliosphere and Space Weather - Applications and Simulations". The lectures include discussion of latest results from ongoing space missions, such as STEREO, SDO, Proba2 and ACE and also informs about the status of new missions like Solar Probe Plus and Solar Orbiter and new space weather projects such as AFFECTS.

Core skills: Key knowledge about physical processes of the Sun and heliosphere. Ability to interprete space observations relevant for space weather and its effects. Fundamental understanding of space physics, space measurements and data analysis and interpretation. Insight to new space projects and latest developments.

Arbeitsaufwand:

Präsenzzeit: 28 Stunden Selbststudium: 152 Stunden

Lehrveranstaltung: Lecture	2 SWS
Prüfung: Oral Exam (ca. 30 Min.)	

Prüfungsanforderungen:key concepts encountered during the lecture/exercises/reading.

Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2. Sem.)	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen 3 C 2 SWS Modul M.Phy-AM.005: Cosmological Structure Formation Lernziele/Kompetenzen: Arbeitsaufwand: Learning outcome: The students learn the basic theory of cosmological structure Präsenzzeit: formation, starting from the linear growth of structure to non-linear collapse and the 28 Stunden Selbststudium: 62 formation of the first cosmological objects, leading to the first stars and galaxies. They further become familiar with the epoch of cosmological reionization, its theoretical Stunden description and various observational probes. Core skills: The students learn to apply linear perturbation theory to the growth of structures, to use the Press-Schechter formalism describing the abundances of dark matter halos, as well as the theoretical framework to describe the formation of the first objects and the epoch of reionization. 2 SWS Lehrveranstaltung: Lecture Prüfung: Oral Exam (ca. 30 Min.) Prüfungsanforderungen: cosmological linear perturbation theory; dark matter halos; Press-Schechter formalism; spherical collapse model; reionization: theory; reionization: observational probes; chemistry and cooling in primordial gas; formation of the first objects **Empfohlene Vorkenntnisse:** Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2.Sem.) keine Sprache: Modulverantwortliche[r]: Englisch Prof. Dr. Wolfram Kollatschny Angebotshäufigkeit: Dauer: unregularly 1 Semester Wiederholbarkeit: **Empfohlenes Fachsemester:** zweimalig Maximale Studierendenzahl:

Georg-August-Universität Göttingen Modul M.Phy-AM.006: Aspects of Early Universe Cosmology

Lernziele/Kompetenzen:

Learning outcome: The aim of this course is to provide a broad overview of several contemporary lines of research in early universe cosmology, i.e. inflation (different models, extensions) but also proposed alternatives (bouncing models, string gas cosmology). To tell models appart, a brief introduction to cosmological perturbations will be given, to provide some tools needed to make predictions for current experiments.

Arbeitsaufwand:

Präsenzzeit: 56 Stunden

Selbststudium: 34 Stunden

Core skills:

- scalar fields in general relativity
- cosmological perturbations
- reading scientiffic papers
- reading/writing/talking about physics in English

Lehrveranstaltungen:

1. Lecture

2 SWS

2. Exercises

2 SWS

Prüfung: Oral Exam (ca. 30 Min.)

Prüfungsanforderungen:

Friedmann-Robertson-Walker (FRW) cosmology and simple models of single-field inflation; cosmological perturbations; Non-Gaussianities based on the delta-N formalism; observational constraints. More complicated/realistic models: multi-field inflation, curvatons, generalized kinetic terms, DBI inflation, brane inflation etc.; (P)reheating; Challenges for Inflation: the eta-problem; the measure problem of eternal inflation; Proposed alternatives to Inflation: bouncing models (non-singular i.e. via a ghost condensate and singular ones as in the phoenix universe), String-Gas Cosmology.

Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2.Sem.)	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen		4 C
Modul M.Phy-AM.007: Introduction in S	2 SWS	
Lernziele/Kompetenzen:		Arbeitsaufwand:
Learning outcome: We explore the formation of the first structures in theUniverse.		Präsenzzeit:
After a general introduction to the theory of cosmological structure formation, we focus		28 Stunden
in particular on the formation of the first stars and o	galaxies, leading to the epoch of	Selbststudium: 92
cosmological reionization		Stunden
Lehrveranstaltung: Course		2 SWS
Prüfung: Oral Presentation (ca. 60 Min.)		
Prüfungsvorleistungen:		
4 weeks preparation		
Prüfungsanforderungen:		
the basics of perturbative string theory, world-sheet supersymmetry, space-		
time supersymmetry, conformal field theory and the heterotic string; modern		
developments, including D-branes, string dualities and M-theory; string geometry and		
flux compactifications, applications to cosmology and particle physics, black holes in		
string theory and M-theory, the microscopic origin of black-hole entropy; matrix theory,		
the AdS/CFT duality and its generalizations.		
Zugangsvoraussetzungen: Empfohlene Vorkenntnisse:		
Previous AstroMundus courses (1.+2.Sem.)	keine	
Sprache:	Modulverantwortliche[r]:	
Englisch	Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit:	Dauer:	
Jedes Wintersemester	1 Semester	
Wiederholbarkeit:	Empfohlenes Fachsemester:	
zweimalig		
Maximale Studierendenzahl:		

Georg-August-Universität Göttingen		4 C
Modul M.Phy-AM.008: The origin and evolution of supermassive black holes		2 SWS
Learning outcome: We discuss different topics regarding the origin, evolution and properties of supermassive black holes. A list of topics will be provided during the first lecture, and additional t opics can be suggested by the students. Core skills: Physics and evolution of black holes.		Arbeitsaufwand: Präsenzzeit: 28 Stunden Selbststudium: 92 Stunden
Lehrveranstaltung: Lecture		2 SWS
Prüfung: Oral Exam (ca. 30 Min.)		
Prüfungsanforderungen: Successful preparation and presentation of a talk on a topic related to the origin and growth of supermassive black holes.		
Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2. Sem.)	Empfohlene Vorkenntnisse: keine	
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester	
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:	
Maximale Studierendenzahl: 15		

Georg-August-Universität Göttingen 6 C		
Georg-August-Universität Göttingen		4 SWS
Modul M.Phy-AM.009: Numeric Experiments in Astrophysics		
Lernziele/Kompetenzen:		Arbeitsaufwand:
Learning outcome: The lecture introduces basic methods to run numerical simulations		Präsenzzeit:
in astrophysics. The accompanying computer lab offers hands-on experience		56 Stunden
with simple numerical problems to train these methods. Finally, the students are		Selbststudium:
expected to elaborate on a particular problem in a pro	ject work at the end of the lecture.	124 Stunden
Core skills: To understand numerical methods and to apply these methods to problems		
in solar astrophysics and cosmology.		
Lehrveranstaltungen:		
1. Lecture		2 SWS
2. Exercises		2 SWS
Prüfung: Oral Exam (ca. 30 Min.)		
Prüfungsanforderungen:		
Successful completion and presentation of a project about a numerical problem from (a)		
solar physics or (b) cosmology. The student is expected to understand the underlying		
physics and numerical methods, as introduced in the lecture. He/she will have to apply		
and to modify a code for astrophysical simulations, to perform computations, and to		
carry out data analysis and visualization with postprocessing tools IDL (a) or yt (b).		
Usage of the code and the postprocessing tools are introduced in the exercise classes.		
Zugangsvoraussetzungen:	Empfohlene Vorkenntnisse:	
Previous AstroMundus courses (1.+2. Sem.)	keine	
Sprache:	Modulverantwortliche[r]:	
Englisch	Prof. Dr. Wolfram Kollatschny	
Angebotshäufigkeit:	Dauer:	

1 Semester

Empfohlenes Fachsemester:

Jedes Wintersemester

Maximale Studierendenzahl:

Wiederholbarkeit:

zweimalig

Georg-August-Universität Göttingen Modul M.Phy-AM.010: Introduction to Helioseismology

Lernziele/Kompetenzen:

Learning outcome: The Sun supports a rich spectrum of internal acoustic waves that are continually excited by turbulent convection. Helioseismology is a set of tools for probing the solar interior using observations of wave frequencies and travel times. This course covers the basic concepts of helioseismology: introduction to solar structure, observations of solar oscillations, normal modes, weak perturbation approximation, linear inverse problems, and three-dimensional tomography. Concepts will be illustrated by various applications: internal rotation, solar-cycle variations, sound-speed profile, border of convection zone, meridional circulation, convective flows, and sunspot seismology.

Selbststudium: 62 Stunden

Arbeitsaufwand:

Präsenzzeit:

28 Stunden

Core skills: Basic knowledge of the purpose and methods of modern helioseismology

Lehrveranstaltung: Lecture	2 SWS
Prüfung: Oral Exam (ca. 30 Min.)	

Prüfungsanforderungen:

Short presentation covering one of the following topics: solar structure, properties of solar oscillations, inversion of mode frequencies, local helioseismology.

Zugangsvoraussetzungen: Pprevious AstroMundus courses (1.+2. Sem.)	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	

Georg-August-Universität Göttingen 3 C 2 SWS Modul M.Phy-AM.011: Computer simulation methods in statistical physics

Lernziele/Kompetenzen: Arbeitsaufwand: **Learning outcome:** The use of computers to solve problems in statistical physics is well Präsenzzeit: established, and extremely useful in cases where exact solutions are not available. In 28 Stunden Selbststudium: 62 this course, the Monte Carlosimulation method will be presented, whose applications are widespread, and include the field of biology. Starting with the basic Metropolis algorithm Stunden for the Ising model, this course will gradually move on to consider more complex systems, and show how the Monte Carlo method can be used to extract thermodynamic limit properties with relative ease. Core skills: Implement state-of-the-art MC simulations

Lehrveranstaltung: Lecture	2 SWS
Prüfung: Oral Exam (ca. 30 Min.)	

Prüfungsanforderungen:

The aim of the course is to present the Monte Carlo simulation method, with the focus of application on many-body problems as encountered in statistical physics.

Zugangsvoraussetzungen: Previous AstroMundus courses (1.+2. Sem.)	Empfohlene Vorkenntnisse: keine
Sprache: Englisch	Modulverantwortliche[r]: Prof. Dr. Wolfram Kollatschny
Angebotshäufigkeit: Jedes Wintersemester	Dauer: 1 Semester
Wiederholbarkeit: zweimalig	Empfohlenes Fachsemester:
Maximale Studierendenzahl: 40	